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Introduction: There is a critical need to develop innovative educational 
strategies that engage youth in meaningful mathematics learning, particularly 
students from groups that have been historically marginalized in science, 
technology, engineering, and mathematics (STEM). In this study, we explore 
youths’ participation in two collaborative projects from the Growing Mathletes 
curriculum which combines baseball contexts and mathematics. Our goal was 
to understand the potential of these projects to support youths’ engagement 
with mathematical ideas and practices, and the extent to which youth leveraged 
a range of resources, including prior experiences and funds of knowledge, to 
inform their decisions and understanding.

Methods: The Design a Stadium and Baseball Team Roster projects were 
implemented in two afterschool setting sites and two summer program sites 
with 102 youth of all genders in grades 3 to 8. Data sources included video 
recordings of youth participation in the project, project artifacts, and youth 
interviews.

Results: We found the projects contained specific features that supported 
youths’ engagement in three specific mathematical practices: (1) make sense of 
problems and persevere in solving them, (2) reason abstractly and quantitatively, 
and (3) construct viable arguments and critique the reasoning of others. 
Additionally, there is evidence that while engaging in these projects youth drew 
on their own funds of knowledge to inform their decisions and understanding.

Conclusion: Our findings point to key implications for researchers, educators, 
and curriculum developers in informal STEM learning spaces.
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Introduction

There is a critical need to develop innovative educational strategies that engage youth from 
diverse racial, cultural and linguistic backgrounds in meaningful mathematics learning 
(Celedón-Pattichis et  al., 2018). The decontextualized and procedure-oriented nature of 
traditional, school-based mathematics instruction often fails to capture the interest of students 
(Boaler and Greeno, 2000; Ellis and Berry, 2005; Walkington, 2013). This is particularly true 
for students from groups that have been historically marginalized in science, technology, 
engineering, and mathematics (STEM; e.g., African American, Indigenous, and Latinx youth), 
as even contextualized mathematics activities from traditional school curricula often fail to 
reflect their identities, experiences, and perspectives (Ladson-Billings, 2009). This disconnect 
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separates students’ cultural strengths and experiences from their 
mathematics learning (Leonard, 2008; Celedón-Pattichis et al., 2018), 
and for some youth, leads to disengagement and lower achievement 
(Spencer, 2009), particular in comparison to settings that build on 
students’ interests and identities (Clark et al., 2013; Walkington, 2013).

Informal learning spaces, such as after-school programs and 
community centers, provide unique opportunities to support STEM 
learning (McCombs et al., 2017), in part because they can offer flexible, 
interest-based, collaborative activities (Afterschool Alliance, 2013). 
Informal learning spaces are also often community-centered and can 
provide more positive STEM experiences for youth who have had 
negative experiences in school (McCreedy and Dierking, 2013; Bathgate 
and Schunn, 2017). Project-Based Learning (PBL), an approach that 
emphasizes real-world problem solving (Capraro et al., 2013), has been 
shown to be effective in informal learning settings, particularly when 
projects are grounded in culturally responsive, meaningful contexts 
(Lipka et al., 2005; Enyedy et al., 2011). For example, PBL activities that 
connect mathematics and sports such as baseball have the potential to 
be high-interest, relevant contexts for engaging mathematical ideas (e.g., 
averages, data analysis) and practices (e.g., problem solving; Kirk and 
Kinchin, 2003; Casey and Quennerstedt, 2015). Despite the promise of 
such activities, there is a lack of curricular resources for PBL in informal 
learning spaces (Pattison et  al., 2017a). Moreover, given that most 
research on informal STEM learning spaces focuses on science, 
technology or engineering, rather than mathematics, there is a need to 
better understand how youths’ participation in mathematics-focused 
PBL supports their engagement with mathematical ideas and practices 
(National Governors Association Center for Best Practices and Council 
of Chief State School Officers, 2010). In the Growing Mathletes Project, 
we aimed to address these research needs and challenges, through the 
design, implementation and study of baseball and mathematics PBL 
activities in informal learning environments that serve youth from 
diverse backgrounds, including youth from groups historically 
marginalized in STEM (Latinx, African-American youth). Our study 
adds mathematics learning-focused findings to research on informal 
STEM education, and provides insights for informal educators and 
curriculum developers.

Focus of our study

In this study, we explore youths’ participation in two collaborative 
project-based activities that were implemented in afterschool and 
summer camp programs focused on connecting baseball and 
mathematics. Our goal was to understand the potential of these 
projects to support youths’ engagement with mathematical ideas and 
practices, and the extent to which youth leveraged a range of resources, 
including prior experiences and funds of knowledge, to inform their 
decisions and understanding. Specifically, our study addressed the 
following research questions:

RQ1: How do youth engage key mathematical practices (National 
Governors Association Center for Best Practices and Council of 
Chief State School Officers, 2010) as they participate in the 
Baseball Team Roster and Design a Stadium project projects in 
informal learning settings?

RQ2: What resources do youth draw upon to support their 
decision making and understanding?

Literature review

In the following sections, we  discuss research on informal 
environments and their potential for supporting mathematics 
learning, and then introduce STEM focused PBL as a specific strategy 
for informal spaces such as afterschool programs and summer camps. 
We  end by discussing the importance of grounding projects in 
relevant, meaningful contexts, and propose that connections between 
sports and mathematics hold promise for engaging youth typically 
underserved and underrepresented in STEM fields.

Informal learning spaces and mathematics 
learning

While most research in mathematics education focuses on formal, 
classroom-based learning, there is growing interest in the diverse ways 
that youth participate in mathematical practices and develop 
mathematical understandings in contexts outside of school. Informal 
learning spaces include more structured spaces such as afterschool 
programs or summer camps, and more open-ended spaces such as 
museum exhibits, nature centers, and playgrounds. Informal 
mathematics learning environments are often designed with specific 
goals in mind, such as supporting mathematical reasoning and 
learning (National Research Council, 2009). Yet in comparison to 
schools, these settings reflect a more relaxed and collaborative 
atmosphere which can increase student engagement and motivation 
(Vadeboncoeur and Padilla-Petry, 2017; Falk and Dierking, 2018). In 
addition, informal learning spaces that promote engagement and 
learning are typically characterized by interactive activities, 
opportunities for collaboration (e.g., Werner et al., 2009) and open-
ended projects that include choice and creativity (e.g., Denner and 
Werner, 2007; Tan et al., 2013; Sager et al., 2023).

Research suggests that informal learning environments support 
youths’ curiosity toward STEM, their engagement in STEM-related 
activities, and understandings about the relevance of STEM disciplines 
in their lives (Noam et al., 2003; Afterschool Alliance, 2013), all of 
which can buffer against potentially negative experiences with STEM 
in school (McCreedy and Dierking, 2013; Bathgate and Schunn, 
2017). Specific to mathematics, research on play in informal learning 
spaces has shown that youth engage in mathematics strategically and 
flexibly as a way to solve authentic problems that arise in the setting 
(Fisch et al., 2009; Martin et al., 2009). For example, Nasir (2012) 
found that youth set and pursued emergent goals as they played 
basketball, many of which involved complex mathematical reasoning 
such as calculating shooting averages and using those metrics to 
improve their game. Notably, while youth engage with mathematical 
ideas and strategies in informal spaces, via practices such as 
visualization, estimation and analyzing outcomes (Nasir and Hand, 
2008) they do not always view their practices as mathematical, because 
of narrow, school-based conceptions of mathematics that privilege 
computation (Kliman et  al., 2013). This suggests that informal 
learning settings designed to support mathematics learning need to 
call attention to mathematical ideas and help youth to see their 
practices as mathematical.

Another pressing challenge is ensuring that informal learning 
spaces are accessible to youth from diverse backgrounds. Some 
research suggests that community-based afterschool and summer 
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camp programs may benefit youth who may not be well-served by 
other informal settings (Dawson, 2016). For instance, while museums 
are powerful levers to advance interest in STEM, they are less visited 
by culturally and linguistically diverse families, potentially because of 
fiscal barriers or feelings of not belonging (Falk, 1993; Melber, 2007; 
Dawson, 2014). In contrast, community-based centers such as Major 
League Baseball (MLB) Youth Academies, which host both afterschool 
and summer camp programs, were built in under-resourced 
neighborhoods with the explicit purpose of attracting African 
American and Latinx youth, a goal that they have successfully met 
(MLB.com, 2015; ESPN.com, 2017). Another example are Boys and 
Girls Clubs which work with youth over sustained periods of time, 
supporting multiple aspects of development (e.g., intellectual, socio-
emotional; National Research Council, 2009). While these types of 
informal learning spaces are positioned to engage youth who have 
been historically marginalized in STEM fields (Dawson, 2016), they 
also face challenges, including a lack of high-quality curricula for 
informal STEM learning, and a lack of preparation to support STEM 
content (Afterschool Alliance, 2013). The next section describes one 
strategy, PBL, to address these challenges.

