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Automated assessing prosody of oral reading fluency presents challenges due to

the inherent difficulty of quantifying prosody. This study proposed and evaluated

an approach focusing on specific prosodic features using a deep-learning neural

network. The current work focuses on cross-domain performance, researching

how generalizable the prosody scoring is across students and text passages.

The results demonstrated that the model with selected prosodic features had

better cross-domain performance with an accuracy of 62.5% compared to 57%

from the previous research. Our findings also indicate that students’ reading

patterns influence cross-domain performance more than specific text passage

patterns. In other words, letting the student read at least one passage is more

important than having others read all passage texts. The specific prosodic

features had a high generalization to capture the typical prosody characteristics

for achieving a satisfactorily high accuracy and classification agreement rate.

This result provides valuable information for developing future automated

scoring algorithms of prosody. This study is an essential demonstration of

estimating the prosody score using fewer selected features, which would be

more efficient and interpretable.
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1 Introduction

While there are various definitions of oral reading fluency among researchers, with
various emphasis on its components, the agreement exists that oral reading fluency (ORF)
is a multidimensional component consisting of accuracy, automaticity, and prosody. Fluent
readers have a higher accuracy rate for word decoding in a text. Compared with these,
poor readers with poor word-reading accuracy have reduced fluency and poor reading
comprehension. Readers who misread words, therefore, tend not to comprehend the
author’s intended message, which may cause misinterpretations of the text when word
reading is inaccurate (Hudson et al., 2005, 2008; Paige, 2020; Paige et al., 2012; Rasinski,
2004). Prosody is one dimension of oral reading fluency, which is the ability to read
smoothly with expressions, representing the meaning of the text by different stresses,
pitch variations, intonations, rates, phrasings, and meaningful pausing (Rasinski, 2004).
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Studies have found that prosody seems closely associated with
reading comprehension, and the relationship is substantial; overall,
good oral reading prosody improves young readers’ comprehension
with more contribution over reading accuracy and automaticity
(Álvarez-Cañizo et al., 2015; Benjamin and Schwanenflugel,
2010; Binder et al., 2013; Klauda and Guthrie, 2008; Kuhn and
Schwanenflugel, 2019; Miller and Schwanenflugel, 2008; Paige et al.,
2012; Pinnell et al., 1995; Rasinski et al., 2009; Schwanenflugel and
Benjamin, 2017).

In practical terms, the dimensions of accuracy and automaticity
are easily quantified. Because these dimensions are highly
intercorrelated, they are combined into the single measure of
Words Correct Per Minute, or WCPM. This has been a single
metric in measuring students’ oral reading proficiency using
Curriculum-Based Measurement (CBM) (Deno, 1985) and its
commercial variants, such as Dynamic Indicators of Basic Early
Literacy Skills (DIBELS) (Good and Kaminski, 2002; University
of Oregon, 2021), easyCBM (Alonzo et al., 2006; Riverside
Assessments, 2018), and AIMSweb (Howe and Shinn, 2002).

However, unlike measuring oral reading fluency with WCPM,
researchers have yet to have a consensus on measuring prosody in
ORF. The most commonly used tool for human raters measuring
prosody in traditional ORF assessments is rating rubrics, including
the Allington (1983) scale, the National Assessment of Educational
Progress (NAEP) scale (Pinnell et al., 1995), the Multidimensional
Fluency Scale (MDFS) designed by Rasinski and colleagues
(Rasinski, 2004; Zutell and Rasinski, 1991), and the Comprehensive
Oral Reading Fluency Scale (CORFS) (Benjamin, 2012; Benjamin
et al., 2013). These rubrics provide a framework with scales to
quantify and evaluate prosodic features, such as expression and
volume, phrasing, smoothness, and pacing. The disadvantage of
using rubrics is that they are time-consuming, labor-intensive, and
depend on the rater’s knowledge, skill, experience, and personal
biases (Black et al., 2011).

