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analysis through skill profile and
item similarity integration via an
attention mechanism of artificial
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Engineering Education Department, School of Engineering, Purdue University, West Lafayette, IN,

United States

Introduction: Frequent formative assessment is essential for accurately

evaluating student learning, enhancing engagement, and providing personalized

feedback. In STEM education, understanding the relationship between skills that

students have internalized (mastered) and those they are developing (emergent)

is crucial. Traditional models, including item response and cognitive diagnosis

models, primarily focus on emergent skills, often overlooking internalized skills.

Moreover, new tools like large language models lack a complete approach for

tracking knowledge and capturing complex skill relationships.

Methods: This study incorporates artificial intelligence, specifically attention

mechanisms, into educational assessment to evaluate both emergent and

internalized skills. We propose a modified version of Performance Factor

Analysis (PFA), which assesses student abilities by analyzing past responses and

comparing them with peer performance on the same items, using parameters

from a sigmoid function. This model leverages attention mechanisms to capture

item order-based similarity and decay principles, providing a nuanced view of

student skill profiles.

Results: TheModified Performance Factor Analysis model significantly improved

discriminative power, accuracy, precision, recall, and F1 scores across various

skill areas compared to traditional PFA models.

Discussion: These results indicate that theModified Performance Factor Analysis

model allows for a more accurate and comprehensive evaluation of student

performance, e�ectively identifying both emergent and internalized skills. By

integrating AI into assessment, educators gain deeper insights, enabling them

to refine teaching strategies and better support students’ mastery of both types

of skills.

KEYWORDS

student progress monitoring, performance factors analysis, attention mechanism,

artificial intelligence, educational assessment, educational data mining
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1 Introduction

To successfully progress through school, students need to

demonstrate flexibility, motivation, persistence, and the ability to

learn, transfer, and apply knowledge (Le et al., 2024). Given the

dynamic and constantly evolving nature of student knowledge,

assessments must assess current proficiency, as well as provide

instructors with information about skill mastery, conceptual

profiles, and productive learning trajectories for each student.past

skill mastery (Le et al., 2024). In addition, high-quality assessments

can enhance student learning (Morphew et al., 2020). Thus

assessments function as crucial instruments for measuring student

learning and directing their learning progress (Hilbert et al., 2021).

Through continuous monitoring of student learning, educators can

identify those students facing challenges, assess the effectiveness

of their own teaching methods, and cultivate a culture of self-

regulated learning amongst the students (Bitzenbauer, 2023; Le

et al., 2024).

To accomplish all of these goals, assessments must utilize

various models to gather and analyze information about students’

overall proficiency, conceptual models, and skill mastery. Item

Response Models (IRMs), focus on the correlation between

latent traits (usually considered to represent student ability or

proficiency) and test item responses, crucial for accurate ability

and knowledge assessment in diverse fields. Cognitive Diagnosis

Models (CDMs) are widely used methods for estimating student

skill mastery through the use of Q-matrices that identify the skills

needed to correctly answer each item (Chen et al., 2018; Yuen

et al., 2023). The primary focus of CDMs like other IRMs is

on individual skill mastery rather than sequential skill mastery,

meaning that CDMs assume that skills are not correlated with or

build on each other.

Knowledge-tracking models, such as Performance Factor

Analysis (PFA), allow for the modeling of the correlation of

skills with one another, of skill hierarchies, and of changes in

student proficiency over time. Recent advancements in hierarchical

and longitudinal CDMs have enhanced the ability for CDMs to

model skill hierarchies and track changes in student proficiency

over time independently (Chen and Wang, 2023; Lee, 2017).

However, even with these recent advances CDMs typically do

not account for all these factors simultaneously. In contrast,

PFA remains distinct in its adaptability, particularly through

the integration of attention mechanisms, which allows for the

differentiation of skill importance, the handling of polytomous

data, and the identification of emergent skills using data-driven

approaches. These features position PFA as a robust framework

that addresses multiple challenges simultaneously (Pu et al.,

2021).

PFAs are adept at monitoring the attempts of students for

each item to predict the probability of correct response for

the next attempt (Imambi et al., 2021). PFA considers students’

past responses to understand the student’s performance in each

skill (Pavlik et al., 2009; Mehrabi et al., 2023). Given that

PFA models are enhanced by incorporating past responses, the

accuracy of PFA-based assessments hinges on understanding

the impact of the model parameter estimator, the number of

parameters, and the explicitly defined skills. These factors are

crucial when the assessed skills exhibit meaningful interrelations.

A few existing PFA models attempt to model the influence

of question order on student responses by incorporating the

impact of closely ordered items, there is a lack of models

that account for skill similarity in existing models. PFA models

uniquely stand out by enabling the individual consideration of each

skill.

Large Language Models (LLMs) represent another alternative

avenue for evaluating skill development models. The relevance

and quality of the questions that LLMs generate hinge upon the

integration of methodologies such as automatic retrieval feedback,

text structure modeling, and word transformation fusion. However,

these approaches often overlook the linkage between emergent

skills and the conceptual models held by students for how the

skills relate to each other (i.e., skill internalization) (Bitzenbauer,

2023; Essel et al., 2024). This study aims to identify the effects of

skill correlations, both internalized and emergent, on students’

responses using an attention mechanism. Knowledge tracking

models, such as PFAs, are proficient at monitoring students’

attempts on each item to predict the probability of a correct

response on subsequent attempts (Imambi et al., 2021). PFAs

utilize students’ past responses to evaluate their performance

across various skills (Pavlik et al., 2009; Mehrabi et al., 2023).

In efforts to account for the influence of response order,

researchers have explored incorporating attention mechanisms

into PFA models to consider skill similarity and internalized

skills.

The attention mechanism, integrated within neural networks

(NNs), exploits their non-linearity to model complex relationships

in students’ item responses. This approach, commonly employed

in Artificial Intelligence (AI), allows for the consideration

of the similarity in student responses. By learning high-

order patterns, NNs are capable of capturing the non-linear

relationships between skills and response behaviors regardless

of data distribution with about more than 1000 sample

size depending on their network learning approach, which

traditional linear models often fail to identify (Richard and

Lippmann, 1991; Bressane et al., 2024; Whalon, 2018; Essel et al.,

2024).

The research question of this study investigates whether

using attention mechanisms can enhance PFA models’

abilities to identify both internalized and emergent skills,

and to document the interrelations among emergent skills.

As far as the authors are aware, this is the first attempt to

integrate attention mechanisms within a PFA model to predict

student responses by jointly considering skill similarity and

inherent skills. This study introduces and evaluates a modified

PFA (MPFA) model that incorporates a comprehensive skill

profile, including item-skill relationships and skill relation

matrices. The MPFA model described here aims to make

innovative contributions to assessments in Science, Technology,

Engineering, and Mathematics (STEM) education, particularly

within computerized adaptive assessments (e.g., Morphew et al.,

2018). Additionally, the study has advanced our understanding

of how internalized and emergent skills influence student

responses, providing a comprehensive approach to evaluating skill

development.
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2 Literature review

Understanding students’ prior knowledge allows instructors

to personalize their instruction, to promote active student

engagement, and to improve student learning (Hattie and

Timperley, 2007; Fischer et al., 2021). Formative assessments

allow instructors to continuously measure student proficiency,

gather evidence of student learning, and provide students with

personalized feedback and targeted learning activities (Fink,

2023; Effiom, 2021). Contemporary adaptive testing frameworks

use response weighting to dynamically adjust item difficulty in

real-time, tailoring assessments to individual student’s current

proficiency (Hamilton, 2021). Adapting assessments to students’

current proficiency allows for a more accurate estimate of skill

mastery and conceptual understanding. In addition, using models

that focus on nearby items and conceptually similar items, allows

for more accurate skill mastery estimates (Glas, 2008). This

approach supports holistic evaluations of cognitive abilities and

allows for cognitive diagnostics and learning trajectory mapping

(Mindell et al., 2010; Wormald et al., 2009; Scholl et al., 2021).

2.1 Skill development

2.1.1 Internalized and emergent skills
Constructivist learning theories are among the most commonly

used theories to understand student learning within STEM.