Project-based learning in informal learning 
spaces

Several strategies have been identified to enhance mathematics 
learning in informal settings. Perhaps the most-cited approach is the 
integration of project-based learning (PBL), in which youth develop 
strategies and solutions to address broad, real-world questions 
(Capraro et al., 2013). There are several critical components of PBL, 
including activities that are guided by a driving question (Darling-
Hammond et al., 2008), opportunities for collaboration, discussion, 
and reflection (Larmer et al., 2015), and the creation of a final artifact 
or model to showcase learning (Krajcik et al., 2022). The openness, 
choice and relevance of PBL projects allows youth to draw on prior 
experiences and knowledge to generate unique strategies and solutions 
(Darling-Hammond et al., 2008). Benefits of STEM-focused PBL in 
informal learning settings include enhanced engagement and learning 
(Capraro et al., 2017), and increased interest in STEM and STEM-
related careers (Tseng et al., 2013; Mohr-Schroeder et al., 2014; Kwon 
et al., 2021). PBL also encourages the development of critical thinking 
and problem-solving skills (Bevan et al., 2015; Schukajlow et al., 2018).

Despite strong consensus on the benefits of PBL in STEM-focused 
informal learning settings, most studies have investigated science (e.g., 
Mateos-Nuñez et al., 2020), robotics (e.g., Newton et al., 2020), or 
engineering-focused projects (e.g., Yilmaz et al., 2010), rather than 
mathematics. Mathematics-focused PBL involves students in complex, 
real-world projects, to promote a deeper understanding of 
mathematical concepts and practices (Pattison et  al., 2017a). For 
example, Cross et al. (2012) described a statistics focused project in 
which elementary age youth in an afterschool program collected and 
analyzed data to explore school breakfast options that would both 
encourage students to eat breakfast and also support their learning. 
They found that the project was relevant and connected to students’ 
interests, while addressing important statistical ideas such as sampling, 
distribution of data, and data representations. In related school-based 
research, Özdemir et al. (2015) found that middle school students 
improved their mathematical understanding and their attitudes 

toward STEM following a project-based unit that included ratios, 
proportions, and percentages. Similarly, Holmes and Hwang (2016), 
documented the impact of mathematics PBL projects with racially and 
economically diverse 8th and 9th graders; participating students 
evidenced increased motivation, critical thinking, and understanding 
of mathematics concepts.

To document the impact of STEM-focused PBL in informal 
learning settings, researchers often focus on outcomes such as beliefs 
or attitudes (Marshall et al., 2021; Bicer and Lee, 2023), or content 
knowledge (Han et  al., 2014). There is a need for more robust, 
qualitative assessment tools that can capture the multifaceted impacts 
of PBL (Thomas, 2000; Vadeboncoeur and Padilla-Petry, 2017), 
including how PBL supports engagement in disciplinary practices. 
While not specific to informal learning settings, various researchers 
have suggested that rubrics may be particularly well suited to capture 
the complex outcomes of PBL activities (Brodie and Gibbings, 2009; 
Petrosino, 2023). Developing and investigating such tools is 
particularly important for mathematics-focused PBL, given the 
limited number of studies that have specifically examined 
mathematics-related outcomes. Mathematics-focused PBL activities, 
which include complex, real-world questions that allow for multiple 
strategies and solutions, have the potential to support students’ 
engagement in the Standards for Mathematical Practice (National 
Governors Association Center for Best Practices and Council of Chief 
State School Officers, 2010), fostering skills such as problem-solving, 
reasoning, and communication. For example, PBL creates 
opportunities for youth to make sense of open-ended problems and 
persevere in solving them (Mathematical Practice 1; Capraro et al., 
2013). Similarly, in mathematics-focused projects youth may draw on 
data to develop mathematical arguments, and they may consider, 
critique, and respond to the reasoning of others (Mathematical 
Practice 3). Despite the promise of PBL for supporting students’ 
engagement in mathematical practices, research in this area is 
extremely limited, particularly in informal learning spaces that serve 
youth from diverse and underrepresented backgrounds. The next 
section focuses specifically on the importance of grounding projects 
in relevant contexts that draw on youths’ experiences and interests.

Relevant projects that connect 
mathematics and sports

PBL activities that connect to youths’ interests and to relevant, 
culturally responsive contexts have shown particular promise for 
engaging youth who have been historically marginalized in STEM 
(Nasir, 2012; Krajcik et al., 2022). When PBL activities are grounded 
in familiar contexts, and to questions that relate to youths’ interests 
and experiences, this encourages youth to draw on what they know, 
including funds of knowledge from their communities and everyday 
activities (González et al., 2005; Simic-Muller et al., 2009; Turner et al., 
2009). One promising context for PBL in informal learning settings 
are sports related activities, both because of the STEM connections 
and the fact that many youth participate or express interest in sports 
(Aspen Institute, 2018; Jones et al., 2020). For example, Marshall et al. 
(2021) engaged underrepresented middle school youth (African 
American, Latinx, multi-racial) interested in sports in a summer camp 
that combined basketball, analysis of basketball performance data, and 
biomechanics related activities. They found that youth demonstrated 
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enhanced STEM-identities (i.e., familiarity, interest, perceived 
importance) on post-camp surveys (see also Drazan et  al., 2017). 
Similarly, Jones et al. studied a sports and computing summer camp 
for elementary grade Black and Latinx youth and found that youth 
expressed strong interest in sports, and on post camp surveys, 
evidenced increased understanding of the utility of technology 
in athletics.

Baseball in particular provides rich contexts for the application of 
mathematical concepts and practices (Casey and Quennerstedt, 2015). 
As noted by Quinn (1996), baseball statistics such as batting averages, 
earned run averages (ERAs), and on-base percentages provide 
practical examples for teaching concepts like ratios, percentages, and 
probability. Similarly, using baseball contexts in mathematics activities 
creates opportunities for students to engage in mathematical practices 
(National Governors Association Center for Best Practices and 
Council of Chief State School Officers, 2010), such as problem solving, 
and to develop critical analysis skills. For example, a study by Kirk and 
Kinchin (2003) shows that analyzing baseball data requires students 
to interpret statistical information, make predictions, and solve 
complex problems. According to Wang et al. (2017) middle school 
students who played a sports-related computer game about running 
races demonstrated problem solving and quantitative reasoning skills 
(i.e., reasoning about relationships between speed, time and distance), 
and a willingness to accept challenges.

The use of sports contexts to explore mathematics can also foster 
collaboration and a sense of community among youth. A study by Nasir 
(2012) found that peer collaboration in sports-related activities helped 
students develop a deeper understanding of mathematical concepts 
through shared problem-solving and discussion. This is important, 
because when learning settings support collaboration and risk-tasking, 
engagement is enhanced (Boaler and Greeno, 2000; Boaler, 2002; Nasir, 
2012). However, a key challenge in using sports contexts, such as baseball, 
to teach mathematics is the availability of relevant resources. Informal 
learning settings may lack access to relevant materials to effectively 
integrate these contexts into their programming (Afterschool Alliance, 
2013). Additionally, while connecting sports and mathematics can 
enhance youth engagement, ensuring that the activities are educationally 
valuable can be  challenging. As McCombs et  al. (2017) emphasize, 
educators must carefully design activities to balance sports-related content 
with mathematical learning objectives. Our work in the Growing 
Mathletes program aims to address this challenge, through the design, 
implementation and study of sports and mathematics PBL activities in 
informal learning environments that serve youth from diverse 
backgrounds. This study will contribute mathematics education focused 
findings to the growing body of research on informal STEM education, 
and provide research-based insights for informal educators and 
program designers.

