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Background: Proofs are a key component in undergraduate mathematics, but 
understanding presented proofs and constructing proofs is a challenge for 
many students. Flipped undergraduate mathematics classrooms often employ 
instructional videos, yet little is known about their potential to help students 
understand and construct proofs.

Objective: This study investigates the potential of video-based proof 
presentations on student learning. We  compared a video that presented the 
proof construction process (proof video); a video that heuristically presented 
the proof construction process, which modeled key decisions and named 
the phases of proof construction and activities (heuristic proof video); and a 
video that offered prompts during the proof construction process, where 
self-explanation prompts guided students through these phases and activities 
(prompted proof video).

Methods: A between-subjects design was employed, involving 177 mathematics 
(teacher) students in a first-semester proof-based linear algebra course. Data 
were collected on students’ comprehension of the presented proof, their 
knowledge for proof construction, and their evaluative perceptions. Statistical 
analyses were performed using ANOVA (proof comprehension) and MANOVA 
(evaluative perceptions) to compare the groups. Qualitative content analysis 
was employed to identify different facets of knowledge for proof construction 
and the groups were contrasted using χ2-tests.

Results: We found that independent of the video they watched, students 
achieved a rather local comprehension of the presented proof. The heuristic 
proof video showed potential for offering meta-knowledge of how to approach 
proof construction and knowledge on process-related activities that support 
individual phases of proof construction but required more time. Yet, while 
students perceived all videos positively, they liked the heuristic proof video best.

Conclusion: The results provide insights into the design of instructional videos, 
suggesting that, in the early stages of learning about proofs, a heuristic proof 
video may help address the challenges students face.
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1 Introduction

Undergraduate mathematics courses often use instructional 
videos to supplement face-to-face classes or even replace lectures 
(Kay, 2012; Lo et al., 2017), as videos offer various advantages, 
such as self-paced content (students can watch or rewatch videos 
at their leisure) and the ability to combine explanations with 
dynamic visualizations (Kay and Kletskin, 2012). Instructional 
videos are frequently used in flipped classrooms (Cevikbas and 
Kaiser, 2023), in which most information transfer-related teaching 
takes place out of the classroom, such that in-class time can 
be  spent on active learning (Abeysekera and Dawson, 2015). 
Because flipped classrooms reserve in-class time for active 
learning, they have demonstrated better student performance 
compared to traditional teaching models (Strelan et al., 2020). 
However, the effectiveness of flipped classrooms depends on 
thoughtfully designed instructional videos that are used for class 
preparation and their alignment with the course’s overall 
objectives (Lo et al., 2017).

While some research has proposed general guidelines for 
designing instructional videos (e.g., Fyfield et  al., 2022), and 
studies in mathematics education have focused on designing 
videos for algorithmic problems (e.g., Kay, 2014), much less is 
known about how to design instructional videos that focus on 
proofs, which are a key component in undergraduate mathematics 
education (Clark and Lovric, 2009; Gueudet and Thomas, 2020).

In proof-based courses, a common teaching method is to 
present items of proof, such that students can learn a 
mathematical idea from the example proofs (Weber, 2004). 
However, research has shown that students often do not 
understand the underlying mathematical ideas (Lew et al., 2016). 
In general, students tend to struggle with comprehending 
(Conradie and Frith, 2000) and constructing proofs (Stylianides 
et al., 2017), and these difficulties are evident across different 
domains, such as abstract algebra (Weber, 2001) and linear 
algebra (Stewart and Thomas, 2019); in linear algebra, for 
example, challenges with proofs stem from understanding and 
using the concepts introduced in the course (Britton and 
Henderson, 2009). To enhance the effectiveness of presenting 
proof, it is possible to modify how this is done as well as how 
students engage with the proof itself (Hodds et  al., 2014). 
Opposed to lectures, presenting a proof through an instructional 
video can allow students to pause and rewind at any time.