Constructivism portrays learners as bringing pre-existing

knowledge and skills into learning environments, then building

(constructing) new conceptual understanding that integrate prior

conceptual models with the new experiences. The process of

constructing new understandings from prior understandings

allows students to develop new skills and learn how to transfer

old skills to new problems (Allen, 2022). In this paper, skills are

defined as measurable demonstrations of procedures that either

solve a problem or get a student closer to solving a problem. We

further classify skills as either internalized skills or emergent skills.

Internalized skills are the skills a student already has mastered

when introduced to a new topic. Emergent skills are the skills are

skills that are defined by instructors (either explicitly or implicitly)

that are new to students or have not yet been mastered in a

given learning context. In education, both types of skills must be

assessed since they both play key roles in the problem-solving

process (Di et al., 2021), and instructors need to understand both to

effectively individualize instruction.When educators assess student

responses, they expect students to demonstrate specific skills based

on the curriculum, learning objectives, and anticipated outcomes

of the instructional process (Pu et al., 2021; Liu et al., 2020).

However, student often show different ways of understanding

that may not match the learning trajectories instructors expect.

Students draw from their unique backgrounds, experiences, and

thinking processes to answer assessment questions. We refer to

these divergences as internalized skills. This diversity in student

understanding highlights the complexity of evaluating student

responses and underscores the need for a nuanced approach

that considers both instructional alignment and the dynamic

nature of student development (Silver et al., 2005; Leikin and Lev,

2007; Boaler, 2022). Conversely, similarities in student responses

can indicate that students have adopted discipline-specific

epistemological approaches, shared cognitive frameworks, and

highlight the emergence of relevant academic skills (Kennedy and

McLoughlin, 2023; Li, 2022).

2.1.2 Skill relationships
To assess skill mastery, it is necessary to identify the skills

being assessed by each item (Wormald et al., 2009; Scholl et al.,

2021). Within STEM, skill relationships are often hierarchical, with

skills building off one another, such that later skills have greater

complexity than earlier skills (Konidaris et al., 2010; Ghozali et al.,

2019; Konidaris et al., 2012). For these types of nested skills, it is

also necessary to identify the interrelationships between the skills

needed within an educational context (Wormald et al., 2009; Scholl

et al., 2021).

2.2 Tools of skill development
measurement

Various assessment models incorporate item similarities such

as Item Response Theory Models (IRTMs), CDMs, NN models,

and knowledge tracking models. These models are commonly

used to track the evolving knowledge state of students as they

engage in learning activities. Multidimensional IRTs and CDMs

don’t update characteristics during assessments or consider past

responses to the last items of the same assessment (Kingsbury

and Houser, 1999). CDMs reveal mastery but lack achievement

probabilities. deterministic-input, noisy “and” gate as the most

popular CDM and multidimensional IRT need adaptation to use

prior knowledge in subsequent assessments (Scholl et al., 2021),

with a large student population (Mehrabi et al., 2023). NNs are

adept at directly predicting student responses (Wu et al., 2021),

however, they are less adept at handling skill development.

The efficacy of question generation by language models

has been notably affected through the integration of some

principal methodologies: First, establishing a linkage between the

defined skill or content underlying the questions (Lin et al.,

2024). Secondly, the automatic retrieval feedback mechanisms

of reinforcement learning, wherein pertinent data is extracted

from extensive document collections and assimilated into the

generation process to refine outcomes (Lent et al., 2024). Thirdly,

text structure modeling techniques, such as analyzing answer

positioning and syntactic dependencies, facilitate the creation

of questions that are more contextually pertinent (Schubert

et al., 2023). This technique identifies and substitutes inflected

word forms with their base forms. It also performs operations

like generating interrogative words, replicating words from the

source text, and transforming words (Kumah-Crystal et al., 2023).

While the assessment in STEM considers two important criteria

skills relation and makes the border between the inherent and

deterministic skills which one of them can be defined by the

teachers and the other one should come from the response

similarity of students, we need a method that lets us define or

refine parameters to let us add both considerations and at the
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same time maintain the model simplification for the explanation

and application in STEM education (Siddiq and Scherer, 2017).

Moreover, literature should refer to its handling for its capabilities

to handle the inherent skills in the model. The shortcomings of

previous models necessitate the use of a model that can address

these limitations.

2.2.1 PFA model
PFA constitutes a methodological approach for evaluating

student achievement and the complexity of test items, while

also allowing for intercorrelations and hierarchical relationships

between skills and overall performance outcomes (Yeung, 2019;

Gong et al., 2010). This high-level approach ensures that

educators and evaluators can obtain a holistic view of educational

achievement supporting targeted interventions and informed

decision-making processes in academic settings (Pu et al., 2021;

Essel et al., 2024). A few attempts to modify PFA in order to

address current shortcomings have recently been undertaken. For

example, Mehrabi et al. (2023) addressed the issue of effectively

analyzing data from small sample sizes by adopting the Nelder-

Mead method as a superior optimization technique specifically

suited to small populations.

Mehrabi et al. (2023) also highlighted how incorporating

multiple skills per itemmay compromisemodel precision, however,

they found that such complexity could still be rationalized within

the medium or larger datasets by selecting a reasonable optimizer

of maximum likelihood estimation.

In another example, Gong et al. (2010) advanced the

development of PFA to account for both the difficulty level of

individual skills and that of the items themselves. Their findings

suggest that a PFA model that incorporates item-level difficulty

yields slightly greater accuracy than models primarily focused on

skill difficulty parameters. This change addressed the challenge

of assessing items that necessitate multiple skills significantly

complicates the evaluation process.

Gong et al. (2011) and Gong et al. (2010) introduced a non-

parametric and selective decay factor by the experts into the model,

designed to adjust the impact of items following their position in

the sequence. This modification addressed a major issue of the

PFA model, which is the sensitivity to positional effects of items

(Pavlik et al., 2009). The adjustment made by Gong et al. (2011)

and Gong et al. (2010) allows for a more nuanced interpretation of

data, recognizing that the significance of an item’s success or failure

may diminish over time or as subsequent items are attempted.

2.3 Attention mechanism for item
similarities components

Pu et al. (2021) critiqued the traditional emphasis on skill-based

modeling for its propensity to detract from the detail of item-

level insights. In their investigation, they propose moving toward

models that leverage attention mechanisms predicated on item

sequencing. This approach sidesteps the conventional skill-item

interplay in favor of prediction models based purely on response

patterns. NN learns different weights of similarity of various parts

of the data, which can be the similarity of item vectors and/or skill

vectors (Giusti et al., 2022; Essel et al., 2024). Attentionmechanisms

acknowledge the complex web of skill similarities and dependencies

by defining tailored NN. The potential of NNs to understand

complex relationships among variables for different IRMs and

knowledge-tracking models provides an opportunity to include

skill or response similarity as a parameter in the main model (Niu

et al., 2021). For example, Yeung (2019) demonstrates how adding

skill profile information while considering students’ responses to

the IRT model enhances the model’s capacity to accurately reflect

the dynamics of learning and assessment.

The attention mechanism in NN is a mechanism of AI that

allows the network to focus on specific parts of the input data.

The vectors in attention mechanisms are defined as keys (k), values

(v), and queries (q). The query vector represents the element

we are focusing on, the key vector represents the elements we

compare against, and the value vector holds the actual data we are

interested in. By comparing queries and keys NNs that use attention

mechanisms assign attention weights to the values, enabling it to

selectively focus on relevant information and thus better capture

intricate patterns and relationships in the data (Giusti et al., 2022;

Battiloro et al., 2023).

The weights that output from NN models that use attention

mechanisms bring high-order non-linearity into the models,

which leads to better regularization and smoother learning curves

(Battiloro et al., 2023; Pu et al., 2021). This regularization helps

models like PFA be more robust to noise, reduces model sensitivity,

and uncovers deeper meaning from the data and item relations,

improving accuracy (Battiloro et al., 2023; Pu et al., 2021). Within

this framework, the literature reveals an unaddressed need for an

advanced Performance Factor Analysis (PFA) model capable of

segregating items’ skill profiles while incorporating the impact of

item spacing on the probability of a correct response.