Methods

Growing Mathletes Program context

The Growing Mathletes program is an National Science Foundation-
funded research and design project aimed at broadening participation 
in STEM for youth from underrepresented backgrounds. The 
curriculum consists of 21 sessions for youth in grades 3 through 8, each 
of which include activities that connect sports (primarily baseball and 

softball), mathematics concepts, and growth mindset concepts. For 
example, in the Strike Zone session youth learn about the concept of 
strike zones (the area above home plate that is used to determine 
whether a pitch is a strike or a ball) in baseball. They measure the height 
of their individual strike zones, create a representation on chart paper, 
and calculate and plot the area. Next, they use their chart paper 
representations to practice pitching balls toward their strike zone, 
calculating the number of “strikes” and “balls” thrown in a set of 10 
attempts. The session concludes with a discussion of mistakes, and how 
reflection on mistakes can support learning and performance 
improvements in sports, school and other areas of life. Other sessions 
introduce youth to additional baseball performance statistics such as 
batting average, earned run average, hits and home runs, and provide 
youth with opportunities to generate, represent and analyze their own 
data. Analysis of program outcomes across multiple implementations 
has shown that youth demonstrate a small but statistically significant 
increase in their growth mindset for mathematics on post program 
surveys, and report increases in understanding of specific mathematics 
concepts, such as fractions, decimals and percents, in post session 
interviews (Baze et al., 2024).

The Growing Mathletes curriculum also includes two projects which 
are the focus of this study: Baseball Team Roster, and Design a Baseball 
Stadium. In both projects, youth work in small groups to plan, create, and 
present a final product (see Appendices A,B). In the Baseball Team Roster 
project (Roster project), the driving question is: How can we create a 
9-player MLB baseball team roster that meets salary requirements and 
maximizes performance? In the project, youth use various batting and 
pitching statistics from a recent season (e.g., batting average, hits, 
homeruns, earned run average, strike outs, wins) to select players for their 
own 9-player roster, within a specified salary cap. As they plan their 
rosters, youth interpret the relative importance of different player statistics 
(i.e., which statistics are most important when selecting a pitcher, vs. a 
position player), and they work collaboratively to optimize multiple 
criteria (maximum performance among the players on their team, for 
minimum cost). They present their rosters to the group, justifying their 
selection of players and explaining the criteria they used to make 
decisions. As a whole group, youth compare their rosters by analyzing the 
batting averages of players on their teams, and comparing the total hits or 
homeruns achieved by players on their roster to the salary dollars spent.

In the Design a Stadium project (Stadium project), the driving 
question is: How can we design a MLB stadium that will attract fans, 
including youth, and meet their needs? Youth research some of the 30 
Major League Baseball stadiums and develop a proposal for their new 
stadium. Their stadium plans must include the distances of the outfield 
wall (which are different for every ballpark), unique stadium features 
to attract fans (giant scoreboards, recreational areas, etc.), seating 
capacity (overall and by section), and ticket prices. As part of their 
design proposals, youth estimate how much it would cost for their 
family (or a group of friends) to attend a game at their stadium. Youth 
present their stadium plans to the group, justifying their decisions and 
how they used different criteria and priorities to guide their designs.

Participants

The Growing Mathletes program has been implemented in various 
informal learning settings, including Boys and Girls Club afterschool 
programs, and sports and STEM related summer camps at MLB 
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academies. For each implementation, our project team provided 
professional learning support to adult facilitators (initial training, 
opportunities to engage in sessions as learners, ongoing coaching during 
implementation) at each of the sites. In this analysis, we draw on data 
collected from two afterschool sites in the Southwest region of the 
United States, and two summer camp sites in the Southwest and Central 
regions of the United  States. An overview of the youth participants 
(total = 102) from each site is provided in Table 1. Information about age 
and gender was self-reported by youth on surveys.

At all sites, youth participants reflected the racial/ethnic 
background of the surrounding schools and communities. At the two 
Southwest afterschool sites, youth participants attended schools 
within walking distance of the Boys and Girls Clubs. The schools 
predominantly served students from minoritized backgrounds [Latinx 
(45% Site 1, 57% Site 2), Black/African American (17% Site 1, 21% Site 
2), White (24% Site 1, 14% Site 2), two or more races (7% Site 1, 3% 
Site 2), American Indian (3% Site 1, 4% Site 2)].1 The Southwest 
summer camp site also drew youth from the surrounding community, 
though some youth attended from other parts of the city. The 
community population was 55% White, 31% Latinx, 6% 2 or more 
races and 3% Black/African American, based on census tract data 
(FRB Census Geocoder, 2024). The Central summer camp also drew 
youth from the surrounding community, which was 48% Black/
African American, 43% Latinx, 5% White, and 2% two or more races 
(FRB Census Geocoder, 2024). At the Boys and Girls club sites, some 
youth participants had experiences with sports, including baseball, but 

1 www.usnews.com/education/k12/

for most, their primary source of knowledge was the Growing 
Mathletes program. In contrast, the two summer camp sites drew 
youth with interest in baseball; many camp participants played 
baseball or softball in local leagues.

Data collection

The primary data sources for this study were (a) video recordings 
of 20 small groups as they worked on the projects outlined above (14 
Baseball Team Roster groups, and 6 Design a Stadium groups), and (b) 
the artifacts they produced (i.e., planning notes, final project posters). 
We  selected these data sources given our research focus on how 
program activities supported youths’ engagement in mathematical 
practices; video recordings of youths’ interactions in extended projects 
allowed detailed documentation of youths’ participation in these 
practices, including evidence of youths’ actions, decisions, and 
discussions. Members of our research team reviewed each video and 
created detailed content logs that described the small groups’ activity 
in 5 min increments. Stopping the videos after each 5 min increment 
allowed research team members to capture the details of youths’ 
interactions, including exchanges with the facilitators, specific 
examples of the reasoning youth used to make decisions, conversations 
or debates among youth in the group, and descriptions of mathematical 
concepts or practices employed. While the logs did not include a full 
transcript of the interactions, we  transcribed specific excerpts to 
capture youths’ activity and reasoning related to key group decisions. 
Secondary data sources included (a) detailed field notes taken by 
project team members as they observed these sessions and (b) 
transcripts of interviews with a subset of youth participants following 

TABLE 1 Overview of youth participants at each informal learning site.

Site # Youth/# Facilitators Gender/age of youth Small groups included in analysis, by project 
(50 youth for Roster, 23 for Stadium)

Southwest Afterschool Site 1 19/1 Ages 10–13, 9 girls, 10 boys Group A (Roster): 1 girl, 3 boys

Group B (Roster): 2 girls, 2 boys

Group C (Roster): 2 girls, 1 boy

Group D (Stadium): 4 girls

Group E (Stadium): 4 boys

Group F (Stadium): 3 girls, 1 boy

Southwest Afterschool Site 2 20/1 Ages 8–13, 14 girls, 4 boys,  

2 did not report

Group G (Roster): 3 girls, 2 boys

Group H (Stadium): 4 girls

Group I (Stadium): 3 girls

Group J (Stadium): 4 girls

Southwest Summer Camp 1 18/2 Ages 8–13, 8 girls, 9 boys, 1 did 

not report

Group K (Roster): 4 boys

Group L (Roster): 3 girls

Group M (Roster): 4 boys

Group N (Roster): 3 girls

Southwest Summer Camp 2 29/2 Ages 8–13, 10 girls, 18 boys,  

1 did not report

Group O (Roster): 3 girls, 1 boy

Group P (Roster): 3 girls

Group Q (Roster): 4 boys

Group R (Roster): 2 girls, 2 boys

Central Summer Camp 16/2 Ages 8–13, 3 girls, 12 boys,  

1 did not report

Group S (Roster): 3 boys

Group T (Roster): 2 boys
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each project session. This included interviews with 12 of the 50 youth 
from small groups included in the analysis of the Roster project, and 
8 of the 23 youth from small groups included in our analysis of the 
Stadium project. Interviewed youth included 12 girls and 8 boys, and 
all but 2 youth were from Latinx, African American or mixed-race 
backgrounds. While the broader purpose of these interviews was to 
elicit youths’ feedback to inform iterative revision of program 
activities, for this analysis we used segments of the interviews that 
included youths’ descriptions of their participation in the Roster or 
Stadium projects to add additional context to the video recordings and 
collected artifacts.