Consequently, given undergraduate students’ common 
challenges in proof comprehension and construction, this paper 
proposes three types of instructional videos that may be useful in 
enhancing video-based proof presentations. We then compare 
these three types of videos in a flipped proof-based linear algebra 
classroom, where we assess how well students understand the 
proof presented and how well they convey knowledge needed for 
proof construction. In addition, we consider students’ evaluative 
perceptions of these video types, since this may affect their 
willingness to engage with the resource (Engelbrecht et al., 2020). 
By examining which type of video best supports undergraduate 
students’ challenges with proofs, this research aims to contribute 
to the design of effective instructional videos for presenting 
proofs in flipped proof-based mathematics classrooms.

2 Theoretical background

2.1 Proof-based courses in undergraduate 
mathematics education

Undergraduate proof-based courses primarily offer instruction 
through lectures (Melhuish et al., 2022). Commonly, lecturers engage in 
“chalk talk” (Artemeva and Fox, 2011), where they write on the board 
and simultaneously give verbal comments that provide insights into a 
mathematician’s thought process and impart meta-comments at certain 
points that pan out to more global ideas. Often, proofs are presented 
with the objective of not only conveying factual information but also as 
a means to help students understand the proof and learn from it (Mejía-
Ramos et al., 2012), for example through learning methods that can 
be used for constructing a proof (Hanna and Barbeau, 2008). However, 
comments that go beyond formal mathematics are rarely written on the 
board and, therefore, are often not recorded in students’ notes (Fukawa-
Connelly et al., 2017). This may be one reason why students frequently 
fail to comprehend the mathematical points the lecturer wants to make 
(Lew et al., 2016). This challenge to presenting proofs in lectures may 
be  overcome by presenting proofs in instructional videos, because 
students can pause and repeat explanations. Yet, before designing 
instructional videos that present proofs, one must first consider the 
skills required for students to understand and construct proofs.

2.1.1 Proof comprehension and construction as a 
challenge for students

Activities concerning proofs entail a receptive component, which 
involves reading a given argument to comprehend it, and a productive 
component, which includes constructing novel arguments (Mejía-
Ramos and Inglis, 2009). According to Mejía-Ramos et al. (2012), 
comprehending a proof requires understanding that is both local and 
holistic. Students show local understanding if they comprehend the 
meaning of terms and statements, the justification of claims, and the 
logical status of the proof ’s statements and proof framework. Students 
convey holistic understanding if they are able to summarize high-level 
ideas, identify the modular structure, transfer the general ideas or 
methods to another context, and understand how the proof relates to 
examples. Thus, students may grasp a proof on the holistic level but 
not understand its technical details on the local level. Correspondingly, 
students may understand local aspects of a proof but not comprehend 
the proof holistically (Mejía-Ramos et al., 2012).

Studies have shown that students’ ability to comprehend proofs is 
linked to their prior knowledge, an important component of which is 
understanding key concepts (Neuhaus and Rach, 2019; Bauer et al., 
2022). Proofs in linear algebra are often packed with concepts (Britton 
and Henderson, 2009), so students may struggle with understanding 
the proofs, even when they are thoroughly discussed in class, because 
they do not grasp the underlying concepts (Stewart and Thomas, 2019).

Besides comprehending proofs, another important activity in 
undergraduate mathematics is constructing proofs (Mejía-Ramos and 
Inglis, 2009), and, in this context, students often have to justify a 
statement estimated to be  true (Selden A. and Selden, 2017). The 
product of a proof construction process is a proof (Boero, 1999) and 
Czocher and Weber (2020) list five properties that contribute to 
considering a justification as a proof, namely that the justification (1) 
is convincing, (2) is perspicuous, (3) is a priori which means that the 
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theorem to be proven is the deductive consequence, (4) is transparent, 
and (5) has been sanctioned by the mathematical community. 
Importantly, the proof itself is not a report of the construction process 
(Selden J. and Selden, 2017), which may be why many undergraduate 
students believe that proofs are constructed linearly and, thus, give up 
quickly when they do not immediately know how to construct a proof 
(Selden and Selden, 2008).