ORF-related factors include lexicon and phoneme, sentence
and punctuation, audio signals, and prosodic features. In
automated scoring prosody, the researcher must convert the
reading audio (i.e., speech sound waves of oral reading) to acoustic
features for analyzing and studying oral reading fluency with
computational algorithms. The popular tools among researchers
include PRAAT (Boersma and van Heuven, 2001; Boersma and
Weenink, 2021) and openSMILE (Eyben et al., 2010; Schuller
et al., 2016). Researchers classified these features into different
groups: prosodic features, spectral features, cepstral features, and
sound quality features (Weninger et al., 2013). The critical features
related to reading prosody are pitch, duration, pause, and stress (or
intensity) (Kuhn et al., 2010; Schuller et al., 2016; Schwanenflugel
et al., 2004). Some attempts have been made to score prosody for
ORF assessments automatically (Black et al., 2007, 2011; Bolaños
et al., 2013; Mostow and Duong, 2009; Sabu and Rao, 2018,
2024). Since the prosody of ORF is related to different features
with complicated prosody characteristics, it is still a challenge for
researchers to train a model with a machine-learning approach
to mimic human judgment in evaluating prosody with improved
accuracy. Therefore, in this paper, we proposed and evaluated a
strategy to improve the accuracy rate for automated scoring for
prosody, specifically for cross-domain contexts.

The use of specific prosodic features is satisfactory for emotion
recognition in the literature (Eyben et al., 2016; Schuller et al., 2010;

Weninger et al., 2013). Thus, we focused on combining selected
specific prosodic and spectral features with the deep learning neural
network structure to improve cross-domain performances. Also,
we evaluated the effect of including features extracted from text-to-
speech (TTS) audio to the deep learning neural network structure,
as Sammit et al. (2022) suggested as a possible strategy to improve
cross-domain performances.

2 Literature review and related work

A computer-based ORF assessment system will significantly
reduce the assessment cost and administration effort, and some
attempts to automatically score prosody have been made in this
domain. As an earlier attempt, LISTEN (Literacy Innovation that
Speech Technology ENables), started at the beginning of the 1990s
at Carnegie Mellon University, was a project that aimed to develop
an automated Reading Tutor system for children in oral reading
by listening to them read aloud and helping them learn to read
(Mostow et al., 2003). In their later research, Duong and others
incorporated prosodic contours by focusing on prosodic features,
such as latency, duration, mean pitch, and mean intensity (Duong
et al., 2011; Mostow and Duong, 2009). It used pre-existing adult
narration of the same sentences as a template model or a corpus
of adults’ narrations to generalize models to estimate children’s
readings. However, LISTEN concentrates on a single sentence read
word by word. Lexical (word) level disfluency cannot measure
fluency within a sentence; such methods are not good enough to
rate ORF (Sabu and Rao, 2018). Since LISTEN’s pausing feature is
extracted from speech that is read word by word, using the sentence
level method to measure fluency between sentences is challenging.
It is insufficient to rate reliable smoothness and meaningful pauses
among sentences.

Bolaños et al. (2011) 2013 investigated an approach
incorporating lexical and prosodic features. In 2011, the researchers
introduced FLuent Oral Reading Assessment (FLORA), a web-
based system with automatic speech recognition (ASR) technology,
which provided an estimate for WCPM scores for first through
fourth-grade students with 738 1-min reading samples from a text
passage presented on the screen of a laptop. A year later, Bolaños
et al. (2013) extended the functionality of FLORA into a fully
automated assessment of WCPM and expressive reading according
to a standard and recognized the 4-point NAEP scale. The study
investigated five lexical and 15 prosodic features based on the
same dataset. Five lexical features are L1-L5: WCPM, number of
words spoken, number of word repetitions, number of trigrams
back-offs, and variance of sentence reading rate. The prosodic
features include features P1-P4 related to whether the child is
paying attention to punctuation. Features P5-P6 about the number
and duration of pauses made during reading. Features P9-P11
related to the number and duration of filled pauses correlated
with decoding ability. Features P12-P15 related to syllable length
and correlations between certain syllables on average pitch and
duration within a sentence. A linear kernel was used to train
three Support Vector Machine (SVM; James et al., 2013) classifiers
with above 20 features and extracted 12 Mel frequency cepstral
coefficients (MFCCs) and energy, and their delta and delta-delta
coefficients (total of 39 features) from speech data. The results

Frontiers in Education 02 frontiersin.org

https://doi.org/10.3389/feduc.2024.1440760
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-09-1440760 November 20, 2024 Time: 15:6 # 3

Wang et al. 10.3389/feduc.2024.1440760

showed 73.24% for lexical features, 69.73% for prosodic features,
and 76.05% for all features on overall classification accuracy with
the NAEP-4 scale. The analysis of the relevance of features to
classification indicates that features L1 and L2 correlate negatively
with non-fluent reading, while L4 and L5 correlate positively with
non-fluent reading. Silence and filled-pause features both correlate
positively with non-fluent reading.