Analysis

Data analysis was organized around three phases. In Phase 1, 
we used the video recordings, detailed content logs, and group 
artifacts to score each small group’s project work using an analysis 
rubric. The analysis rubric included dimensions focused on use of 
mathematics concepts including number sense and operations, 
and mathematical practices such as MP 2: Reason abstractly and 
quantitatively, and MP 3: Construct viable arguments and critique 
the reasoning of others (see Table 2 for selected dimensions in the 
analysis rubric). A final dimension of the analysis rubric focused 
on the resources and supports youth drew upon to inform their 
decision making including prior experiences and knowledge, 
facilitator suggestions, and peer support. For each dimension of 
the analysis rubric, we noted whether the small group interactions 
reflected limited evidence (i.e., a single, isolated instance, or 
evidence from a single youth in the group, or several instances 
which were brief and lacking in depth), strong evidence (i.e., 
repeated, meaningful instances, evidence from multiple youth in 
the group), or a lack of evidence. To ensure credibility of our 
interpretations (Lincoln and Guba, 1985), two members of the 
research team individually scored each small group using the 
analysis rubric, and then met to compare their analyses. 
Differences in scores were resolved via discussion. When 
necessary, we  consulted videos for additional information. In 
Phase 2, we  triangulated the evidence on each small group’s 
analysis rubric against relevant secondary data sources including 
segments of researcher field notes that focused on the interactions 
of that specific group, or interviews with youth participants. 
We  noted instances when secondary data sources confirmed 
evidence already recorded on the group’s rubric, and added 
additional evidence (e.g., interview quotes) as appropriate. In 
Phase 3, we  analyzed the small group rubric evidence across 
groups to identify themes related to our two research questions. 
Following a process of thematic analysis (Creswell, 2009), we first 
reviewed evidence for a given dimension (i.e., Making Sense of 
Problems, Problem Solving) across groups and generated initial 
codes to label different ways that groups evidenced that dimension, 
including how they enacted mathematical practices and the 
resources and supports that they drew upon to support decision 
making. When multiple dimensions related to the same 
mathematical practice (i.e., the dimensions Communicating 
Reasoning and Mathematical Arguments and Considering, 
Responding, Critiquing the Ideas of Peers both related to MP 3: 
Construct viable arguments and critique the reasoning of others) 

we  reviewed the evidence across these dimensions to generate 
initial codes. Next, we reviewed codes and associated evidence to 
identify themes related to how small groups evidenced specific 
mathematical practices, including similarities and differences 
(RQ1), and related to the resources or supports youth drew upon 
to inform their decision making (RQ2). This process involved 
drafting themes, checking the theme against relevant evidence 
across different small groups, and then creating a detailed memo 
for each research question that described prominent themes and 
illustrative examples. Our findings are organized around these 
key themes.

Findings

Our findings are organized around our two research questions. 
For research question 1, we  highlight themes related to the 
mathematical practices that were most prominent (MP 1, MP 2, and 
MP 3) as youth worked on collaborative projects in the informal 
learning environments. Of the 20 small groups, all but 1 or 2 
demonstrated at least “limited evidence” of these mathematical 
practices, and approximately half of the groups demonstrated 
strong evidence. In comparison, other mathematical practices, such 
as MP 5 and 6 were less evident; approximately one-third of groups 
lacked evidence for these practices, while half demonstrated limited 
evidence, and several groups had strong evidence. Our findings are 
organized around themes related to the mathematical practices 
most salient in our analysis (MP 1, 2, and 3), offering evidence for 
the role of specific project features to promote meaningful 

TABLE 2 Description of selected dimensions from analysis rubric for 
small group projects.

Dimensions (with connection to math practices)a

A. Making Sense of Problems, Problem Solving (MP 1): Persistence in solving 

complex problems; Identifying different problem solving approaches; Monitoring 

progress and making adjustments as needed.

B. Number Sense and Operations (MP 2): Making sense of quantities including 

multi-digit numbers, fractions, decimals in problem situations; Reasonable 

estimates; Decontextualizing situations and representing them symbolically; 

Executing relevant operations flexibly and accurately; Interpreting the meaning of 

quantities and operations.

C. Reasoning across multiple data sources (MP 2): Attending to the meaning and 

relative importance of different quantities in relation to the real-world scenario to 

inform decisions.

D. Communicate Reasoning and Mathematical Arguments (MP 3): Explaining and 

justifying ideas, approaches and strategies; Explaining the reasoning behind 

decisions; Constructing an argument to justify a decision.

E. Considering, Responding, Critiquing the Ideas of Peers (MP 3): Making sense of 

peers’ ideas; Asking questions, responding to, or critiquing the ideas of others; 

Revising one’s own thinking in response to ideas from others.

F. Use of Tools (MP 5): Strategic use of tools (calculators, rulers, tables or graphs) to 

support problem solving.

G. Attention to Precision (MP 6): Attention to precision in selection of quantities, 

calculations, and/or measurements; Attention to clarity in representations (clear 

use of symbols and labels) and communication.
aEach dimension was scored as either Strong, Limited, or None based on the amount of 
evidence found.

https://doi.org/10.3389/feduc.2024.1456653
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Turner et al. 10.3389/feduc.2024.1456653

Frontiers in Education 07 frontiersin.org

engagement of these practices. For research question 2, we outline 
the range of resources that youth leveraged to support their work, 
and then highlight the varied ways that youth drew on knowledge 
from other experiences and contexts to inform their work. All 
youth names used are pseudonyms. We end with a discussion of our 
findings, and implications for further research and curriculum 
development for informal STEM learning environments.

Findings for RQ1: youths’ engagement with 
specific mathematical practices

Our analysis of small group interactions on the Roster and 
Stadium projects demonstrated that youth engaged in six of the 
eight mathematical practices (National Governors Association 
Center for Best Practices and Council of Chief State School 
Officers, 2010). Before we turn to the three practices that were 
most prominent (MP1, MP2, and MP3), we  briefly describe 
youths’ engagement with other practices. In both projects youth 
evidenced MP 5: Use Appropriate Tools Strategically, and MP 6: 
Attend to Precision in complementary ways as they used 
calculators to execute, check or revise calculations, or used rulers 
to sketch accurate models of their field design (e.g., using rulers 
to ensure an equal distance between bases in the infield). MP 4: 
Model with Mathematics was also evident in small groups’ work, 
as youth used equations to model the total salary of their MLB 
roster, or the cost of attending a game in their stadiums. Youth 
also engaged in MP 4 as they identified and related important 
quantities (e.g., size and location of seating sections, compared 
to ticket prices in the Stadium project), and interpreted their 
mathematical results in the context of the real-world situation. 
These instances of modeling with mathematics typically involved 
other mathematical practices, such as problem solving (MP1) or 
quantitative reasoning (MP2), and thus are discussed in the 
corresponding findings sections below. Two mathematical 
practices related to the use of patterns and structures (MP7) and 
the recognition of repeated reasoning (MP8) were less evident in 
youth interactions, likely due to the lack of focus on mathematical 
patterns and structures in the projects, and thus are not a focus 
in the findings sections that follow.

MP1: make sense of problems and persevere in 
solving them

As youth engaged with each of the project-based tasks 
(Baseball Team Roster and Design a Stadium) they evidenced 
specific practices related to MP1: Make sense of problems and 
persevere in solving them. First, as youth made sense of the goals 
of each project and considered possible problem solving 
approaches, they made strategic decisions that facilitated 
calculations and helped them to keep track of their progress. For 
example, in the Roster project, multiple groups opted to select the 
most important, and potentially most expensive players first, 
such as the pitcher, and to track their spending along the way so 
they were aware of how much money was left after each player 
selection. Group P from the Southwest Summer Camp site started 
by selecting the team pitcher and catcher (positions that they 
deemed most important), and then calculated their remaining 
salary funds.

Sofia: (as she subtracts the two player salaries from 70,000,000), Hold on, 

I am trying to see how much money we have left. We have two 

players, the pitcher and catcher. We have 53 million left. Now the first 

baseman.

[Harper and Ya’Nai select the next player, who has a 5 million dollar salary.]

Sofia: Now we have 48 million left.

Harper: That’s pretty good.

Sofia: But [for our other players] noone that has 20 million salaries,

because we will not have enough. Anyone who has a 22 million salary 

(looking at one of the player cards) is out of the competition.

They continued this process as they selected the remaining 6 
players, calculating available funds after each selection to ensure that 
they did not overspend the allotted salary budget.

In the Stadium project, youth made purposeful decisions about 
quantities to facilitate calculations with larger numbers, which 
supported efficient progress through the task. For instance, Group D 
from a Southwest afterschool program site strategically used multiples 
of 5,000 or 10,000 as they planned the seating sections in their stadium 
so that they could easily ensure that the capacity of their sections 
equaled the total capacity of the stadium (100,000). Initially, they 
designated 20,000 seats to each of 5 seating sections (because they 
knew 5 times 20,000 is 100,000). Later, they revised this plan to allow 
for more seats in the “cheaper sections,” but continued to use quantities 
that facilitated efficient mental calculation. Another small group of 
elementary grade students at the same Southwest site, Group F, used 
a similar approach, explaining to the program facilitator that they used 
“friendly numbers” for their seating capacity and ticket prices of each 
section to make it easier to review and keep track of calculations.