Consequently, students need to have meta-level knowledge about 
the phases of proof construction and what these phases involve. In 
undergraduate mathematics, the proof construction process involves 
progressing through the phases of understanding (the statement 
given), identifying arguments, structuring arguments, and formulating 
the proof (Kirsten, 2018, 2021). Within each phase, proof construction 
can be guided by heuristics specified as activities to make progress on 
a problem (Schoenfeld, 1985, p. 15), such as drawing a diagram when 
working to understand the statement (Schoenfeld, 1985, p.  108). 
Another prerequisite for successful proof construction is strategic 
knowledge (Sommerhoff, 2017). Strategic knowledge involves 
awareness of the domain’s proof techniques, which theorems are 
important and when they are useful, and when symbolic 
manipulations are sufficient. Yet, research indicates that undergraduate 
students have difficulty applying strategic knowledge during proof 
construction (Weber, 2001). Finally, another key resource important 
for proof construction is content-specific mathematical knowledge 
(Sommerhoff, 2017), but students tend to have trouble recalling and 
applying concepts and theorems when constructing proofs (Moore, 
1994; Weber, 2001). These manifold demands that students encounter 
in proof construction are among the reasons they often do not know 
how to start a proof (Moore, 1994).

Because both comprehending and constructing proofs are 
important activities in university mathematics (Selden A. and Selden, 
2017), developing measures that support these activities is of special 
interest in mathematics education (Stylianides et al., 2024).

2.1.2 Supporting students in comprehending and 
constructing proofs

As identified by Hodds et al. (2014), proof comprehension can 
be enhanced via two general methods: modifying the way a proof is 
presented or modifying how students engage with the proof. 
Approaches to modify proof presentation include using e-Proofs 
(Alcock and Wilkinson, 2011), which complement a text-based proof 
on slides with visuals and on-demand auditive explanations. In Roy 
et al.'s (2017) study, although students felt that e-Proofs supported 
their understanding, they performed worse in a delayed proof 
comprehension test than those studying a standard written proof. This 
may be because the students had difficulty integrating textual and 
auditive information, such that students might have performed better 
if they engaged with the proof before having seen the e-Proof 
presentation. Moreover, students may have performed better if they 
processed the e-Proof more actively (Roy et  al., 2017); this idea 
corresponds to the method of modifying how students engage with a 
proof. As an example of this method, Hodds et al. (2014) found that 
students showed immediate and sustained improvements in proof 
comprehension over 3 weeks when they underwent self-explanation 
training, in which they had to explain each step of a proof, connecting 
it to previous knowledge and prior steps.

To overcome difficulties in constructing proofs, students should 
be told that proofs are usually not constructed linearly (Selden and 

Selden, 2008). Within the phases of proof construction, Schoenfeld 
(1985) proposed that mathematicians should model how heuristics 
are employed; after doing so, he found that students’ performance 
improved in transfer problems. These findings contributed to the 
development of text-based heuristic examples (Reiss and Renkl, 2002), 
which combine Schoenfeld’s approach with step-by-step solutions to 
problems. Thus, heuristic examples display a realistic solution process 
which, in the context of proofs, means that the proof is presented 
along with the process of proof construction. Undergraduates 
engaging with heuristic examples in geometry were found to perform 
significantly better in proof construction and to develop richer 
knowledge about the proving process than the control group, who 
studied an instructional text (Hilbert et al., 2008). Therefore, heuristic 
examples may contribute to acquiring knowledge for solving transfer 
problems (Renkl, 2017).

The above methods may represent a guide when designing 
instructional videos that present proofs. Such videos should offer a 
well-considered explanation of the proof but they modify the way the 
proof is presented (compared to in lectures). Hence, we  combine 
elements of the above methods with the general benefits of 
instructional videos, which are described next.

2.2 Instructional videos as a resource for 
learning

Various digital resources are employed in mathematics learning 
and teaching. According to Winsløw et al.’s (2023) classification of 
technology use in university mathematics education, such resources 
can refer to tools or media, both of which can be used in a receptive or 
a productive way. While tools allow students to carry out mathematical 
steps (e.g., calculations in a computer algebra system) or are produced 
by students (e.g., through programming), media allows students to 
access or exchange mathematics. In that sense, watching an 
instructional video is considered “receptive media use” because it 
allows students to access information and knowledge.