Sabu and Rao (2018) designed the assessment system to
automatically measure lexical miscues evaluated in terms of
insertions, deletions, and substitutions detected and prosodic
miscues identified in terms of phrasal break detection and
prominent word detection while working on developing an oral
reading tutor, which provides automatic feedback. Two hundred
readings were collected from 20 students aged between 10 and 14
with English as a second language by having each student read
stories printed on paper with ten sentences each. Performance
measured using precision and recall metrics is 73.2 and 73%
for prominent word detection and 59.2 and 80% for phrasal
break detection. In their recent study (Sabu and Rao, 2024), the
researchers used a new data set with 1,447 recordings by 165
students (grades 5–8 with ages 10–14 years) reading from a pool of
148 unique passages (from 85 short English stories). A total of 144
features are extracted, which include nine lexical miscue features,
four speech rate features related to accuracy and rate, 12 pauses, 50
prosodic miscues, and 69 Acoustic-Prosodic contours. Among the
models with different features, the best-performed model has six
features related to silence and pitch, a total of 21 features. Adjacent
agreement (i.e., the percentage of scores that were only one level
different) and Exact agreement rate (i.e., the percentage of scores
that were precisely the same as the ground truth), two metrics used
in White et al. (2021), were 88.3 and 37.7%, respectively.

Sammit et al. (2022) presented an exploration for automatically
estimating prosody classification using a deep convolutional neural
network. The model structure used X-vectors (Snyder et al., 2018)
and self-attention (Okabe et al., 2018), two technologies in ASR and
natural language processing (NLP) (Jurafsky and Martin, 2023).
X-vectors aim to map the input speech features to a fixed-length
vector representation (X-vector) to maximize the discrimination
between different speakers while minimizing the variation within
the same speaker. Self-attention enables the model to capture long-
range dependencies and context within speech signals from past
and future frames, improving speech recognition’s accuracy and
robustness across various domains and conditions. Its best model
with eight frequency features achieved classification accuracy in-
domain, using known phrases in the training set, and was high
at a classification rate of 86.4%. However, this declines to 57%
when applied in cross-domain contexts, whereby phrases and/or
students are unknown to the training algorithm. This could be
suspected to be a gap between in- and cross-domain performance,
probably because of the overfitting of the model since this study had
resampled the data to balance the samples between classes.

On the other hand, speaker recognition and ASR with feature
extraction have been studied actively for several decades (Bai and
Zhang, 2021; Jurafsky and Martin, 2023; Kinnunen and Li, 2010).
Feature extraction is a process that transforms the raw audio
signal into acoustic feature vectors. Each vector represents the
information in a small-time window of the signal, where the signal
is broken down in short frames of about 20–30 ms in duration,
often with at least 10 ms overlap to avoid losing information.

The features can be separated into different categories based on
their physical interpretations. Acoustic features, such as energy-
related, spectral, and voicing-related, have been extensively used
for studying in the speaker verification field (Ananthakrishnan
and Narayanan, 2009; Dehak et al., 2007; Ferrer et al., 2010;
Kockmann et al., 2010, 2011; Martínez et al., 2012, 2013). Prosodic
features refer to non-segmental aspects of speech, including syllable
stress, pitch, intonation patterns, durations, speaking rate, and
rhythm (Kinnunen and Li, 2010). Typical prosodic features include
loudness, the fundamental frequency or F0 closely related to pitch,
zero-crossing rate related to fluency, etc. Researchers also found
that prosodic features highly correlated to automatic emotion
recognition in sound, speech, and music fields (Eyben et al., 2010,
2016; Schuller et al., 2010; Weninger et al., 2013).

Like some studies in the literature, our research utilizes acoustic
and prosodic features and is based on a supervised model. We
use the NAEP scale, a rating scheme for measuring expressive
reading about whether the student is non-fluent (scores 1 and 2)
or fluent (scores 3 and 4). Various studies have used this 4-class
scale (Bolaños et al., 2013; Kuhn, 2005; Pinnell et al., 1995; Sammit
et al., 2022; Valencia et al., 2010). Our model focused primarily on
using specific features and comparing cross-domain performance
among different feature sets. This work aims to enhance the model’s
generalization with prosodic features and improve cross-domain
performance in automated scoring of prosody in ORF assessments.