Second, as youth worked on the projects, they evaluated their 
progress, reflected on whether their approaches to the problem made 
sense, and made adjustments as needed. In some instances, these 
adjustments were based on the constraints of the project, and other 
times based on their real-world reasoning about the situation. For 
example, in the Roster project, some groups spent less than the allowed 
salary dollars on their team roster, and decided to use the remaining 
funds on additional players to strengthen the team. Group R at the 
Southwest summer camp site decided to draft a second pitcher, given 
the importance of this position. One youth in the group explained, “after 
we picked and had all the [required] players. We had more extra salary 
and thought that it would be helpful to have an extra pitcher just in case.”

Josiah: Should we draft another pitcher, since we have extra money to spend, 

should we get Lance Lynn?

He’s [with] in budget

Ariya: Wait, you want the pitcher to have the lowest salary?

Liam: This is a second pitcher.

Josiah: Lance Lynn from the White Sox is only $10 million.

In other cases, youth found that their selected players exceeded 
the salary limit, and they had to make adjustments to their selections. 
For example, Group K from the Southwest summer camp site totaled 
their selected player salaries and discovered that their roster was $17 
million over budget. They debated which player to “lose” in favor of 
another, less expensive option.
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Levi: Ok, we are over budget.

Mateo: by how much?

Levi: $17 million.

Xavier: by $17 million? We’re over budget by just $17 million!

Facilitator: Oh, that’s a lot. … You have to sacrifice somewhere.

Mateo: I know, I’m doing it, I’m doing it.

Xavier: We’re not sacrificing.

Levi: Yeah we are, but we are not sacrificing Mookie Betts. (who had 

a salary of $18,658,692).

Xavier: We have to keep Betts? (puts head down on table, covers with 

hand).

Mateo: I’m taking out [Yadier] Molina. (a catcher, with a $9,000,000 

salary).

Levi and Xavier: NO!

Xavier: He’s the best catcher.

Levi: (looks over their roster to identify another high salary player). 

Wait, $22 million, is Freddy [Freeman] (first baseman) really 

worth $22 million?!

Mateo: Yes! Well not in real life.

Facilitator: Is there another first baseman you could find that is cheaper?

Levi: Matt Olsen. And we’ll keep Betts.

Mateo: How does that make sense?

Xavier: Matt Olsen is way cheaper than Betts. (Matt Olsen has a salary 

of $5,000,000).

The group tested out this plan and found that by removing 
Freddy Freeman they had a little over 5 million salary dollars 
remaining, enough to add in a different first baseman, Matt 
Olsen. These adjustments allowed them to honor the budgetary 
constraints of the task, while still retaining their favorite player, 
Mookie Betts.

In the Stadium project, youth also tracked their progress and 
made adjustments as needed, in some instances based on real-world 
considerations related to the project context. For example, Group J 
at a Southwest afterschool site initially planned to only offer 4-packs 
packs of tickets for their exclusive VIP section, reasoning that 
attendees would want to enjoy the special VIP offerings with family 
and friends. But when asked by the facilitator whether she could 
purchase a single ticket to join a group in the VIP section, the girls 
decided that the 4-pack option was too limited and they added a per 
person ticket pricing structure to their plan.

In both projects, multiple groups of youth engaged in making 
sense of problems (MP1) as they generated and enacted problem 
solving approaches, made purposeful decisions that supported 
their progress, and strategic adjustments to their approach when 
needed. The balance between the openness and choice built into the 
project, combined with the requirements and constraints, seemed 
to support these practices, a point which we  return to in 
the discussion.

MP2: reason abstractly and quantitatively
Across both projects, youth consistently attended to the meaning of 

quantities in relation to the real-world scenario. As youth performed 
operations, compared quantities, and selected values, they did so in ways 

that clearly evidenced understanding of how the quantities related to 
specific components of the project context. For example, in the Stadium 
project, youth performed multi-step calculations as they planned the 
seating capacity and ticket prices for their stadium, and projected the 
total cost for a group of family members or friends to attend a game. At 
one of the Southwest afterschool sites, multiple groups (H, I, and J) 
labeled their calculations in ways that evidenced understanding of 
meaning of each quantity and solution in relation to the context (e.g., 
they labeled equations that represented the total cost of ticket prices, 
food purchases and parking for a group of 4 people attending the game). 
One group designed a very small, personal stadium that included only 
1,100 seats. When they shared their design, they explained the meaning 
of the quantities in each seating section (number of seats, and ticket 
prices), and the meaning of their computations (i.e., Youth: “we put 100, 
100, 300, 500 and then another 100…. for the number of seats in each 
section. We added those together and we got 1,100 …[which was] the 
total number of seats in the stadium.”).

At the other Southwest afterschool site, Group E identified and 
operated on quantities related to seating capacity and ticket 
practices in ways that reflected understanding of the meaning of the 
values in context. For example, they divided the 75,000 seats in their 
stadium across three seating sections of varying sizes and ticket 
prices to create accessible options for stadium attendees. One youth 
explained the half/double ratios they used to set ticket prices for 
each section:

Umar: It was really hard because we were only doing three sections. So 

we had to figure out a way to balance 75,000 into three sections. 

And we had a VIP section, I think it was 10,000 seats for the VIP, 

which was $50 a ticket. Then 25,000 for the second section, which 

was, $25 [for a ticket]. And then for the last section it was 40,000 

seats for $12 [per ticket].

Facilitator: Why did you choose $25 for the middle section?

Umar: I think $25 was a pretty good price for section two. Cause it’s half 

of 50, which is the [price for the] VIP. And 12 would’ve been good 

for the other section because it would’ve been close to half of 25.

In other words, as these youth identified and operated on 
quantities, they consistently attended to the meaning of the quantities 
and operations in the real world situation.

Just as youth contextualized quantities throughout their work 
on the Roster and Stadium projects, they also demonstrated the 
ability to decontextualize—to represent and manipulate situations 
symbolically, flexibly using properties of operations to support 
their work. For example, in the Roster project, multiple groups of 
youth reasoned that they could use two different mathematical 
operations, addition or subtraction, to determine whether their 
team roster exceeded the allowable salary budget. Some youth 
opted to repeatedly subtract each player’s strategy from the 
$70,000,000 budget, understanding that the result of each 
operation represented the amount of salary dollars remaining. 
Other youth successively added each player’s strategy, 
understanding that the result of each sum represented the number 
of salary dollars spent. In some small groups, such as Group G at 
a Southwest afterschool site, youth explored both approaches in 
parallel, explaining how they each verified that the team roster met 
the salary requirements.
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Facilitator: Ok, tell us what you did. What did you get?

Dominic: 64,670,286

Facilitator: Is this the total, for how much you spent? Write that on the board, 

ok?

Facilitator: [To Camila] Did you get the same thing?

Camila: Yeah all the 9 player salaries and it is about $64 million (youth 

rounded some of the salary figures). So we are under.

Dominic: [records total salary dollars on board].

Facilitator: [To Grace and Alexis] Did you get the same number?

Grace: We found the difference. I was finding out how much we spent on 

each player and then subtracting it from what we had in the budget 

[$70,000,000] and then from what we had left over.

Facilitator: And you had about 5 and a half million left? [looking at written 

work from Grace and Alexis].

Alexis: Yeah, it’s the same.

While the facilitator did not further probe the youths’ 
explanation, the youth concurred that each of their operations 
“proved” that the team roster met the $70,000,000 salary limit 
requirement, and seemed to understand how their addition and 
subtraction calculations related to one another, each providing key 
information about their situation.

Another way that youth reasoned abstractly and quantitatively 
as they engaged in the projects was by reasoning across different 
quantities to inform the decisions they made. This primarily 
occurred in the Roster project as youth compared quantities 
abstractly (i.e., comparing decimal values, whole numbers, or 
percentages) and then contextualized the meaning of those 
quantities and relationships in terms of baseball player statistics. 
For example, Group N at the Southwest summer camp site used 
multiple player statistics to compare players at each position as they 
made their team roster. In the discussion excerpt below, the youth 
debated which first baseman to select. Gemma shared the first 
baseman statistics with the rest of the group, while Chloe compared 
the first baseman statistics to those of the second baseman she 
was reviewing.

Gemma: I think we are going with Matt Olson for first base.

Chloe: Does he have good stats, or is he just cheap?

Gemma: His salary is $5 million, hits are 53, and home runs 30.

Chloe: What? Yours is only $5 million? My [second baseman] player is twice 

as much as that, and he only has like 3 more hits! How many hits 

does yours have?