To date, many studies have reported that instructional videos can 
positively affect higher education learning outcomes (Noetel et al., 
2021), such as by helping students apply statistical knowledge (Lloyd 
and Robertson, 2012). Because instructional videos can be paused and 
replayed, students can adapt the videos to their pace of their learning 
(Kay, 2012). However, in a study by Weinberg and Thomas (2018), 
undergraduate mathematics students who watched statistics videos 
were frequently unable to monitor their understanding of the concepts 
and thus did not tend to pause or replay the video. Perhaps because 
videos are often perceived as “easy” compared to printed material 
(Salomon, 1984), the students did not invest the required effort to 
comprehend the video content. Furthermore, instructional videos’ 
effectiveness depends on key design choices, such as whether to 
exclude interesting but irrelevant facts (Fiorella, 2021), how long to 
make the video (Guo et  al., 2014), or how much control to give 
students regarding pausing, fast-forwarding, and rewinding a video 
(Fyfield et al., 2022).

Instructional videos are often perceived positively, as students 
have reported instructional videos to be helpful and motivating 
(Kay, 2012). However, several studies have highlighted that 
students care about the videos’ quality which involve key design 
choices, such as the videos’ structure, the length, an explanation 
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perceived as efficient (Shoufan, 2019; Beautemps and Bresges, 
2021), and the opportunity to be  actively involved (Kay and 
Kletskin, 2012). Despite students’ positive evaluative perceptions 
of videos for learning, some find it challenging that videos do not 
allow for asking questions and that watching videos requires self-
discipline (Kay, 2012).

To sum up, the results on the effectiveness and perceptions toward 
instructional videos indicate that videos should be carefully designed 
and implemented in a way that considers the target group and the 
learning domain.

2.3 Designing instructional videos for a 
flipped proof-based classroom

One advantage of using instructional videos in a flipped 
proof-based classroom is that students receive information 
transfer-related teaching at home, so that in-class time can 
be spent on student-centered activities. Therefore, the common 
teaching mode of presenting proofs is outsourced to videos. The 
objectives of presenting a proof are (i) that students gain 
mathematical insight that is reflected in their local and holistic 
understanding of the proof in the sense of Mejía-Ramos et al. 
(2012) and (ii) to address knowledge needed for proof 
construction. To achieve these goals, different design choices may 
be  beneficial when presenting the same mathematical proof, 
which we outline here.

2.3.1 Proof videos
As many proving situations in undergraduate mathematics 

(Selden A. and Selden, 2017), a proof video starts with a theorem or 
statement that is estimated to be  true. Subsequently, the proof is 
constructed step-by-step, where the video shows all the necessary 
activities involved in that process, such as recalling related definitions, 
theorems, and concepts (see pink writing in Figure 1). As with proof 
presentations in lectures, the idea is that students will come to 
understand the proof and learn from it (Mejía-Ramos et al., 2012). At 
the end of the proof construction process, the result is a formal proof.

2.3.2 Heuristic proof videos
A heuristic proof video includes the same elements as a proof video 

but, in addition, during proof construction the presenter not only 
conducts the steps but also gives, as is done with heuristic examples (see 
Sect. 2.1.2), insight into decision-making processes. For example, when 
choosing a helpful theorem for constructing the proof, the presenter may 
address why one theorem seems better than others. Moreover, the video 
presenter may name the activities and their related phases of proof 
construction (see blue part of Figure 1), which will help break the video 
down into meaningful chunks, an important aspect when presenting 
complex material within instructional videos (Mayer, 2020, p. 262). As a 
basis for segmenting the video, a natural choice might use the phases of 
undergraduate students’ proof construction process, which involve 
understanding (the statement given), identifying arguments, structuring 
arguments, and formulating the proof (Kirsten, 2018, 2021). By making 
explicit how proof construction is approached, such videos can address 

FIGURE 1

Demonstration of the unique components of the heuristic and the prompted proof videos, with the proof video in the background.
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students’ misconception that proofs are constructed linearly (Selden and 
Selden, 2008).