3 Materials and methods

3.1 Data collection

The data used in this study is audio-recorded reading data
collected in the Computerized Oral Reading Evaluation (CORE)
project by Nese, Kamata, and Alonzo (2014–2018) (Nese et al.,
2014) and augmented by Sammit et al. (2022). This dataset includes
a total of 5,841 recordings [4,128 (70.7%) in the training/validation
sample and 1,713 (29.3%) in the testing cross-domain sample] on
30 reading passages (approximately 50–100 words in length) by
1,811 2nd through 4th-grade students in the U.S. The sample sizes
for the three grades are roughly identical. However, the scores are
imbalanced among the four classes, with score 3 dominating the
classes with 49.9% samples and score four only having 3.4%. In
contrast, the samples of score one and score two consist of 17.2 and
29.5%, respectively. The demographic information of the samples is
shown in Figure 1. The range from 0 to 400 indicates the number of
students in each ethnic category within the dataset at three grades.
Most of the students in the dataset are White (83.68% in second
grade, 79.10% in third grade, and 78.76% in fourth grade). Also,
English was the first language for most students, with 74.63%, while
English learners, with 25.37%, comprised about a quarter of all
students.

3.2 Feature extraction and selection

We used specific prosodic features extracted with an
open-source features extractor tool called openSMILE
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FIGURE 1

Data demographic information.

(The Munich open-Source Media Interpretation by Large feature-
space Extraction) in ComParE_2016 (INTERSPEECH 2016
Computational Paralinguistics Challenge) and eGeMAPS (Geneva
Minimalistic Acoustic Parameter Set) v02 format (Eyben et al.,
2010, 2016; Schuller et al., 2016). ComParE_2016 is the dataset with
65 Low-Level Descriptor (LLD) features (acoustic features) and
the largest with more than 6k functional features (acoustic features
and their comprehensive statistically summarized information).
eGeMAPS is an extension of GeMAPS that contains non-time
series parameters with prosodic, excitation, vocal tract, and spectral
descriptors. We focused on their LLD features, which included 65
features under the ComParE_2016 set (five energy-related features,
55 spectral-related features, and six voicing-related features) and
25 features under the eGeMAPS v02 set (three energy-related
features, eight frequency-related features, and 14 spectral related
features).

Based on the literature review, we chose nine specific prosodic
features under ComParE_2016 LLD (shown in Table 1, along with
their feature names and feature groups). These features have been
reported to be relevant for speech and emotion recognition in
the literature (e.g., Eyben et al., 2010; Weninger et al., 2013).
The nine specific features were chosen as a small set of prosodic
features, including five prosodic features (e.g., energy features
that represent smoothness and loudness, and voicing features that
represent fundamental frequency and pitch) and four spectral
features (e.g., spectral energy at two different frequency ranges and
psychoacoustic sharpness of acoustic signals).

Our well-targeted approach to feature selection differs from
that of Sammit et al.’s (2022) best model, which uses only
the eGeMAPS LLD subset with eight frequency-related acoustic
features. We incorporated features extracted from standard text-to-
speech (TTS) reading audio into the train data set, which included
300 readings (30 passages each with ten narrators, five male and five
female). The purpose of doing this is to first regard these TTS data

TABLE 1 Selected prosodic features.

Feature name Description Group

F0final_sma SHS F0 (SHS and viterbi
smoothing)

Prosodic

audspec_lengthL1norm_sma Sum of auditory
spectrum (loudness)

Prosodic

audspecRasta_lengthL1norm_sma Sum of RASTA-style
filtered audiotory
spectrum

Prosodic

pcm_RMSenergy_sma RMS energy Prosodic

pcm_zcr_sma Zero-crossing rate Prosodic

pcm_fftMag_fband250-650_sma Spectral energy
250–650 Hz

Spectral

pcm_fftMag_fband1000-4000_sma Spectral energy 1k–4 kHz Spectral

pcm_fftMag_spectralCentroid_sma Spectral centroid Spectral

pcm_fftMag_psySharpness_sma Psychoacoustic sharpness Spectral

as standard with four scores to increase four score samples. Second,
since kids tend to mimic the adult reading style of fluency, TTS data
might help the model have better generalization.

We selected features with five different feature sets:

(1) ComParE_2016 (65 features): This feature set includes all 65
features from the ComParE_2016 dataset.

(2) ComParE_2016 (56 selected features): This set contains 56
features from ComParE_2016, excluding voicing features such
as jitter, shimmer, logHNR, and spectral roll-off point features.

(3) Nine selected features: These are the nine specific features we
discussed earlier.

(4) eGeMAPS v02 (seven frequency features): This set includes
seven frequency-related features from the eGeMAPS v02 set,
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TABLE 2 Cross-domain groups.