3 Methodology

3.1 PFA model and parameters

The PFAmodel assumes that each item response is independent

and follows a Bernoulli distribution. Equation 1 indicates the

probability of success in one item depending on the student’s

mastery level for a specific skill or attribute. This approach allows

for an effective estimation of both attribute difficulty and the

student’s ability level as an arrangement of parameters like αj

and ρj. In Equation 1, Pa(j) represents the likelihood of proficient

performance in skill j, with the sigmoid function denoted by σ (·).

The parameter αj characterizes the bonus arising from successful

responses to skill j items across all students. Likewise, ρj signifies the

penalty incurred from unsuccessful responses across all students.

The βj parameter indicates the difficulty level of skill j based on

the aggregated responses of all students to items associated with

that skill (Mehrabi et al., 2023). Fij and Sij represent the counts of

failures or incorrect responses and successes or correct responses,

respectively, for student i on items associated with skill j.

Pa(j) = σ (αj · Sij + ρj · Fij) (1)
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To estimate the three model parameters in Equation 1,

Maximum Likelihood Estimation (MLE) is commonly used.

Mehrabi et al. (2023) indicated that the Neild Mead and Newton

optimizer can handle a wide range of populations from small to big

population. Instead ofMLE, the PFAmodel considers αj ·Sij+ρj ·Fij
as the θ in the sigmoid function and a bias parameter as β which

also indicates the difficulty of θ achievement (Yeung, 2019;Mehrabi

et al., 2023).WFij (Weighted Failure) andWSij (Weighted Success)

are metrics that aggregate the influence of previous failures and

successes, respectively, by weighting each response according to its

similarity with the current item.

P(θi) =
1

exp(−θi − βi)
(2)

Pu et al. (2021) implemented an attention mechanism to

discern item similarities, integrating additional weights based on

item similarities and Positional Encodings as an alternative to Gong

et al. (2011)’s decay factor approach. The decay factor, criticized

for its lack of a transparent calculation methodology, raises

concerns about its efficacy, particularly as it may lead to significant

information loss with an increasing number of items. This issue

is further exacerbated by the attention mechanism’s potential to

overlook pertinent information. For instance, in an assessment

comprising 30 items, items 4 and 16 might share identical skill

profiles. Relying solely on the decay factor or narrowly focusing on

the most recent similar items could result in the omission of critical

data, thereby compromising themodel’s ability to accurately predict

the response for item 16. The probability of a correct response,

Pa(j), is given by the Equation 3. Where σ (·) denotes the sigmoid

function, capturing the likelihood of successful performance in skill

j by student i, with α and ρ representing parameters that account

for the effects of weighted success and failure, respectively.

Pa(j) = σ (α ·WSij + ρ ·WFij) (3)

The weight of similarity between two items replaces the decay

factor, focusing on the Weighted Success (WSij) and Weighted Fail

(WFij) for student i on item j (Pavlik et al., 2009). In the proposed

methodology, the traditional metrics of success and failure are

re-envisioned through the lens of Weighted Success (WSij) and

Weighted Failure (WFij), which ignore the simplistic vision of

correct and incorrect responses in favor of a nuanced consideration

of item similarities (Equations 4, 5). Rik is a binary indicator where

Rik = 1 for a correct response and Rik = 0 for an incorrect response

by student i on item k.

WSij =

j−1
∑

k=1

Rik ·Wjk (4)

WFij =

j−1
∑

k=1

(1− Rik) ·Wjk (5)

This methodology combines both skill similarity and response

similarity to refine the analysis by considering the distance of each

pair of items. The concern about the response similarity arises from

the realization that traditional frameworks, such as the Q-matrix

and skill relation defined by educators, may not comprehensively

represent the spectrum of skills students utilize when addressing

questions (Chiu, 2013; Macdonald and MacLeod, 2018). These

frameworks typically link each test item to specific cognitive

skills or attributes necessary for a correct response. Particularly in

disciplines like Physics and Mathematics, students may draw on a

blend of explicitly taught and intuitively applied skills, analyzing

similarly patterned responses critically (Chiu, 2013). The skill

profile similarity captures the similarity in the items according to

the assigned skills that the instructor expects students to apply in

answering the item. By adopting a global average across these two

dimensions, the model navigates the complexity of student answers

(Chiu, 2013). This approach is particularly at mitigating the impact

of overlap in responses that, while categorized under a single

skill, may share similarities due to students’ uniform strategies.

Additionally, the integration of an attention mechanism within this

framework facilitates the nuanced calculation of Weighted Success

(WSij) andWeighted Failure (WFij), further refining the analysis by

adjusting for anomalies in similarity and dissimilarity. The sigmoid

function for modified PFA is defined as Equation incorporating the

effects of item difficulty:

P(θi) =
1

exp(−θi − βi)
(6)

3.2 Attention mechanism

We employ one attention mechanism and one cosine similarity

calculation to analyze the interplay of student responses and

item skills, thereby enhancing the effectiveness of our evaluations.

Each mechanism is designed to address different aspects of the

educational data, focusing on student response similarities and skill

similarities, respectively (Braun et al., 2018).

In our model, the global average of the attention mechanism

is computed by aggregating information from skill and response

similarities. The model inherently addresses this imperative by

prioritizing content and structural alignment, facilitated through

cosine similarity calculations. The global average operation is a

pivotal component in the model’s architecture, serving as a bridge

between the high-dimensional output of the attention mechanism

and the subsequent layers of the model. The output of the attention

mechanismweight or similarity is denoted asA, which is a function

of the input sequence X , and the positional encoding as PE(X ).

The combined output O can be represented as:

O = softmax(A+ PE(X )) (7)

This operation ensures that the attention mechanism’s output

is modulated by the positional encoding, thereby incorporating

positional information into the model’s understanding. The global

average, denoted as G, is computed as:

G =
1

N

N
∑

i=1

Oi (8)

where N is the total number of elements in the output O, and Oi

is the i-th element of O. The Oi are the similarity weights of the
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Student Response Similarity Attention Mechanism (Section 3.3)

and the Skill Similarity analysis (Section 3.4).

3.3 Student response similarity attention
mechanism

For the first attention mechanism, we focus on the similarities

among student response vectors to indicate that there are some

skills that may not be captured by the emergent skills of teachers.

Pu et al. (2021) indicates that the response similarity is an accurate

indicator of underlying skills but may find more information

about the skills that weren’t considered in emergent skills. This

mechanism is crucial for identifying patterns in how students

respond to various assessment items, which can help in assessing

their understanding and predicting future performances (Nguyen

et al., 2023; Niu et al., 2021). The proto-feature tensor ZP,

representing student responses, is reshaped into a tensor of size

1 × n × d to maintain the dimensionality n of the data in the

attention output ha:

q∗ = ZP · θ
T
q∗ ;

k = ZP · θ
T
k ;

v = ZP · θ
T
v ;

(9)

Here, θq∗ , θk, and θv are weight matrices that transform the

student response features into query, key, and value representations

(Nguyen et al., 2023; Niu et al., 2021). The attention output ha
for the student response similarity is then computed using the

“Softmax Attention” mechanism:

hSAtta = softmax
[(

q∗ · kT
)

/d
]

· v, (10)

q identifies which student responses to prioritize across items,

k encapsulates the comparison criteria among these responses,

and v contains the actual student response information. In our

student response similarity mechanism, the conventional softmax

attention, which typically involves computing the dot product of

the query q∗ and key kT vectors, has been adapted to incorporate

cosine similarity. This alteration mitigates issues related to the

magnitude of feature vectors that can cause instability in the

similarity scores and gradient problems during training (Nguyen

et al., 2023; Niu et al., 2021). The adjusted attention calculation,

now termed “Cosine Attention” for student responses (CAtt, student),

is represented as:

h
CAtt, student
a =

[(

q∗ · kT
)

⊘
(

‖q∗‖‖k‖
)

]

· v, (11)

Here, the cosine similarity calculation normalizes the dot

product by the magnitudes of the query and key vectors, focusing

the attention strictly on the directional alignment of the features

rather than their lengths. This ensures that the attention scores

reflect the true content relevance between student responses,

improving the stability and accuracy of the output attention map

A (Nguyen et al., 2023; Niu et al., 2021).