This additional information in a heuristic proof video thoroughly 
guides students through the proof construction process, but may have 
drawbacks. Heuristic examples target students with low knowledge 
regarding the focused domain (Reiss and Renkl, 2002) and studies have 
repeatedly shown that such students benefit particularly from this 
teaching approach (e.g., Hilbert et  al., 2008). Presenting too much 
information that students already know can impede their learning 
according to the “expertise reversal effect” (Kalyuga, 2021). The expertise 
reversal effect occurs when high-guidance instruction benefits 
low-knowledgeable students but disadvantages students with higher prior 
knowledge. In this case, high-knowledgeable students may benefit more 
from less-guided instruction, including autonomous problem solving 
(Renkl, 2017). As a consequence, video producers need to consider their 
target audience carefully, but it will not be  possible to produce an 
explanation that is suitable for all students. Moreover, a heuristic proof 
video necessarily results in a video that is longer than a proof video. Not 
only is an explanation that is perceived as efficient important to students 
(see Sect. 2.2), but the length of the video may impair student engagement. 
In their study, Guo et al. (2014) found that in the context of a Massive 
Open Online Course (MOOC), students watched videos for a median of 
6 min, regardless of the total video length, and were less likely to engage 
in follow-up problems as the video length increased. Therefore, video 
producers should aim to keep videos as short as possible.

2.3.3 Prompted proof videos
A prompted proof video is identical to a proof video but automatically 

stops at predetermined points to present self-explanation prompts. 
Compared to justification prompts, which aim to direct students to 
generate a conceptual justification for a single step, step-focused prompts 
(Nokes et al., 2011) or procedural prompts (Rittle-Johnson et al., 2017) 
are used to focus students’ attention on how to approach the proof 
construction process. Focusing students on such structural features of a 
problem allows them to generalize this knowledge to different problems 
(Rittle-Johnson et al., 2017), which has been evident in a study in the 
context of heuristic examples on proof construction: Prompting the 
phases of proof construction while undergraduates studied heuristic 
examples was shown to have a positive effect on proof construction and 
knowledge about the proving process (Hilbert et al., 2008). In that way, 
prompting students to self-explain how each phase of proof construction 
was conducted in a specific example offers learning opportunities for 
meta-knowledge on how to approach proofs and for activities that help 
during each phase. Compared to the heuristic proof video, students are 
prompted for these explanations instead of having these explanations 
provided for them. Such a use of prompts represents an activity that helps 
shift the video from being a passive-receptive medium to one that 
students actively engage with, which is important when designing 
instructional videos (Fiorella, 2021; Ploetzner, 2022). However, the 
effectiveness of integrating prompts within instructional videos may 
depend on students’ prior knowledge (Bai et al., 2022) and the quality of 
self-explanations (Hefter et al., 2023).

2.4 Aim and research questions

Previous studies have shown that undergraduate mathematics 
students have difficulty comprehending and constructing proofs 

(Gueudet and Thomas, 2020). To support students, presenting proofs 
to students in lectures is a common teaching approach in 
undergraduate mathematics education (Melhuish et  al., 2022). In 
recent years, more attention has been paid to the use of instructional 
videos for teaching and learning mathematics (Cevikbas and Kaiser, 
2023; Winsløw et al., 2023). Advantages of instructional videos include 
that explanations can be replayed and that students find them helpful 
and motivating (Kay, 2012). Previous research on instructional videos 
in undergraduate mathematics (e.g., Kay and Kletskin, 2012; Weinberg 
and Thomas, 2018) has mainly focused on instructional videos in 
more algorithmic domains. However, there is limited understanding 
of how to effectively design instructional videos for presenting proofs 
and what role such videos play in students’ learning processes.

The present study seeks to address this research gap by comparing 
the three proposed video types (see Sect. 2.3), which are based on 
research on supporting students with proof and instructional video 
design. Specifically, we were interested in the potential of the videos 
types (i) for students to gain a mathematical insight that is reflected 
by local and holistic proof comprehension in the sense of Mejía-
Ramos et al. (2012) (see Sect. 2.1.1) and (ii) to address knowledge 
needed for proof construction.

Therefore, the following research questions were investigated:

RQ1 (proof comprehension): Do students show different levels of 
proof comprehension after working with a proof video, a heuristic 
proof video, or a prompted proof video?