Samples Description

538 Passages appeared in the training, but students did not.

898 Students appeared in the training, but passages did not.

277 Both passages and students did not appear in the
training

excluding jitterLocal from the original eight LLD frequency
features. It includes features such as F0semitoneFrom27.5Hz
and frequencies and bandwidths for F1 to F3.

(5) Sixteen combined features: This set combines nine selected
features from (3) and seven frequency features from (4).

3.3 Model structure

To improve the automated scoring algorithm, we first utilized
the model structures used by Sammit et al. (2022). The key
features of model architecture include: (1) Input layer, the input
data has a time sequence of shape (sample size, 12,000, acoustic
features size) with acoustic features extracted from every 2 min
long embedded reading sample of audio with 20 ms frame with
10 ms overlap using openSMILE tool kit. (2) Multiple stacked
SeparableConv1D layers perform efficient feature extraction while
preserving computational resources and reducing the overall
parameter count. Each SeparableConv1D block applies filters of
increasing size (32, 64, 128, 256) to progressively capture more
complex patterns in the data. (3) Downsampling and Residual
Connections. Conv1D layers between blocks of SeparableConv1D
with stride four continually reduce the sequence length from 12,000
to 3,000, 750, and 12 finally. Residual connections between blocks
of SeparableConv1D help in flowing the gradient and prevent the
vanishing gradient problem. (4) The X-vectors layer uses traditional
µ and σ2 pooling. Or the weighted X-vectors layer uses processing
gate blocks to multiply the µ and σ2 before pooling. (5) Self-
attention layer. Or the Self-attention weighted X-vectors layer that
gates the attention layer output to calculate the weighted X-vectors,
providing a refined summary of the input sequence. This work
trained the models using either categorical cross entropy (CCE) or
quadratic weighted kappa (QWK; Shermis, 2014, 2015) as the loss
function.

3.4 Training and evaluation

We wanted to examine how effective these smaller, selected
feature sets were. For each feature set, we ran models using either
X-Vectors or self-attention model structures, with CCE or QWK
as the loss function. We also tested the models both with and
without TTS samples. As a result, we trained 40 models (five feature
sets × two model structures × two loss function types × two TTS
conditions) and evaluated their performance. The total parameters
of the seven features model are 1,006,159, with trainable parameters
as 1,003,887, whereas the 65 features model is up to 1,105,540 and
1,103,268, respectively.

The study evaluated the performance of the 40 models with
the classification agreements and human raters. As the dataset was
imbalanced in classes (i.e., score categories) and using metrics that

strike a balance between classifier performance and the uneven
distribution among classes is a preferable approach, we evaluated
various indices, including Micro Accuracy (which equals to micro
average Precision, micro average Recall, and micro average F1-
score), QWK, Micro-avg OvR ROC AUC Score, and Macro-
avg OvR ROC AUC Score. All analyses ran with Python 3.10.5
(Van Rossum and Drake, 1995) and the scikit-learn package 1.1.2
(Pedregosa et al., 2011). Regarding cross-domain samples, we
separated the samples into three cross-domain groups based on
whether passages and/or students appeared in the training process
(see Table 2).

4 Results

We compared all 40 models based on the metrics with testing
results of all 1,713 test samples and each cross-domain group (see
Tables 3, 4). Overall test results for all 1,713 cross-domain data
showed that the model with TTS data and selected 56 features of
ComArE_2016 set had the best performance with 57.3% Micro-
accuracy, 0.34 QWK, 0.82 Micro-avg OvR ROC AUC, and 0.74
Macro-avg OvR ROC AUC. On the other hand, the model without
TTS data and the same structure had 59.0%, 0,35, 0.82, and 0.65 for
the four indices.

The model with TTS data and selected nine prosodic features
of ComParE_2016 with the cross-domain group that both passages
and students were not in the training process showed the best
performance with 59.2% Micro-accuracy, 0.33 QWK, 0.81 Micro-
avg OvR ROC AUC, and 0.67 Macro-avg OvR ROC AUC. Even
though this performance was not better than the model without
TTS data with 56 features that had 62.5%, 0.38, 0.87, and 0.65,
for the four indices, respectively, given that the model with only
nine prosodic features, the result implies a potential impact of
prosodic features for improving estimating performance. This
might mean that even a small number of prosodic features could
help the neural network to generalize the patterns. Through all
models and cross-domain groups, the model with selected nine
prosodic features of ComParE_2016 plus seven frequency features
of eGeMAPS (Table 3), the model with selected nine prosodic
features of ComParE_2016 (Table 4), and the model with seven
frequency features of eGeMAPS (Table 4) showed the highest QWK
score 0.44. The results in Tables 3, 4 confirm that adding TTS data
further improves cross-domain performance, especially for models
using selected prosodic features. This also suggests the prosodic
features are cardinal for providing good generalization of prosody
estimation across different reading passages and students, pushing
the area further with more effective and interpretable automated
scoring systems.