Gemma: 153.

Chloe: Ok, mine has 5 more hits than yours, but he is double the price.

Gemma: Yeah, and he (Matt Olson) has like the same home runs as this guy 

(Anthony Rizzo) but he is much more expensive ($16,000,000).

Once the group selected all field players, they proceeded to select 
a pitcher, leaving the pitcher to the end so they could spend all 
remaining salary funds on this position. In the discussion below, the 
youth leading the pitcher selection (Ava) debated the relative 
importance of different pitcher statistics, including ERA (Earned Run 
Average), wins, and strikeouts.

Ava: I am doing pitcher, ok, these are all the pitchers.

Ava: This guy is $35 million but he has a really good ERA (only 2.29). It is 

really hard picking a pitcher because there are so many. I am mostly 

looking at their ERA. The pitcher is the most important, but 

strikeouts are also important. I am weeding some people that have 

low scores.

Chloe: The pitcher is the most important, right?

Gemma: The pitcher makes the team.

Ava: Yeah I am weeding out the ones that have low scores.

Chloe: Are you doing wins? Or strike outs?

Ava: I say strike-outs.

Gemma: Yeah strikeouts are important.

Ava: All we still need is a pitcher so we can spend big money on a pitcher.

Chloe: We have to wait and see how much money we have left when she is 

done (Gemma is adding the salaries of the players selected so far).

Ava: Part of me wants to just pick the best ERA, but then this one has 

really good strikeouts and this other one has the most wins. This one 

has the most strikeouts.

Gemma: I will tell you if we have enough money. So far I only have two more 

that we need to add, so I think you can get the most expensive one. 

… I calculated all of it and we spent $60 million. We have $10 

million left (looking over the pitcher salaries, half of which are over 

$10 million)

Ava: That’s actually really good. Ok, maybe this one (Robbie Ray). … So 

we can get this pitcher, he’s $8 million, so we are under budget. 

I know his wins aren’t a lot, but his strikeouts are one of the most.

Throughout this discussion, the girls compared quantities 
expressed as whole numbers (salaries, hits, homeruns) and as decimals 
(ERA, batting average). They not only compared the quantities 
abstractly, but reasoned about the relative importance of each quantity 
for a particular player (i.e., they concluded that strikeouts were critical 
for a pitcher, while hits and home runs were focal points for the first 
baseman.) In addition, they correctly interpreted whether higher or 
lower values for a given statistic indicated strong performance (e.g., 
with ERA, a lower value is better because it indicates that a pitcher gives 
us fewer runs, while with strikeouts, a higher value is better). In other 
words, as youth reasoned about different statistics they decontextualized 
and recontextualized each value to inform their roster decisions.

Across both projects, though more prominent in the Roster project, 
youth engaged in quantitative reasoning as they compared and found 
relationships among values, debated the relative importance of different 
player statistics, and reasoned about how different operations related to 
the problem context. We suspect that the different kinds of quantitative 
data included in the Roster project was particularly supportive of these 
practices, a point which we elaborate in the discussion.

MP3: construct viable arguments and critique the 
reasoning of others

As youth communicated their reasoning about the meaning of 
quantities in the project, they also engaged in MP3: constructing and 
critiquing augments. In the Roster project, this most often occurred as 
youth argued for selecting a particular player. As evidenced in the 
excerpts above, they often considered how a player’s statistics 
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compared to those of others that played the same position. For 
example, in the discussion below, two boys from Group R from the 
Southwest summer camp site engaged in a lively debate about which 
player they should select for pitcher. Their goal was to optimize 
multiple criteria in their pitcher selection (maximum performance for 
the minimum cost).

Josiah: We are doing pitchers. Who do you think we should do? Who is the 

best and the cheapest?

Liam: Shohei Ohtani is the cheapest, he is like $3 million.

Josiah: But we need who is the best and the cheapest.

Liam: Oh, best but cheapest. Adam Wainwright, he’s $8 million and he’s 

better than anyone. He has 17 wins and 174 strikeouts.

Josiah: I think Robby Ray. Robbie Ray is the same price, but he has more 

strike outs (248), and better ERA (2.84, vs. 3.05), but less wins (13 

wins, vs. Wainwright’s 17 wins).

Liam: ok, then Robbie Ray, Robbie Ray. … But what about Brandon 

Woodruff? Let us see Brandon. He is also cheap (3.275 million). But 

Shohei Otani is cheaper, and wait, he has more strikeouts than 

Brandon.

Josiah: But Robbie Ray has more. I still think we should do Robbie Ray, 

he is the cheapest and he has more strikeouts and a better ERA but 

less wins.

Liam: Yeah, yeah. Robbie Ray? Do you guys all agree on Robbie Ray? 

[Hands the card to Youth 4 that she can examine the stats; Youth 3 

and 4 were discussing other positions] He has good stats and he is 

cheaper.

Mila: [after studying the stats for one minute] Yeah I think he’s good.

Following this session, Josiah reflected on the project with a 
member of our team, and specifically described his group’s process for 
communicating and critiquing arguments for specific players.

Project staff: So tell me more about how you selected players?

Josiah: [For pitcher], I was saying, who had the most strikeouts and ERA 

and he was almost the cheapest one.

Project staff: So you took a rounded approach.

Josiah: Yeah, and for shortstop I chose Fernando Tatis Junior because 

he had the most hits and he had one of the highest batting 

averages. But he also had the most salary rate of all the shortstops.

Project staff: And how did you decide as a group?

Josiah: We did like cooperation. We went through it as a team, and 

we decided, like, who we thought would be the best and we’d take 

a vote or whatever. …. We did a lot of what we thought would 

be the best, but then we also would say if one of us made a bad 

pick then we told them why it was bad or if there was someone 

better. … And if they wanted to change or if we wanted to keep it, 

we’d all choose.

Notable in Josiah’s reflection is how the project created 
opportunities for students to present and justify their own arguments, 
but also opportunities to consider other’s reasoning, and to revise their 
arguments in response to critique.

In the Stadium project, youth also engaged in communicating and 
critiquing arguments, most often related to decisions about seating 
capacity and ticket prices for different sections of their stadium. For 
example, groups H, I and J each had spirited debates about which 
seating section would be the most desirable, and therefore the most 
expensive. Two groups presented conventional arguments for a small 
section of expensive, exclusive, “close to the field” seats for “VIP” 
attendees. But one group (Group I), argued that the lower seats were 
less desirable, because they only provided a partial view of the field, 
and included a higher risk of “getting hit” by a ball. Instead, they 
argued that the VIP section should be located in the top rows of the 
stadium, as those seats allowed a wide view of the entire field.

Midra: Let us make the top row more expensive, because let us have the 

famous people that are going to come to the baseball game sit on top.

Zahara: Yeah.

Lorelei: So for them it would be more expensive, like VIP.

Zahara: Should we make it like $180 [per ticket]?

Lorelei: That’s way too cheap.

Zahara: 300 dollars.

Midra: No, no, 320 dollars.

Zahara: $360.

Lorelei: Ok 360 dollars for VIP. Then the middle row [section] is going to 

be like 100 or 200 dollars. And the bottom one [section] is going to 

be like $60.

Zahara: I think $40.

Lorelei: The bottom row is going to be $40, the VIP $360 and the mid is 

$100.

… [the facilitator approaches the group to ask about their plan].

Midra: [to the facilitator] This is the money and this is the seating 

[capcity]. We made this like VIP that is why it is so expensive, and 

this is where the famous baseball players and famous people sit, at 

the top.

Facilitator: Why these numbers [prices]?

Zahara: Because the middle, we did not want to do too much, because not 

that many people can pay that. So mid level is $100, you know, not 

that expensive but not that cheap.

Facilitator: Wait, these are your cheap ones, right? (points to top level seats)

Midra: No, the bottom ones are the cheapest.

Facilitator: The closest ones are the cheapest?

Zahara: Yeah because you might get hit by the ball.

Facilitator: Ah, on this one [shows a sample seating chart from an actual 

stadium] the closest ones are the most expensive, but you are 

worried about getting hit by the ball, but most people want to 

be close to the field. As close to the field as possible.

Lorelei: Yeah, this is VIP, [points to upper section] that is why it is the most 

expensive.

Midra: And our stadium is going to be big, and the top is going to be really 

high, so I think people will want to sit there, because first of all, less 

chance of getting hit in the face and second you can see better.