RQ2 (knowledge for proof construction): What kind of knowledge 
for proof construction do students indicate after watching a proof 
video, a heuristic proof video, or a prompted proof video?

Although we  did not have a specific expectation regarding the 
differences in proof comprehension, because all three video types 
presented the same proof, we  wondered whether the additional 
information included in the heuristic proof video would hinder students’ 
concentration (Guo et al., 2014), such that they would be distracted from 
comprehending the proof. On the other hand, due to the heuristic proof 
video’s additional information on proof construction and because this 
knowledge is prompted in the prompted proof video, we  expected 
students to indicate different kinds of knowledge for proof construction.

Since students are the targets for this measure of support, we were 
also interested in their evaluative perceptions of the proposed video types, 
because these may affect their will to engage with a digital resource 
(Engelbrecht et al., 2020). We therefore addressed a third research question:

RQ3 (evaluative perceptions): Do the students’ evaluative 
perceptions measured as the satisfaction with the video and the 
perceived video quality differ depending on watching a proof video, 
a heuristic proof video, or a prompted proof video?

3 Materials and methods

3.1 The flipped proof-based classroom

To compare the three video types, we conducted a study in a first-
semester proof-based linear algebra course at one of the largest 
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universities in Germany. As it is common in first year mathematics in 
Germany, constructing proofs and mathematical content are learnt 
simultaneously (e.g., Rach and Ufer, 2020). Therefore, along with 
learning about proof construction, on the content level students learn 
about the basics of linear algebra, such as vector spaces, linear mappings, 
matrices, and eigenvalues.

Each week of the 14-weeks course consists of two 2-h lectures; 
corresponding homework, in which students work on proof construction 
tasks in teams of three; and a 2-h tutorial that reviews the homework and 
the lectures taught by (under)graduate mathematics tutors. Because the 
original tutorial sessions had mostly been spent on a lecture-style review 
of the homework without much active engagement from students (Serpé, 
2020), a flipped classroom was implemented. The implementation 
followed the principles to “(1) move most information-transmission 
teaching out of class (2) use class time for learning activities that are active 
and social and (3) require students to complete pre-and/or post-class 
activities to fully benefit from in-class work” (Abeysekera and Dawson, 
2015, p. 3). With the introduction of the flipped classroom, the tutorial 
session has since been primarily used to prepare students for their 
homework by revising concepts taught in the lecture through small group 
work, classroom discussions, and student-led presentations. In this 
flipped classroom context, our study aimed to assess the information-
transmission part of the teaching, which was provided in the instructional 
videos on proofs that students watched at home to review their homework.

3.2 Participants and design

Using a between-subjects design (see Figure 2), we compared 
three videos that presented the solution to a proof construction 

task. The videos were produced by a graduate mathematics tutor 
and corresponded to the above-described proof videos, heuristic 
proof videos, and prompted proof videos. The study sample was 
generated by convenience sampling. Students enrolled in the first-
semester course described in Sect. 3.1 solved the task during week 
8 of the semester as part of their weekly homework. Therefore 
(most) students had some exposure to the statement that was to 
be proven before watching the video.

The instructional videos and questionnaires were made 
available through the university-based learning management 
system. All students enrolled in the linear algebra course were 
randomly assigned to one of the three videos and invited to 
participate on a voluntary basis. The students were given up to 
25 min to work with their assigned video and were instructed not 
to interrupt the process. After the completion of the study, all 
videos were made available to all students.

The study sample consisted of 177 students. The first-semester 
linear algebra course is compulsory for mathematics bachelor 
students and future upper-secondary level mathematics teachers, 
while it is optional for computer science, physics, or geoinformatics 
students. The students’ mean high school GPA was 1.68 
(SD = 0.53), with the best possible GPA in Germany for obtaining 
a high school-leaving certificate being 1.0 and the lowest being 4.0.

3.3 Materials

3.3.1 Proof construction task
The proof construction task that the videos reviewed is presented 

in Figure 3. To construct the proof, students needed to recall that it is 

FIGURE 2

Study design.