5 Discussion and future work

First, the train data set needed to be more balanced, with fewer
observations in scoring class 4 compared to scoring classes 1–
3. Therefore, it influenced the overall classification performance
measured by QWK. We also tested by adding 300 standard TTS
audios, scored in scoring class 4, to train samples. However,
compared to the models without standard TTS audio data,
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TABLE 3 Comparing the performance of models with TTS data.

Models with
TTS data

Overall test 1,713 samples 538 samples (passage appeared in
training)

898 samples (student appeared in
training)

277 samples
(Both passage and student did not

appeared in training)

Features
set

Classi-
fier

Kappa
loss

Featu-
res

Micro
accu-
racy

QWK Micro
-avg

Macro
- avg

Micro
accuracy

QWK Micro -
avg

Macro
-avg

Micro
accuracy

QWK Micro
-avg

Macro-
avg

Micro
Accuracy

QWK Micro-
avg

Macro-
avg

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

score score score score score score score score

ComParE
2016

Self
attention

0 65 46.40% 0.39 0.75 0.65 42.40% 22 0.72 0.65 45.30% 0.37 0.74 0.62 45.30% 0.36 0.75 0.7

Self
attention

1 65 55.00% 0.33 0.31 0.67 53.50% 0.31 0.32 0.69 54.20% 0.32 0.31 0.63 53.40% 29 0.32 0.64

SelfWX 0 65 42.10% 0.35 0.63 0.64 45.50% 0.34 0.7 0.73 41.30% 0.4 0.63 0.64 41.90% 0.34 0.63 0.63

SelfWX 1 65 42.10% 0.16 0.75 0.69 45.50% 21 0.74 0.65 41.30% 0.15 0.76 0.69 41.90% 0.14 0.74 0.64

ComParE
2016

Self
attention

0 56 43.30% 0.35 0.71 0.63 43.70% 27 0.71 0.59 45.00% 0.33 0.72 0.65 43.00% 0.35 0.73 0.62

Self
attention

1 56 57.30% 0.34 0.82 0.74 53.00% 29 0.73 0.73 56.90% 0.32 0.32 0.74 53.10% 0.32 0.32 0.75

SelfWX 0 56 44.10% 29 0.73 0.62 42.60% 23 0.73 0.63 45.30% 0.27 0.73 0.61 43.70% 24 0.73 0.69

SelfWX 1 56 44.10% 0.15 0.3 0.71 42.60% 0.13 0.75 0.63 45.30% 0.16 0.3 0.7 43.70% 0.12 0.3 0.71

ComParE
2016

Self
attention

0 9 46.00% 0.32 0.73 0.6 42.20% 0.3 0.63 0.6 43.20% 0.23 0.72 0.61 45.30% 0.31 0.71 0.61

Self
attention

1 9 56.00% 0.3 0.3 0.67 50.20% 26 0.75 0.63 56.60% 0.31 0.3 0.69 59.20% 0.33 0.81 0.67

SelfWX 0 9 44.40% 29 0.73 0.62 45.70% 0.34 0.72 0.67 45.70% 0.3 0.73 0.62 51.30% 0.4 0.75 0.66

SelfWX 1 9 44.40% 0.14 0.7 0.59 45.70% 0.13 0.67 0.43 45.70% 0.15 0.72 0.61 51.30% 21 0.7 0.54

eGeMAPS Self
attention

0 7 47.50% 0.35 0.73 0.63 43.30% 0.43 0.74 0.54 45.20% 0.37 0.71 0.62 52.70% 0.42 0.77 0.6

Self
attention

1 7 45.40% 0.13 0.71 0.63 37.70% 0.07 0.66 0.56 46.00% 0.13 0.72 0.64 40.30% 0.12 0.63 0.53

SelfWX 0 7 462% 0.31 0.72 0.6 46.70% 0.33 0.73 0.65 46.90% 0.23 0.72 0.53 47.70% 0.32 0.74 0.64

SelfWX 1 7 462% 0.17 0.73 0.6 46.70% 0.17 0.69 0.6 46.90% 0.17 0.76 0.64 47.70% 0.14 0.74 0.6