3.4 Skill similarity analysis

The second similarity analysis examines the relationships

between items and skills through a structured, matrix-based

approach. The primary data components involved are the skill-item

matrix (M) and the skill-skill (skill relation) matrix (T). The skill-

item matrix, an n × m matrix where n represents the number of

items and m represents the number of skills, captures the extent

to which each item is associated with each skill. The skill-skill

(relation) matrix, an m × k matrix where k = m represents the

number of skills, defines the hierarchical dependencies among the

skills. The skill-item matrix is first transposed to derive meaningful

skill profiles for each item, resulting in a m × n matrix. This

transposition ensures proper alignment for matrix multiplication.

The transposed skill-item matrix is then multiplied by the skill-

skill (skill relation) matrix, yielding a skill profile matrix (S)

with dimensions n × k. Each row in this matrix encapsulates

the skill profile of a corresponding item, integrating the original

skill associations with the hierarchical structure defined in the

skill relation.

To assess the similarities between items based on these skill

profiles, we employ the dot product similarity measure. This

involves calculating the dot product of the Swith its transpose (ST),

resulting in an item similarity matrix (τ ) of dimensions n × n.

Each element τij in this matrix represents the similarity between

item i and item j. The dot product operation for two vectors u

and v of length k is defined as the sum of the products of their

corresponding elements:

u · v =

k
∑

i=1

uivi (12)

Here, u and v represent the skill profile vectors of two items,

each containing k elements that quantify the items’ associations

with each skill in the skill relation. Applied to our matrices,

this calculation involves summing the products of corresponding

elements in the skill profiles of items i and j:

τij =

k
∑

l=1

Sil · S
T
jl (13)

This computation (τ ) is performed for all pairs of items,

resulting in a comprehensive matrix that quantifies the similarities

between all items based on their skill profiles.

3.5 Items positional encoding

Despite deep learning architectures leveraging attention

mechanisms, these mechanisms alone do not inherently account

for the sequence order and item distances. Our model by positional

encoding (PE(X )) addresses this gap by incorporating a signal into

the data representation, indicating each element’s position. PE(X )

enables the model to comprehend how element order affects the

output, facilitating the recognition of both immediate and distant

element relationships within a sequence (Vaswani et al., 2017;

Anderson et al., 2018). In modified PFA, the similarity of two items,
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or in other words Weighted Success (WSij) and Weighted Failure

(WFij) also depends on the PE(X ).

The attention scores are initially computed using a standard

attention formula, involving softmax applied to the dot products

of query and key vectors. These scores are then adjusted by learned

parameters a and b, reflecting the influence of both response and

skill dynamics:

Wij = Softmax(Aij + PE(X )) (14)

Pu et al. (2021) introduced a positional distance metric to

quantify the temporal closeness of a preceding item, expressed as

PE(X )i,t+1 = −a(t − i + 1) + b. Here, t − i + 1 delineates

the positional disparity between the response of item xi and the

subsequent item response xt+1, while a and b are modifiable

parameters. Here, a and b are trainable scalar parameters that are

applied as coefficients in a linear transformation to the input data.

Aij represents the attention matrix values, while Wij denotes the

adjusted attention or weighted attention, taking into account the

item position (Pu et al., 2021).

For the attention mechanism analyzing student response

similarities, the LSTM is trained on features that include student

response vectors and associated probabilities. For the attention

mechanism focused on item-skill relationships, the LSTM is trained

using a combination of the item-skill association matrix S and

student response vectors. The vectors encapsulate student answers

or choices, along with probabilities reflecting their likelihood of

choosing certain responses based on past performance or question

difficulty and enabling the LSTM to learn to associate and weigh

various skills to their responses. The coefficients a and b for this

mechanism are specifically tuned to enhance the model’s ability

to dynamically adjust attention based on how students respond

to different types of questions over time (Vaswani et al., 2017;

Anderson et al., 2018).

3.5.1 Detailed LSTM network architecture and
dynamics

The LSTM’s architecture leverages backpropagation through

time (BPTT) to update its parameters, applying the principles

of backpropagation to sequences by propagating errors backward

across multiple time steps. This enables LSTM models to

capture long-term dependencies and temporal patterns effectively

while adjusting weights based on gradient descent (Richard and

Lippmann, 1991). The architecture of the LSTM network is

intricately designed to manage and process sequences by capturing

temporal dependencies. At each timestep t, the LSTM cell updates

its internal states based on the current input, previous hidden

state, and previous cell state (Nguyen et al., 2023; Sherstinsky,

2020). In our LSTM models, each component is finely tuned to

handle specific aspects of educational data, focusing on student

responses and item skills. The input gate regulates the influx of

new information based on the current input, xt , which consists

of probabilities tied to various student responses in our X2_train

dataset. These probabilities inform the model at each timestep,

guiding how it should adapt and respond to changing educational

scenarios. The forget gate plays a pivotal role in managing memory

by determining which parts of the previous cell state, ct−1, should

be retained or forgotten (Nguyen et al., 2023; Sherstinsky, 2020;

Lee and Kwon, 2024). This process ensures that only pertinent

historical information is preserved, helping the LSTM maintain a

focused state that is not cluttered with irrelevant data. The output

gate then decides which parts of the updated cell state, ct , are crucial

for forming the hidden state, ht , which will be used for predictions

or passed to subsequent layers. This gate is key in determining

how the model interprets and uses the processed information to

make informed predictions about student performance or other

related metrics. Simultaneously, the cell state receives updates from

the cell input, gt , which incorporates both new information and

data retained from the past, providing a balanced approach to state

updates (Nguyen et al., 2023; Sherstinsky, 2020). This ensures that

the model remains adaptable yet consistent with historical trends.

The mathematical formulation for these operations is:

it = σ (Wxixt +Whiht−1 + bi) (Input Gate)

ft = σ (Wxf xt +Whf ht−1 + bf ) (Forget Gate)

ot = σ (Wxoxt +Whoht−1 + bo) (Output Gate)

gt = tanh(Wxcxt +Whcht−1 + bc) (Cell Input)

ct = ft ⊙ ct−1 + it ⊙ gt (Cell State Update)

ht = ot ⊙ tanh(ct) (Hidden State Update)

(15)

3.5.2 Dynamic positional encoding (PE(X ))
derived from LSTM outputs and learning
parameters a and b through training

By encoding positional information directly from the LSTM

outputs achieved through a transformation function:

PE t = f (ht; θpe) (16)

Here, f represents a transformation function parameterized

by θpe, which is optimized during training. This function

transforms the LSTM’s output ht at each timestep t into a PE(X )

that captures not only the absolute position of each data point

but also incorporates learned contextual nuances. The training

process is meticulously designed to optimize via Adam optimizer

both the LSTM architecture and the coefficients a and b which

dynamically adjust the attention mechanism’s focus (Nguyen et al.,

2023; Sherstinsky, 2020). Equation 17 outlines how the LSTM’s

output ht is mapped to parameters a and b through a fully

connected layer, whereWy represents the weights and by the biases.

yt = Wyht + by (17)

3.6 Updating success and failure using
attention weights for MPFA

The update process transforms the attention weights

into MPFA by utilizing the cumulative similarity weights to

appropriately adjust the S and F matrices. We define a cumulative

response similarity weight, Wcumulative(j), which integrates both

positional encoded response similarity (Equation 14) and a
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cumulative skill similarity weights, τcumulative(j) (Equation 13).

These cumulative similarity weights are shown in following

Equations:

Wcumulative(j) =
1

j− 1

j−1
∑

k=1

Wjk. (18)

τcumulative(j) =
1

j− 1

j−1
∑

k=1

τjk. (19)

The global average similarity weight for each item, denoted

as λglobal_average, following Equation 8, is computed as a global

average of the cumulative positional encoded response similarity

Wcumulative and the skill similarity τjk:

λglobal_average =
Wcumulative(j)+ τcumulative(j)

2
. (20)

In this manner, the global average reflects a combined influence

of empirical response similarity (Equation 14) and skill similarity

(Equation 13). This allows the model to account for both item-

level and skill-level relationships (Braun et al., 2018). The weighted

success WSij and weighted failure WFij matrices are then updated

from Equations 4, 5 using the global average similarity weight

λglobal_average:

WSij =

j−1
∑

k=1

(

Rik · λglobal_average
)

, (21)

WFij =

j−1
∑

k=1

(

(1− Rik) · λglobal_average
)

. (22)

Here, Rik represents whether the student i responded correctly

(Rik = 1) to item k. These new weights are utilized in the MPFA

model (Equation 3). The use of the global average similarity weight

λglobal_average provides a comprehensive view of how students’ skill

mastery evolves, influenced by both empirical response data and

conceptual skill similarities.