Lorelei: And if you are looking for the restrooms or like the food area, 

you can see everything.
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In summary, both projects created opportunities for youth to 
communicate their reasoning and to construct, consider, and 
respond to the ideas of others. Mathematical argumentation  
was most evident in the Roster project, as youth strove to  
optimize multiple criteria so that players had maximum 
performance for minimal cost. When students constructed 
arguments in the Stadium project, the focus was mostly on 
youths’ reasoning for their choices and preferences in their 
stadium design.

Findings for RQ2: youth leverage resources 
to support their decision making and 
understanding

This section focuses on the varied resources that youth drew 
upon to support their understanding and decision making as they 
completed the two projects. We  found that almost all groups 
evidenced use of social resources (peers and/or facilitators) to 
support their decision making. In both projects, youth asked 
group members for ideas and suggestions as they made decisions 
about ticket prices, seating capacity, and player selection. Often, 
discussions were collaborative where several youth introduced 
and debated ideas, as shown in the excerpts from groups K and 
I  above. In other instances, a single youth drove the decision 
making, often because this youth was older and positioned as a 
group leader. While all groups collaborated, in some instances the 
collaboration was less focused on considering peers’ ideas and 
more focused on delegation of tasks (i.e., one youth selected 
players, one youth added salaries to keep track of totals, and a 
third youth recorded their selections on a team poster). We found 
these cases to be  less productive, as opportunities to  
engage in mathematical practice were focused on a subset of 
youth. While it was more common for youth to draw on ideas 
from peers as they made decisions, groups also leveraged 
suggestions from facilitators to inform their work.  
Consistent with the norms of informal learning spaces 
(Vadeboncoeur and Padilla-Petry, 2017), facilitators allowed 
youth to drive small group work, as they circulated among 
groups, asking questions and offering tips as needed  
(see groups G, K and I above). While use of social resources was 
a prominent pattern across groups, we  focus the remainder  
of this findings section on how youth drew on their experiences 
and funds of knowledge (González et  al., 2005) from  
settings outside the informal learning space to inform 
their decisions.

Youth draw on their own funds of knowledge to 
inform their decisions and understanding

In both projects, but in particular the Baseball Team Roster 
project, youth demonstrated and utilized knowledge of baseball 
and of specific players that was beyond what was included in the 
activity. For example, some groups drew on their understanding 
of team rosters or “line-ups” to make sense of the goals of the 
project. When a younger youth in Group S at the Central summer 
camp site expressed confusion about the project, a peer in the 
group referenced an outside experience to support 
his understanding.

Javon: I think we should pick this guy [Robbie Ray, one of the pitcher 

options], he is a little bit inexpensive, but compared to the 34 million 

guy, he has pretty good stats. I say he is good for the price.

Ty: [looks at stats] I feel like he’s good too. His [earned run] average is 0.284.

Lucas: What are you all talking about? I do not understand what you are 

talking about. I

Ty: We are picking out the players.

Lucas: For what?

Ty: We are making a roster, like you know when we went to an Astros 

game, and they’ll tell us like who is up in the lineup. That’s what 

we are doing.

Lucas: Ooooh, now I get it. You could have told me about that earlier.

Following this exchange, the younger youth leaned into the group 
conversation, and even took the lead on the selection of a player for 
one of the field positions.

In other cases, youth drew on their knowledge in ways that informed 
how they interpreted provided player statistics. For example, as 
highlighted in the extended example from Group N above (Section on 
MP2), youth used their knowledge of baseball to debate the relative 
importance of different statistics for a given position (i.e., ERA vs. 
strikeouts for pitchers), or the importance of different positions (i.e., 
selecting a pitcher first, or spending the most salary dollars on a pitcher). 
In these instances, youth used their knowledge of baseball as a resource 
to correctly interpret whether “higher” or “lower” values for a given 
statistic indicate better performance (i.e., a low ERA is optimal, while a 
high value for strikeouts is preferred), which then guided their 
player selection.

Sometimes, youths’ knowledge of players complemented the 
provided statistics, providing additional data points to consider. 
This included real time information about players (i.e., injuries), 
or knowledge of players’ abilities from youths’ experience 
watching baseball. For example, when Group P from the 
Southwest summer camp site was comparing center fielders, they 
considered how the player salaries compared to batting average 
and home runs, and whether cheaper players actually had weaker 
statistics. They initially settled on Mike Trout, who in the 2021 
season had generally stronger statistics than the other options, 
but then reconsidered when one youth in the group recalled that 
Trout was injured.

Sofia: I know who a lot of these people are because my brother watches it 

[baseball] all the time. … [looking at cards for center field players] The 

best batting [average] is Mike Trout. [But] Mike Trout is injured in real 

life… It does not say he’s injured on the card but he is actually injured in 

real life. These are the best batting averages [points to Trout and another 

option, Reynolds], and these are the best homeruns [Trout and another 

center fielder, Acuña]. And he has the most hits [Reynolds].

Ya’Nai: [examines card] In 2021 was he injured? (cards have statistics from the

2021 season).

Sofia: He’s injured now!

Sofia: I think we are going to choose this player [Reynolds], look he is the 

cheapest. He is not even a million dollars, and he is [in terms of players 

statistics] in the middle! … This guy is injured [sets Trout card aside].
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Ultimately, this youth’s knowledge influenced the group decision and 
they selected a different (non-injured) player for the center field position.

While youths’ use of their prior knowledge and experiences to 
inform decisions was most common in the Roster project, some 
groups leveraged outside experiences to inform their Design a Stadium 
decisions, particularly related to ticket pricing. For example, in Group 
E from a Southwest afterschool site, youth prioritized full attendance 
at games in their stadium, and reasoned that if they made ticket prices 
too high, people would opt to view the game on television instead of 
attending in person. As these two youth explained during a post 
project interview:

Umar: We want a lot of people to come [to our stadium]. It cannot just 

be $200.

and $150 and then $100 [for the ticket]. Not a lot of people are going 

to want to pay $100 to see a baseball game that they can just watch on 

TV. So we try to make it just like normal price.

Dillon: ….So we put [the ticket prices as] $12, $25 to $50. So that way more 

people would come instead of having to like. …So that way we can 

actually have a lot of people that could afford it come in.

Other groups had similar reasoning, arguing that considering 
“their friends and family” helped them determine reasonable prices 
for tickets and concessions in their stadium. As a youth from Group 
D explained, “if we were to do it, then we were to invite our friends or 
our family, [we thought about] would we want them to pay a lot? or, 
do we want them to pay a little bit?”

Interestingly, in some instances youths’ use of their prior 
knowledge about specific players to inform decisions meant that the 
group only engaged minimally with the provided player statistics. 
For example in Group K from the Southwest summer camp site, 
youth were debating between two players for the right field position 
(Aaron Judge and Mookie Betts). Rather than comparing their 
statistics (hits, homeruns, batting average, salary, etc.), one youth 
claimed that they knew Mookie Betts was “faster” and should 
be selected.

Levi: Right field—either Aaron Judge or Mookie Betts.

Mateo: Yeah, I go with Aaron Judge,

Levi: Yeah, let us go with Aaron Judge.

Mateo: But Mookie Betts is like faster than Aaron Judge…[so] are we going 

with Mooke Betts?

Everyone: Yeah!

While Aaron Judge outperformed Mookie Betts on multiple 
statistics (higher batting average, more hits and homeruns in 2022), 
the group selected Mookie Betts because of one youth’s claim and they 
knew he was “faster.” As the group continued to select players, they 
again relied on their prior knowledge of players, instead of player 
statistics, to inform choices. For example, when selecting a second 
baseman, Mateo referenced their experience watching one player on 
television to justify the choice: “Let us take this guy [Adam Fraiser]. 
I’ve seen him play before. He hit a ball, and I do not even know how 
[but] he  hit a homerun.” Without further discussion, the group 
selected this player. Notably, youth could have used various player 

statistics to justify this choice (i.e., Adam Fraiser’s batting average was 
comparable to that of other second baseman, and his salary was 
considerably less), but their reliance on one group member’s 
knowledge of the player backgrounded this information.

We noted similar patterns in other groups, wherein youth who 
had more prior experience with baseball used this knowledge to 
inform and justify their decisions, often with minimal use of the 
provided player statistics. For example, Efran, a youth from Group A 
explained that he led the selection process for his group, based on his 
experience watching players on television. He noted:

I picked those baseball players because I  watch baseball and 
I picked the players I know. I know that they are good, but they 
are cheap. So I just told the people sitting at the table to choose 
those people. Because I’ve seen them play before and they are 
pretty good when I watch them on TV…. So I’m like, “just get 
him.” And there was a baseball player with 39 home runs so I said, 
“choose him. He′s really good (post project interview).