ComParE
2016_ 9 +
eGeMAPS_7

Self
attention

0 16 47.60% 0.33 0.74 0.64 44.10% 0.44 0.72 0.67 49.60% 0.41 0.75 0.62 47.70% 0.4 0.77 0.72

Self
attention

1 16 53.90% 29 0.3 0.74 56.10% 0.32 0.31 0.73 52.90% 0.26 0.31 0.74 57.30% 0.32 0.33 0.79

SelfWX 0 16 532% 0.37 0.79 0.63 45.00% 26 0.77 0.54 57.10% 0.4 0.32 0.66 56.00% 0.33 0.33 0.53

SelfWX 1 16 532% 23 0.73 0.71 45.00% 0.1 0.75 0.66 57.10% 0.23 0.79 0.71 56.00% 21 0.73 0.72

Kappa Loss, 1 means kappa loss, 0 means CCE loss; QWK, Quadratic Weighted Kappa; SelfWX, self-attention with weighted X-Vectors; OvR, one versus rest.
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TABLE 4 Comparing the performance of models without TTS data.

Models
without TTS

data

Overall test 1,713 samples 538 samples (passages appeared
in training)

898 samples (students appeared in
training)

277 samples (both passages and
students did not appeared in

training)

Features
set

Classi-
fier

Kappa
loss

Fea-
tures

Micro
accu-
racy

QWK Micro
-avg

Macro
- avg

Micro
accuracy

QWK Micro -
avg

Macro
-avg

Micro
accuracy

QWK Micro-
avg

Macro-
avg

Micro
accuracy

QWK Micro-
avg

Macro-
avg

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

OvR
ROC
AUC

score score score score score score score score

ComParE
2016

Self
attention

0 65 47.30% 0.33 0.74 0.63 46.70% 0.33 0.74 0.6 47.10% 0.35 0.75 0.65 53.30% 0.41 0.3 0.65

Self
attention

1 65 55.50% 0.31 0.79 0.63 50.00% 0.23 0.77 0.59 57.60% 0.34 0.3 0.65 54.20% 0.26 0.3 0.6

SelfWX 0 65 49.40% 0.32 0.75 0.57 46.70% 0.26 0.71 0.49 49.10% 0.31 0.74 0.56 51.60% 0.31 0.76 0.52

SelfWX 1 65 49.40% 0.19 0.33 0.65 46.70% 0.16 0.37 0.63 49.10% 0.17 0.34 0.65 51.60% 0.19 0.37 0.65

ComParE
2016

Self
attention

0 56 47.60% 0.31 0.7 0.6 50.00% 0.42 0.73 0.71 49.30% 0.3 0.71 0.63 53.10% 0.41 0.71 0.62

Self
attention

1 56 59.00% 0.35 0.82 0.65 59.70% 0.37 0.33 0.63 62.10% 0.4 0.33 0.65 62.50% 0.38 0.87 0.65

SelfWX 0 56 47.00% 0.27 0.67 0.53 53.20% 0.23 0.71 0.59 49.30% 0.34 0.63 0.6 50.90% 0.23 0.63 0.53

SelfWX 1 56 47.00% 0.17 0.66 0.57 53.20% 0.23 0.66 0.57 49.30% 0.2 0.66 0.53 50.90% 0.19 0.64 0.53

ComParE
2016

Self
attention

0 9 43.30% 0.36 0.75 0.59 42.40% 0.32 0.7 0.54 51.20% 0.36 0.77 0.6 49.10% 0.36 0.76 0.52

Self
attention

1 9 55.00% 0.3 0.3 0.61 55.60% 0.33 0.79 0.53 53.70% 0.34 0.32 0.64 53.50% 0.33 0.33 0.53

SelfWX 0 9 52.00% 0.41 0.77 0.6 43.70% 0.41 0.74 0.55 53.00% 0.39 0.77 0.61 52.70% 0.44 0.73 0.54

SelfWX 1 9 52.00% 0.24 0.31 0.63 43.70% 0.13 0.73 0.6 53.00% 0.24 0.33 0.72 52.70% 0.22 0.32 0.62

eGeMAPS Self
attention

0 7 43.40% 0.36 0.73 0.56 51.30% 0.33 0.72 0.49 49.30% 0.33 0.74 0.53 50.50% 0.37 0.75 0.52

Self
attention

1 7 50.50% 0.26 0.73 0.64 43.30% 0.15 0.75 0.66 53.20% 0.29 0.79 0.66 46.20% 0.19 0.77 0.65