3.7 Settings of study

Our research endeavors to evaluate the modified PFA (MPFA)

by employing an attention mechanism computed directly from two

main sources: item response similarity to fulfill the inherent skills

(discussed in Section 3.3) and skill-based similarity of items to fulfill

the emerged skills (outlined in Section 3.4), while also integrating

positional encoding (elaborated upon in Section 3.5). Through

this approach, we have developed a hard self-attention mechanism

(described in Section 3.2) to handle the parameterization of the

MPFA. These two components are then combined within the

model’s global average operation, where the Q-matrix weights and

the attention-generated similarity weights are synthesized to create

a unified output. This process ensures that both emerging and

internalized skills are integrated into the overall skill profile utilized

for predictions, enabling the model to adaptively incorporate

structured instructional objectives while accounting for the unique

prior knowledge that students bring to the learning environment.

Subsequently, leveraging actual response data, an item-skill matrix,

and a skill relation matrix, we employed the Maximum Likelihood

Estimator (MLE) to calibrate PFA and MPFA model (Figure 1).

The research methodology is grounded in the analysis of

authentic responses from 5,500 students who completed the Force

and Motion Conceptual Evaluation (FMCE) physics assessments

via the LASSO platform, encompassing data from various schools

across the United States (Le et al., 2024). The use of real-world

data introduces inherent variability, offering a realistic depiction of

student performance and enabling the detection of similarities in

response patterns for items with non-similar skills. Such nuanced

relationships are often hard to achieve by simulated datasets, which

are limited to predefined skill structures and may fail to capture

emergent similarities beyond the scope of these defined constructs

(Essel et al., 2024; De La Torre, 2009). The FMCE is a linear 47-

item physics test tailored for assessing introductory undergraduate

mechanics courses (Thornton and Sokoloff, 1998) and is one

of the most widely used conceptual inventories used in physics

education research to study students’ conceptual understanding

in physics (e.g., Wells et al., 2020). Each question within the

test presents four options from which the respondent can select.

Table 1 indicates the distinct skills identified by content experts and

evaluated using model fitting measures such as RMSE, accuracy,

and F1 as detailed in Le et al. (2024). The four identified skills

represent the underlying procedural and conceptual tasks that

are common across different content areas. Furthermore, a skill

relation, conceptualized by subject matter experts, delineates the

hierarchical relationship among these skills; this framework is

elucidated in Table 2. While the skill relation is the relation of the

skills together defined by the expert. The nexus between individual

test items and the identified skills is documented comprehensively

in Supplementary Table 1. Responses of 5,500 students to these

items are indicated in Supplementary Table 2.

For positional encoding purposes, the data is split into

a training set (70%) and a testing set (30%), ensuring that

while the model has ample data to learn from, it is also

rigorously tested on unseen data to evaluate its generalizability

and robustness configured with 128 units. The choice of cross-

entropy as the loss function is particularly apt for classification tasks

inherent in analyzing response similarities and skill relationships.

The LSTM models were trained on a workstation running

Windows 11 Version 10.0.22631, 12th Gen intel(R) core (TM)i7-

1255U, 1,700 MHz 10 core(s), equipped with 16 GB of RAM

and an SSD for optimal data processing speeds on google

collaboratory environment (Manaswi and Manaswi, 2018). The

code that runs the LSTM, the attention mechanism, and the skill

similarities are described in Supplementary material (Sections 2.1,

2.2, and 2.3) and the LSTM model details are in Section 1.1 of

Supplementary material (Figure 2 indicates the process of attention

mechanism and positional encoding). The initial test size is set to

0.4. For attention layer purposes, the cosine attention layers are

defined by the PyTorch library (Imambi et al., 2021). The model

configurations are the same as the LSTM and run on the same code.

Frontiers in Education 08 frontiersin.org

https://doi.org/10.3389/feduc.2024.1454319
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Mehrabi et al. 10.3389/feduc.2024.1454319

FIGURE 1

Process of MPFA and PFA.

TABLE 1 List of physics FMCE skills.

Number Skill

1 Apply vectors

2 Select appropriate equations

3 Interpret graphs

4 Use energy visualizations

data configured with 128 units with 20 epochs. The code Script

of this layer is indicated in Section 2.1 of Supplementary material.

Moreover, the global average and weighted S and F are captured

by the following Python script by numpy library (Betancourt et al.,

2019) and Pandas (Harrison and Petrou, 2020) indicated in Section

2.2 of Supplementary material.

4 Results

4.1 Similarity weights between the items of
the attention mechanism

4.1.1 Methodology of clustering response
similarity

Tonio and Francesca (2016) and Liu et al. (2020), to determine

the number of attributes underlying the item for similarity scores,

apply the clustering methods like K-mean. Firstly, we convert the

similarity matrix into a distance matrix (1-similarity matrix), as

clustering algorithms require measures of dissimilarity. Outliers

are identified and removed using Z-scores with a threshold of 3,

which enhances the robustness of our clustering results. To reduce

the dimensionality of the data and facilitate visualization, Principal

Component Analysis is applied, focusing on the first two principal

components. This step involves finding the principal components

that capture the most variance in the data. The original distance

data is projected onto these principal components, reducing the

data to a 2-dimensional space while preserving the most significant

information (Tonio and Francesca, 2016). We employ the K-means

algorithm for clustering across a range of cluster numbers (from

k = 2 to k = 10). The Sum of Squared Errors (SSE) is plotted

against the number of clusters to identify the “elbow point” where

the rate of decrease sharply slows, indicating the optimal number

of clusters. This method is well-documented for its effectiveness

in determining the point at which adding more clusters does not

significantly improve the clustering solution (Daffertshofer et al.,

2004). Concurrently, the Silhouette Score is calculated for each k

to evaluate the quality of the clustering solutions. The Silhouette

Score measures how similar an object is to its cluster compared

to other clusters, with values ranging from -1 to 1. Higher values

indicate better-defined clusters. By plotting the average Silhouette

Scores, we can determine the number of clusters that maximize this

score, providing a robust method to validate the optimal number of

clusters (Daffertshofer et al., 2004). The Calinski-Harabasz Index,

which assesses cluster separation and cohesion, and the Davies-

Bouldin Index, which evaluates the average similarity ratio of
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TABLE 2 Skill relationship matrix.

Skill/skill Apply_vectors Select_appropriate_
equations

Interpret_graphs Use_energy_
visualizations

Apply_vectors 1 0 1 1

Select_appropriate_equations 0 1 0 0

Interpret_graphs 1 0 1 1

Use_energy_visualizations 1 0 1 1

FIGURE 2

Process of attention mechanism and positional encoding in MPFA.

clusters, are also utilized to further confirm the clustering quality.

The elbow and Silhouette score and measurement accuracy are

indicated in Table 3 and in Figure 3.

The Elbow Method plot (Figure 3B) revealed that the most

significant decrease in SSE occurred at three clusters, suggesting

that this number adequately captures the data’s inherent structure

without overfitting. This was further supported by the Silhouette

Score analysis (Figure 3A), where the highest score was observed

with three clusters, indicating well-defined andmeaningful clusters.

The sharp drop in Silhouette Scores beyond three clusters

corroborated the elbow point, affirming that adding more clusters

did not significantly improve clustering quality. Comparisons with

other clustering methods showed that K-Means with three clusters

provided the most coherent clustering. This approach does not

indicate the same number of skills that are assigned to the items.

Specifically, K-Means achieved a Silhouette Score of 0.467, the

highest among the evaluated methods. This method also had a

Calinski-Harabasz Index of 29.54 and a Davies-Bouldin Index

of 0.74, indicating strong clustering performance. In contrast,

Spectral Clustering with three clusters yielded a Silhouette Score

of 0.433 and a Calinski-Harabasz Index of 29.47, slightly lower

than K-Means. Spectral Clustering with four and five clusters

performed poorly, with negative Silhouette Scores and lower

Calinski-Harabasz Indices. Based on these metrics, K-Means with

three clusters is the optimal choice for the given data, providing the

best balance between cluster cohesion and separation.