Other youth used their knowledge of specific teams (but not the 
statistics of particular players) to select or eliminate players from their 
roster. For example, a youth in Group L at the Southwest summer 
camp site selected a pitcher because he played for the Angels (the 
youth’s favorite team), and other groups at this site eliminated players 
from the Dodgers, and selected players from the Blue Jays, primarily 
based on their team affiliations.

In summary, youth leveraged social resources (peers and 
facilitators), in addition to their own knowledge and experiences from 
settings outside of the informal learning space to inform their 
understanding and decisions, particularly during the Roster project. 
While in most instances these connections to outside funds of 
knowledge enhanced youth’s engagement with the provided statistics, 
in some cases, youth leveraged outside knowledge in ways that limited 
opportunities to engage in mathematical reasoning. We revisit this 
potential challenge in the discussion.

Discussion

Overall, we  found that both of the projects implemented in 
informal learning sites contained specific features that supported 
youths’ engagement in mathematical practices including problem 
solving (MP1), quantitative reasoning (MP2) and argumentation 
(MP3). First, the openness and choice built into the projects not only 
encouraged creativity but also required youth to generate problem 
solving approaches (MP1), and to build arguments to support their 
choices and decisions (MP3). At the same time, the given constraints 
(i.e., salary limit), required youth to monitor their overall progress 
and make adjustments to ensure compliance. This monitoring and 
revision of approach led to further engagement in key problem 
solving practices (MP1). In other words, the balance of choice and 
constraints in the projects seemed particularly generative for 
supporting youth engagement in key mathematical practices. This was 
most apparent in the Roster project, as youth were able to choose 
criteria and processes for selecting players, but were constrained by 
the parameters of a salary limit and the need to construct (at a 
minimum) a 9-player roster. These constraints led to a more 
challenging problem, which prompted youth to iteratively review and 
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reflect on their choices until they completed the task. In contrast, in 
the Stadium project, youth were able to make choices about the overall 
size of their stadium, the capacity and ticket prices of different seating 
sections, and unique stadium features. While the project emphasized 
choice, few constraints were provided. For example, youth had to 
include different seating sections but could design stadiums of any 
size. Similarly, youth were asked to include features that they thought 
would attract fans, but without consideration of budgetary limits. 
Given the relative lack of constraints in the Stadium project, youth 
were not prompted to monitor or adjust their approaches (MP 1), or 
to mathematically justify their design decisions (MP 3) in the way that 
was evident in the Roster project. This finding related to the 
importance of balancing choice and constraint in mathematics-
focused PBL activities is in part consistent with prior research which 
has highlighted youth voice and choice as essential design elements 
for PBL (Tan et al., 2013; Larmer et al., 2015). Yet our findings about 
the role of constraints extends this prior work, by showing that a key 
component of designing challenging and authentic questions (Larmer 
et al., 2015) is ensuring that those questions include sufficient, real-
world constraints.

Another project feature that supported youth engagement in 
mathematical practices was the included quantitative data about 
player performance (in the Roster project) and the contextual 
information about sample stadiums (in the Stadium project). In the 
Roster project in particular we  found that the player statistics 
supported youths’ engagement in quantitative reasoning (MP 2) and 
their opportunities to develop, communicate and critique 
mathematical arguments (MP 3), as they used the various sources of 
data to defend their player selections. In the Stadium project, while 
youth occasionally used the sample stadium information to justify 
their choices about stadium capacity or outfield distances, the lack of 
constraints limited youths’ need for this information. If the project 
had included budget limits along with information about potential 
costs of different stadium features, youth may have drawn on this 
information as engaged in quantitative reasoning (MP  2) or 
communicated mathematical arguments (MP 3). While PBL activities 
often include sustained inquiries where youth generate information 
on their own (Cross et al., 2012; Larmer et al., 2015), we found that 
including authentic player statistics in the project materials allowed 
youth to focus their attention on comparing the values and 
interpreting the relative importance of different statistics. Given the 
fluidity of activity in informal learning settings and the fact that time 
for sustained inquiries may be limited, providing youth with a diverse 
set of authentic data seemed like a productive way to maximize 
opportunities to engage in mathematical practices.

Finally, we  found that both projects created opportunities for 
youth to draw on outside knowledge and experiences, including 
knowledge of baseball and understanding about the needs and 
interests of potential baseball fans to support their project decisions. 
In the Roster project, youth leveraged knowledge of player positions 
and the importance of specific statistics as they selected players for 
their team roster. This was particularly true for youth in the summer 
camp implementations, as those settings drew more youth with prior 
baseball experiences (e.g., Groups P and S above). In the Stadium 
project, there were fewer instances when youth drew on baseball-
related knowledge to inform their decisions, which may reflect a lack 
of experience attending live sporting events in stadiums, particularly 
among youth who did not play team sports. When youth did leverage 

outside knowledge, they often considered what they knew about the 
interests and needs of friends, family, and other potential fans while 
designing unique stadium features, determining reasonable ticket 
prices, and arranging seating sections (e.g., Group E). Notably, in the 
Roster project there were several instances when youths’ use of their 
knowledge about specific players to inform roster selections meant 
that the group only engaged minimally with the provided player 
statistics (e.g., Groups A and K), which then limited their opportunities 
to engage in mathematical reasoning. While youths’ engagement in 
the projects invited connections to their experiences and funds of 
knowledge, a practice which has been shown to enhance STEM 
learning (Simic-Muller et al., 2009; Turner et al., 2009; Nasir, 2012; 
Krajcik et al., 2022), our findings also suggest that informal learning 
educators may need to support youth to use their real world 
knowledge to complement and enhance their engagement in 
mathematical reasoning, rather than limiting such opportunities.

Our work answers a call for additional research on the impact of 
informal learning settings and PBL activities on youths’ mathematics 
engagement and learning, particularly for youth from groups 
underserved and underrepresented in STEM fields (Condliffe et al., 
2017; Pattison et  al., 2017b). Additionally, by documenting the 
potential of PBL activities that integrate sports and mathematics to 
support youths’ engagement in mathematical practices (National 
Governors Association Center for Best Practices and Council of Chief 
State School Officers, 2010), we address additional calls that research 
on PBL (Thomas, 2000), and in STEM informal learning spaces to 
attend to a range of outcomes.

Implications and conclusion

Our study has important implications for educators, curriculum 
developers, and researchers who work in informal STEM learning spaces. 
First, there is the need for additional informal learning curricula that 
integrate sports and mathematics, given the positive outcomes 
demonstrated in our findings (i.e., engagement in mathematical practices, 
connections to outside knowledge and experiences). Additionally, our 
findings suggest that curriculum developers attend to the complementary 
roles of choice and creativity alongside constraints to support youths’ 
engagement in problem solving and mathematical reasoning and to 
encourage reflection and discussion.

Second, our findings have implications for professional learning and 
support for informal STEM learning facilitators. Youth in informal 
afterschool and summer settings have varied backgrounds and interests, 
and facilitators need to seek connections to youth who may have limited 
prior experiences with project contexts. Our findings also suggest that 
professional learning programs for informal STEM educators should 
include strategies for supporting youths’ sustained focus on mathematical 
learning goals, such as reminding youth of project guidelines or 
supporting youth to use data to support decisions and arguments. This is 
consistent with other research that has highlighted the professional 
learning needs of informal STEM facilitators (Hladik, 2022).

An important limitation of our research is that our team offered 
professional learning support (i.e., initial training, ongoing coaching) 
for facilitators who implemented the program. While materials from 
our professional learning sessions will be broadly disseminated via our 
project website, future research should explore the effectiveness of the 
Growing Mathletes program, including how the culminating projects 
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support youths’ engagement in mathematical practices, when 
implemented by facilitators who do not participate in sessions with 
our team, but are instead supported by our online materials and/or by 
other professional learning supports in their contexts. An added 
limitation is that our research focused on informal learning spaces 
that offered a more structured learning program (i.e., a week long 
summer camp, or designated time for Growing Mathletes during an 
afterschool program). Future research should explore the applicability 
of Growing Mathletes activities, and particularly their potential to 
engage youth in mathematical practices, in less structured informal 
learning spaces such as community centers or museums.

Finally, our findings raise key questions and topics for future 
research on mathematics learning in informal settings. Specifically, 
studies should explore additional aspects of integrating sports and 
mathematics to better understand the learning impacts for youth with 
varying levels of interest and prior knowledge about sports. Research 
should also continue to investigate how specific features of 
mathematics-focused PBL activities support mathematical 
understanding, and the application of different mathematical practices.
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