SelfWX 0 7 45.90% 0.29 0.73 0.63 52.00% 0.44 0.31 0.75 46.20% 0.27 0.73 0.62 52.30% 0.4 0.31 0.75

SelfWX 1 7 45.90% 0.17 0.76 0.65 52.00% 0.27 0.73 0.56 46.20% 0.16 0.73 0.66 52.30% 0.22 0.76 0.62

ComParE
2016_ 9 +
eGeMAP5_7

Self
attention

o 16 47.00% 0.3 0.74 0.61 46.30% 0.31 0.74 0.53 49.30% 0.32 0.76 0.61 45.10% 0.29 0.75 0.52

Self
attention

1 16 56.30% 0.32 0.33 0.63 47.20% 0.2 0.3 0.53 57.20% 0.32 0.33 0.69 57.00% 0.3 0.35 0.61

SelfWX o 16 43.10% 0.3 0.74 0.6 44.30% 0.31 0.71 0.54 43.30% 0.31 0.75 0.6 50.20% 0.27 0.75 0.62

SelfWX 1 16 43.10% 0.2 0.73 0.65 44.30% 0.15 0.71 0.54 43.30% 0.19 0.79 0.64 50.20% 0.2 0.77 0.53
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the results did not show that they improved the model performance
more than we expected. The reason might be that the sample
size was still tiny in terms of our deep neural network structure.
Another possible reason is that TTS audios were adult narrators,
unlike our data with 2nd to 4th-grade students.

Second, when we considered the cross-domain conditions,
there were two aspects: passage and student. That is, passage,
student, or both might have yet to be discovered for a
trained model. Initially, we suspected that passages would have
more weight than students in model performance for score
classifications. However, our results revealed that the data with
students known in the training process showed overall better
performance than those with students unknown in the training
process. In other words, letting the student read at least one passage
is more important than having others read all passage texts.

Third, the two models with selected nine prosodic features,
testing with data with which both passages and students were
unknown in the training process, showed the best performance
by QWK compared to the model with more features. This result
may imply that the model with specific prosodic features had a
higher generalization to capture the typical characteristics of the
prosody. This study can be an essential demonstration for achieving
a satisfactorily high accuracy and classification agreement rate
with fewer selected features, which would be more efficient and
potentially more interpretable.

We also noted some limitations in this study. First, the training
sample included readings from 1,811 students. Although it was
seemingly a large sample for a deep learning neural network, it
needed to be more significant to have the neural network learn
scoring prosody with desirable accuracy. Second, most of the
students in our sample were White students with English as their
first language. Therefore, the model has limited generalizability
when used for different racial groups of students and students
whose first language is not English. Additional investigations are
warranted to determine whether the model performance depends
on English level, cross-domain groups, and grade levels. Also, the
impact of specific types of features on classification performance
needs to be investigated.

In sum, this work found the features that impact the
performance of estimating the prosody score of ORF. However,
we needed more research to answer the question of what kind
of features and magnitude the features worked on. The current
study only directly used acoustic and prosodic features with
two-dimensional sequence data extracted from reading audio.
We understand that the functional output by openSMILE takes
statistical summaries over the sequence, so each two-dimensional
sequence data becomes a vector with features information.
Working on such data with an extensive machine learning
approach will help us understand more about features impacting
automated scoring prosody. Such exploration might support the
researchers with better feature selection since prosody is more
complex than simple acoustic features like pitch and energy.

This study explored adding TTS audio data to train a
neural network to learn the “ideal” prosody patterns of readings.
Future exploration can be done by training an encoder-decoder
network using TTS as a prosody reference, audio from student
oral reading, and textual features of reading text. Preprocessed
student speech can subsequently be aligned to such “ideal”
reference to estimate prosody scores. Prosody requires capturing

relationships across longer time scales (intonation over a sentence,
pauses, rhythm, etc.).

On the other hand, pausing is purposeful or accidental silence
time during reading and is meaningfully related to prosody
(Benjamin et al., 2013; Benjamin and Schwanenflugel, 2010). All
related work we mentioned in this paper, except Sammit et al.
(2022) included pause features in their estimating model to enhance
performance. Information about pauses calculated with word-level
silence time was also an essential prosodic feature, which can be
obtained with the output of the ASR system. Researchers found
that fluent/less-fluent readers have different pausing patterns,
whereas no-fluent readers have more random and irrelevant pauses
(Benjamin and Schwanenflugel, 2010; Miller and Schwanenflugel,
2008). Future research that seeks to understand how the pause
patterns related to reading and text influence estimating prosody
performance would be a meaningful try.
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