4.2 Training PE(X ) by LSTM

The ROC curve shows how well a model distinguishes between

positive cases (correct predictions) and negative cases (incorrect

predictions), and the AUC (Area Under the Curve) quantifies this,

with higher values indicating better performance in making this

distinction. The LSTM model, focused on analyzing similarities

among student response vectors, exhibits a similar trend of

performance enhancement but at a slightly slower rate when

compared to the first. The receiver operating characteristic (ROC)

curves for this model, also resembling a quarter circle, are depicted

in Figure 4A. Despite the slower rate of improvement, the model

maintains a comparable level of discrimination ability, as evidenced

by the shape of its ROC curve.

For Skill 1, the ROC curve shows an area under the

curve of 0.7890, indicating reasonably acceptable performance in

distinguishing between positive and negative cases. Skill 2 exhibits

the highest AUC of 0.8364, demonstrating the model’s strong

ability to differentiate between classes for this skill. Skill 3, with an

AUC of 0.7928, shows performance similar to Skill 1, reflecting a
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TABLE 3 Clustering performance metrics for di�erent methods and cluster sizes.

Method k Silhouette score Calinski-Harabasz index Davies-Bouldin index

KMeans 3 0.467372 29.542484 0.737951

KMeans 4 0.365829 29.565257 0.855425

KMeans 5 0.385754 31.333954 0.845756

Spectral clustering 3 0.432874 29.468007 0.845506

Spectral clustering 4 −0.047310 19.580503 0.921519

Spectral clustering 5 −0.082892 13.252559 0.968286

FIGURE 3

Clustering performance metrics for di�erent methods and cluster sizes by Elbow and Silhouette scores. (A) Silhouette scores for di�erent k in

K-mean clustering. (B) Elbow for di�erent k in K-mean clustering.
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FIGURE 4

Model fit of the LSTM for skill profile similarities. (A) ROC curve. (B) Loss curve. (C) Accuracy curve.

competent but not exceptional discrimination ability. In contrast,

Skill 4 has the lowest AUC at 0.7185, suggesting the model has

the least effectiveness in distinguishing between classes for this

skill (Figure 4A). The loss plots depict the model’s performance

in minimizing the error for both training and validation datasets.

Solid lines represent training loss, while dashed lines indicate
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validation loss. The training and validation loss for Skill 1 decreases

over time, but the gap between them suggests overfitting. Skill

2 shows the lowest training and validation loss, consistent with

its high accuracy and AUC, indicating effective learning and

generalization. Skill 3 has a moderate loss reduction with a small

gap between training and validation loss, reflecting a balanced

learning process. The loss for Skill 4 is the highest, with a significant

gap between training and validation loss, indicating poor learning

and generalization (Figure 4C). The accuracy plots provide insights

into how well the model is learning over time for both training

and validation datasets. Solid lines denote training accuracy,

while dashed lines indicate validation accuracy. The accuracy for

Skill 1 shows a steady increase over epochs; however, noticeable

fluctuations in validation accuracy could indicate overfitting. Skill

2 shows the highest training and validation accuracy among all

skills, suggesting the model learns and generalizes well for this

skill. Skill 3 has a moderate accuracy trajectory with less fluctuation

in validation accuracy compared to Skill 1, indicating a more

stable learning process. Conversely, the accuracy for Skill 4 is

consistently the lowest, revealing the model’s difficulty in learning

patterns for this skill, with fluctuations in validation accuracy

further indicating potential overfitting issues. Skill 2 stands out

with the best overall performance, evidenced by its highest AUC,

accuracy, and lowest loss, indicating effective pattern recognition

and generalization capabilities. On the other hand, Skill 4 shows the

poorest performance, with the lowest AUC, accuracy, and highest

loss, suggesting the model struggles to learn the patterns associated

with this skill. Skills 1 and 3 exhibit moderate performance, with

Skill 1 showing signs of overfitting, while Skill 3 appears to have a

more stable learning process (Figure 4B).

4.3 Model fit comparison

To evaluate the Modified PFA model, it is essential to compare

its performance with the traditional PFA model. We start by

assessing student responses using the PFA model. The initial

parameter values for α, ρ, and β are set to 0.1, -0.1, and -0.1,

respectively. Model fit statistics are presented in Table 4, while

the estimated parameters for each skill are provided in Table 5.

MPFA demonstrates a substantial improvement in log likelihood,

suggesting a stronger fit to the data compared to the original PFA.

This improvement is significant as it underscores MPFA’s enhanced

capability in capturing the underlying dynamics of the dataset.

The reductions in both the Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC) further highlight the

efficiencies achieved by MPFA (Table 4). The decrease observed

in the Root Mean Square Error (RMSE) with MPFA points to a

heightened accuracy in predictions. A lower RMSE indicates that

the average magnitude of the errors between predicted values and

observed values has diminished, reflecting a model that aligns

more closely with the practical aspects of the data. The Root

Mean Square Error of Approximation (RMSEA) shows only a

marginal improvement in MPFA. The slight decrease in RMSEA

corroborates the enhanced fit to the data’s overall structure,

though it does so without significant deviation from the original

model’s performance (Table 4). MPFA’s performance across all

TABLE 4 Comparison of statistical metrics for PFA and MPFA.

Metric PFA MPFA

Skill 1

Log likelihood –425,471.95 –152,290.28

AIC 850,967.90 304,604.56

BIC 851,093.45 304,730.11

RMSE 0.5347 0.4480

RMSEA 0.0006 0.0002

Skill 2

Log likelihood –425,471.95 –145,424.07

AIC 850,967.90 290,872.14

BIC 851,093.45 290,997.69

RMSE 0.5347 0.4335

RMSEA 0.0011 0.0009

Skill 3

Log likelihood –425,471.95 –153,682.01

AIC 850,967.90 307,388.02

BIC 851,093.45 307,513.57

RMSE 0.5347 0.4509

RMSEA 0.0013 0.0003

Skill 4

Log likelihood –425,471.95 –170,050.26

AIC 850,967.90 340,124.51

BIC 851,093.45 340,250.06

RMSE 0.5347 0.4795

RMSEA 0.0021 0.0010

evaluated skills suggests it is a more reliable and robust model for

educational assessments.

According to the parameter values in Table 5, in Skill 1, 2,

and 3 of the PFA model, correct responses moderately enhance

skill development mastery (α) while incorrect responses detract

significantly from skill development mastery (ρ). MPFA, on the

other hand, offers lower (α) values, potentially diminishing the

nuanced impact of both correct and incorrect answers. In Skill

4, PFA displays significantly higher coefficients for both positive

and negative reinforcement, highlighting the skill’s sensitivity to

accuracy while MPFA maintains uniform value as other skills.

Meanwhile, high AIC and BIC values indicate that Model 1 may be

overfitting the data, leading to less generalizable results (Table 4).

4.4 Prediction comparison

To highlight the model evaluation, metrics such as Prediction

Accuracy, Precision, Recall, Specificity, and F1-Score are

instrumental in providing a comprehensive assessment (Section

3.3 of Supplementary material). To compare the PFA and MPFA
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TABLE 5 Comparison of PFA and MPFA parameters per skill.

Skill PFA MPFA

α ρ β α ρ β

Skill 1 0.1483 –0.1068 –0.1050 0.0735 –0.9019 –0.1005

Skill 2 0.1078 –0.0719 –0.1026 0.0925 –0.0818 –0.0785

Skill 3 0.1537 –0.1079 –0.1101 0.1125 –0.0896 –0.0780

Skill 4 0.7474 –1.3197 –0.7623 0.4825 –0.8852 –0.3587

models first, we analyze their prediction ability by a 50% threshold

for both models (Zchaluk and Foster, 2009) (Table 6).

4.4.1 Skill 1
For Skill 1, the MPFA model demonstrates moderate

discriminative power, with an AUC indicating its ability to

distinguish between positive and negative cases. The optimal

threshold shows the probability cutoff thatmaximizes performance.

The model’s accuracy reveals it correctly predicts a significant

majority of instances. High precision indicates a low rate of false

positives, though recall is lower, suggesting some true positives are

missed. High specificity highlights strong recognition of negative

cases. The F1-Score balances precision and recall, indicating

reasonably good performance. The PFA model for Skill 1 shows

slightly improved discriminative power with a higher AUC but

has marginally lower accuracy, precision, and recall, suggesting

a higher false positive rate and reduced ability to identify true

positives. Specificity is slightly lower, resulting in a decreased

F1-Score and slightly worse overall performance.

4.4.2 Skill 2
For Skill 2, the MPFA model displays better discriminative

ability with a higher AUC compared to Skill 1, indicating

improved effectiveness at distinguishing between classes. The

optimal threshold remains similar, ensuring consistent decision-

making. Higher accuracy and precision demonstrate improved

predictive performance with fewer false positives, and increased

recall shows the model captures more true positives. The F1-

Score is higher, reflecting a better balance between precision

and recall. In contrast, the PFA model for Skill 2 has a lower

AUC than its PFA counterpart, indicating reduced discriminative

power. Despite a similar optimal threshold, the MPFA model has

lower accuracy, precision, and recall, suggesting a higher false

positive rate and reduced effectiveness at identifying true positives.

Specificity remains consistent, but the lower F1-Score highlights the

need for improvement in balancing precision and recall.

4.4.3 Skill 3
For Skill 3, the MPFA model shows high discriminative

power with a strong AUC. The optimal threshold is consistent

with previous skills, ensuring uniform decision-making criteria.

Accuracy is high, indicating reliable predictions. Precision and

recall are balanced, suggesting the model effectively identifies true

positives with a low rate of false positives. Specificity is also high,

confirming its strong ability to recognize negative cases. The F1-

Score reflects excellent overall performance. The PFA model for

Skill 3, however, shows a slightly lower AUC compared to the

PFA model, indicating reduced discriminative power. Although

the optimal threshold is similar, accuracy, precision, and recall are

slightly lower, implying a higher false positive rate and a marginally

reduced ability to identify true positives. Specificity is consistent,

but the lower F1-Score suggests a need for improved balance

between precision and recall.

4.4.4 Skill 4
For Skill 4, the MPFA model maintains high discriminative

ability with a robust AUC. The optimal threshold is similar to

other skills, providing consistent decision-making. High accuracy

demonstrates the model’s reliable predictions. Precision and

recall are well-balanced, indicating effective identification of

true positives and a low rate of false positives. Specificity is

high, underscoring strong negative case recognition. The F1-

Score indicates excellent overall performance. Conversely, the

PFA model for Skill 4 exhibits a slightly lower AUC, reflecting

reduced discriminative power. Despite a similar optimal threshold,

accuracy, precision, and recall are somewhat lower, suggesting a

higher false positive rate and diminished capability to identify true

positives. Specificity remains high, but the lower F1-Score indicates

a need for a better balance between precision and recall.

The MPFA model consistently outperforms the PFA model

in terms of discriminative power, accuracy, precision, recall, and

F1 scores across all skills. The MPFA model’s higher AUC values

indicate better discriminative power, while its superior accuracy,

precision, recall, and F1 scores reflect its robustness and reliability

in educational assessments. The PFA model, although adequate,

has lower performance metrics, suggesting it may not be as

effective in distinguishing between different skill levels or making

accurate predictions. Therefore, the MPFA model is preferred for

applications requiring high accuracy and reliable discrimination

between skill levels. Future research should focus on enhancing

the PFA model to address its current limitations and improve its

applicability in educational assessments (Table 6; analysis of key,

query, and value vectors explained in Supplementary material).

This study investigates whether integrating attention

mechanisms can enhance the modified PFA (MPFA) model’s

ability to identify both inherent and emergent skills while mapping

interrelations among these emergent skills. The MPFA model’s

evaluation metrics in Table 6 demonstrate that incorporating

attention mechanisms indeed strengthens the model’s performance

over traditional PFA models. The model’s improvement in log-

likelihood reduced AIC and BIC and lowered RMSE indicate that

MPFA provides a more accurate and comprehensive assessment

by accounting for the dual influence of internalized skills and

emergent skills. This enhanced model not only improves predictive

accuracy but also offers a deeper understanding of how students

approach and interact with assessment items. By incorporating

attention mechanisms, the MPFA model evaluates these positive

and negative cases more effectively by dynamically weighting
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TABLE 6 Comparison of metrics between PFA model and MPFA model.

Skill Model AUC Optimal
threshold

Accuracy Precision Recall Specificity F1-score

1 PFA 0.741148 0.535786 0.721412 0.744259 0.596980 0.826597 0.662534

MPFA 0.735502 0.541306 0.735578 0.768138 0.605560 0.845486 0.677228

2 PFA 0.741044 0.535638 0.720897 0.742770 0.597723 0.825019 0.662399

MPFA 0.779862 0.531171 0.761234 0.782118 0.663660 0.843715 0.718036

3 PFA 0.741025 0.536658 0.721447 0.746317 0.593746 0.829395 0.661346

MPFA 0.744156 0.532210 0.735010 0.756833 0.621082 0.831315 0.682270

4 PFA 0.740993 0.535496 0.720909 0.742183 0.598737 0.824184 0.662787

MPFA 0.677872 0.701209 0.672325 0.685577 0.525866 0.796129 0.595194

similarities between items based on response patterns and skill

relations (Table 6).

4.5 Model implications

4.5.1 Interpretation of the internalized and
emergent skills

To interpret and explain the skills, we analyze the positionally

encoded response attention weights W , which capture the

relationships between student responses across items. This analysis

yields a 47 × 47 matrix that quantifies the degree of focus on each

item relative to others. Similarly, the skill similarity weights τ are

represented by a matrix of the same dimensions, reflecting item

relationships based on the underlying skills.

According to attention mechanism methodology, internalized

skills refer to abilities that have become automatic or intuitive

for students, allowing them to respond consistently to related

items, even when the underlying skills that are defined by the Q

matrix and skill relation are conceptually unrelated. Our results

indicate this phenomenon typically occurs when the response

similarity (W) values are high, but the corresponding skill

similarity (τ ) values are low (see Supplementary material Section

for the complete W and τ tables). Elevated W values suggest

that students exhibit similar response patterns, while low τ values

indicate that the skills required for these selected items may differ.

For instance, if Items 43 and 47 exhibit a W value that is 0.31

higher than the average of all W (0.21: average of all W matrix)

but a τ value that is 1.07 lower than the average of all τ (1.09:

average of all τ matrix), this discrepancy suggests that students

might be drawing on internalized knowledge as there was minimal

distinct emergent skills. This pattern reflects the extent to which

some pre or undefined knowledge, allows students to apply them

across contexts.

Emergent skills are still in the developmental phase and often

require deliberate instructional intervention. They are directly

addressed in the Q matrix and in the skill relations matrix.

However, MPFA indicated these skills become a main focus of

students when both τ and W values are elevated, signaling

that students are actively engaging with and mastering these

competencies. For example, Items 36 and 45 exhibits a relatively

high W value of 0.47 and a significantly elevated τ value of 1.28.

This alignment suggests that students are consciously applying

these skills across different items, indicating they are in the process

of solidifying their understanding (Supplementary material Section

for the completeW and τ tables).

4.5.2 Implication for educators
The MPFA model’s results provide educators with a nuanced

understanding of student performance by identifying both

emergent skills—those explicitly taught and aligned with

curriculum goals—and inherent skills, which are internalized

through students’ prior knowledge and unique learning

experiences. These inherent skills are inferred from response

patterns, capturing the latent knowledge and cognitive frameworks

that students apply when interacting with assessment items. By

recognizing the dual influence of emergent and inherent skills,

the MPFA model allows educators to analyze students’ mastery

and learning approaches more comprehensively. In other words,

previously mastered items can provide information about the

probability of each student mastering future items, thereby

potentially improving assessment efficiency.

In addition to the potential for improving assessment efficiency,

the MPFA model has the potential to measure skill mastery from

a student perspective. Student conceptual understanding is often

incomplete and fragmented and individual students often solve

problems in STEM using different solution strategies (Morphew

and Mestre, 2018). As such, existing models that use expert-

derived matrices that classify items based on the skills needed to

correctly solve a problem may reflect the expert rather than the

student’s perspective. TheMFPAmodel adjusts expert classification

of skills to patterns of student responses, which may be useful for

determining and measuring the individual skill mastery patterns

from the student’s perspective.

The interrelation of inherent skills and emergent skills can

also guide curriculum sequencing and instructional strategies. Skills

that demonstrate strong interconnections, as indicated by high

attention similarity weights, may suggest that inherent cognitive

structures contribute to the learning of related skills. For example,

if Skill 1 metrics improve as students progress in Skill 3, this may

indicate that the inherent skills used in Skill 3 are foundational
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for Skill 1 mastery. Educators might prioritize the development of

these foundational inherent skills earlier in the curriculum, which

could enhance students’ success in later topics. By leveraging this

data-driven insight, educators can strategically adjust instructional

pacing and content to align with the learning pathways that are

more intuitive for students.

5 Discussion and conclusion

This study presents a modified PFA model (MPFA) that

incorporates attention mechanisms into traditional PFA models.

The results indicate that the MPFA model can significantly

enhance the accuracy of skill mastery. The attention mechanism

allows the MPFA model to consider the similarity between

items and the inherent skills of students, leading to improved

discriminative power, accuracy, precision, recall, and F1 scores

across various skills. This enhanced accuracy is critical when

dynamically assessing students’ internalized and emergent skills in

formative assessment.

Notably, the clustering method based on response similarity

does not explicitly indicate the same number of attributes

underlying the items. By integrating the contextual relevance of

internalized skills with the explicit objectives of emergent skills,

the MPFA model effectively captures the relationships between

skills, allowing for a more comprehensive and nuanced evaluation

of student performance. These findings are particularly significant

given the necessity of identifying both internalized skills, which

students bring from previous instruction and life experiences, and

emergent skills, which are explicitly targeted by learning objectives

(Colas et al., 2022). The use of the attention mechanism allows

the MPFA model to consider both types of skills, thus addressing

the limitations of traditional PFA models that typically focus on

emergent skills. In addition, by capturing both internalized skills

and their interrelations, the MPFA model offers a more holistic

evaluation of student performance (Lizardo, 2021).

The integration of attention mechanisms into knowledge-

tracking models represents a significant advancement in

educational assessments, providing a robust and reliable

approach for evaluating the complex interplay of skills in

STEM education. This aligns with findings from studies such

as Xia et al. (2023) and Liu et al. (2020). This advancement

highlights the significant impact of attention mechanisms in

improving the accuracy and effectiveness of knowledge-tracking

models, making them a valuable tool for educational assessments

in STEM education. Traditionally, STEM assessments focus on

the application of expert-defined skills and the understanding

of content. However, these predefined constructs may show

themselves differently due to differing pedagogical approaches

or potential biases. Gong et al. (2010) highlights the challenges

in demonstrating how relationships between skills alter the

model’s impact on multi-skill items. Similarly, Pu et al. (2021)’s

research underlines that the inter-dependencies among skills

influence student responses, revealing a pattern of response

similarity. This study further emphasizes the importance of

integrating explicit correlations between student skills and

potentially unconventional response strategies. Although the

skill-related vectors are inherently smaller in number compared

to the item-related vectors, they can elucidate why certain

items exhibit similar response vectors despite differing in the

underlying skills.

The results of this study align with studies like Yuen

et al. (2023) and Nouri (2016) that provide evidence that

student understanding may not explicitly match the expectations

of instructors. As such, instructors would likely benefit from

access to assessment tools like the MPFA to assess these

mismatches between internalized and emergent skills. Utami

et al. (2022) underscore the importance of twenty-first-century

learning, highlighting critical thinking, creativity, communication,

and collaboration as essential skills for addressing contemporary

educational needs. Addressing such a wide variety of learning

outcomes necessitates a method to manage the relationship

between students’ internalized skills and the emergent skills that

students are expected to develop in the educational context

(Liu et al., 2009). In addition, assessment must be formative

and continuous to measure and diagnose effective individualized

learning trajectories.

The precision of the MPFA model suggests it can be valuable

for effectively allocating educational resources for students who

most urgently need them. While the traditional PFA model

may be slightly more effective at identifying struggling students,

these models also falsely identify more non-struggling students.

This trade-off means that instructor resources may not be most

efficiently utilized to help those students most in need. The

higher specificity of the MPFA model indicates its strength in

correctly identifying students who do not require interventions.

The MPFA model, with its high precision and specificity, might

be preferable when the consequences of false positives are more

severe than those of false negatives. The result of this study affirms

studies align with Yeung (2019) and Pu et al. (2021) in indicating

that the inclusion of an attention mechanism in assessment

models preserves the foundational architecture of models and

enhances the explainability of the model by directing focus toward

particular segments.

This study finds that adding the information of underlying

skills or inherent attributes enhances the model’s predictive

accuracy. A substantial body of literature corroborates considering

the underlying attributes of items (De La Torre, 2009) and

supports that automated item generation models based on LLMs

for assessment should consider defining attention mechanisms

about the underlying attributes of items like explicit skills or

inherent students’ skills according to their background knowledge

development (Guinet et al., 2024; Meißner et al., 2024; Säuberli

and Clematide, 2024; Lee and Kwon, 2024). While LLMs currently

excel in textual analysis, they often falter with non-textual cues and

in assessing critical thinking solely through text (Abd El-Haleem

et al., 2022). Wilson (2015) adds that socio-emotional aspects of

student learning can affect students assessment responses which

pose issues for LLMs. This could add to difficulties in using LLMs

to accurately distinguish between students who need minimal

support and those requiring significant interventions (Abd El-

Haleem et al., 2022). Future research should examine how to best

integrate the capabilities of LLMs with the assessment advantages

of the MPFA model.
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6 Future steps

6.1 PFA with fewer parameters

In the evaluation of both the PFA and MPFA models, the

metrics most indicative of a need for simplification are Recall,

F1-score, and AUC (Section 3.3 in Supplementary material).

The analysis suggests that the complexity inherent in the PFA

architecture model that holds the last performance of the student

in memory does not uniformly translate into commensurate

improvements in overall model performance. Consequently, a

simplification of the model’s architecture could facilitate a more

harmonious balance across all performance metrics. The study

proposed an assumption that establishes a relationship between

F and S matrices with a specific structure (N = S + F), which

facilitates more efficient parameter estimation. The equation:

Pa(j) = σ ((αj − ρj)Sij + (ρjNj − βj)) (23)

incorporates this assumption and can be rewritten with two

parameters,

αj − ρj = α′
j

ρjNj − βj = β ′
j

which can be employed in different regression and MLE methods.

This approach reduces the degrees of freedom in the model,

potentially enhancing its efficiency. However, it remains unclear

whether reducing the degrees of freedom always guarantees

improved model accuracy, necessitating further research to explore

the impact of this assumption on model performance.

6.2 Future steps in language model
development

Future research should aim to enhance educational assessments

by extending the probabilistic modeling approach outlined in

this study. This can be achieved by integrating skill-oriented

analyzes with natural language processing (NLP) techniques while

also accounting for additional variables such as response time

and demographic factors. The next step involves developing

a pre-trained, transformer-based model that not only predicts

student performance but also interprets the underlying skill

relationships within textual responses. This model would enable

a deeper understanding of how specific skills influence answers,

providing educators with insights into skill development paths

and interdependencies. By incorporating skill embedding, the

model could offer targeted feedback to students, pinpointing not

just areas of misunderstanding but also suggesting pathways for

skill improvement. Such advancements would mark a shift from

binary assessment outcomes toward a more nuanced, skill-centric

learning environment, where feedback is personalized, actionable,

and geared toward fostering comprehensive skill development.

This approach could redefine educational diagnostics, making

them more reflective of individual learning processes and more

supportive of personalized education strategies.

7 Limitations

The study’s results shed light on the performance of students in

different skills, and the relationship between these variables. One

of the main limitations is that the research group did not have

access to a GPU which would help them to reduce the time needed

for model evaluation. The complexity of the attention mechanism

specifically, dealing with a large number of students and responses,

would be greatly assisted by a GPU.
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