FIGURE 3

The proof construction task.
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often helpful to prove the implication and the converse separately (proof 
framework). Moreover, a common technique for proving that a k-linear 
map is injective is to show that the kernel consists only of the zero 
vector. Realizing how and why theorems like this are helpful for 
constructing proofs is often challenging for students (Weber, 2001). In 
addition, the task demands familiarity with several definitions and 
concepts introduced in linear algebra, particularly bases of vector 
spaces, k-linear maps, injective maps, and linear independence. Thus, 
this task included several of the aforementioned challenges that students 
face when constructing proofs in linear algebra.

3.3.2 Instructional videos
The three videos were produced as screencasts and constructed 

the same proof for the task in Figure  3. The proof video 
(Supplementary material Video 1) and the heuristic proof video 
(Supplementary material Video 2) including English subtitles are 
available as Supplementary material. Figure 1 shows how the different 
design choices concerning each video were implemented.

The proof video (background of Figure  1) conducted the 
mathematical steps to construct the proof by implicitly following the 
phases of undergraduates’ proving processes (Kirsten, 2018, 2021).

The heuristic proof video, in addition, explicitly named these 
phases and the activities applied in each phase (blue part of Figure 1). 
In the beginning, it gave an overview of the steps (minutes 0:22–
1:24  in the heuristic proof video) and it provided insight into the 
decision-making process when required (e.g., minutes 4:04–5:43 in 
the heuristic proof video).

The prompted proof video was identical to the proof video but 
automatically stopped after each of the (implicitly followed) three 
phases of the proving process. For example, after the phase of 
understanding (minute 1:47 in the proof video), students were 
asked to “Describe in your own words how the process of 
understanding the task was carried out” (green part of Figure 1). 
Prompts for the phases of identifying and structuring arguments 
(minute 4:31 in the proof video) as well as formulating the proof 
(minute 7:29 in the proof video) were devised accordingly. Each 
prompt was displayed until students were satisfied that they had 
sufficiently answered a prompt and continued the video by 
pressing play.

The length of the proof video was 7:34 min, and that of the 
heuristic proof video was 13:39 min.

3.4 Measures

Various measures were assessed at two time points (see 
Figure 2). Prior to watching the assigned video, the students filled 
in the points they had achieved in the proof construction 
homework task (up to 8 points) and were asked to rate how much 
they contributed to the solution relative to their two homework 
partners (as a percentage). Both pieces of information were used 
as a measure of prior knowledge and to conduct a randomization 
check. We assessed the time points right before and after they 
watched their assigned videos to determine whether students had 
exceeded 25 min and to assess differences in the time students 
spent watching their assigned video. Of particular interest was the 
influence of the prompts, and because of these additional 
elements, it was assumed that students would spend more time 
watching the prompted proof video than the proof video. After 
watching the videos, we measured students’ proof comprehension, 
knowledge for proof construction, and evaluative perceptions of 
the videos.

3.4.1 Proof comprehension
Similar to other studies (e.g., Roy et al., 2017), we employed 

a short test based on the assessment model for proof 
comprehension by Mejía-Ramos et al. (2012) with three items 
targeting the local level and two targeting the holistic level of 
proof comprehension (see Supplementary materials Data Sheet 1 
for all five items). To validate the test, two mathematicians 
evaluated the suitability of the multiple-choice items regarding 
the presented proof; further, we  ensured items were 
understandable via conducting cognitive interviews with four 
undergraduate students. On the test, each item had four answer 
options, of which one or several were correct, and each item also 
had an “I don’t know” option (see Figure 4). To account for the 
complexity of the items, we used a partial credit scoring system 
(0, 0.5, and 1 point). Each item was used to assess different facets 
of knowledge and understanding.

3.4.2 Knowledge for proof construction
To assess the knowledge for proof construction students 

indicated, we  used the following open item: “In the video, 
different strategies were mentioned (explicitly or implicitly) on 

FIGURE 4

Sample item from the proof comprehension test targeting the local dimension justifying claims (Mejía-Ramos et al., 2012).
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how to approach proving tasks. Please name all the strategies 
you can remember.” We used an open item to allow for a wide 
range of responses (including unanticipated ones). The objective 
was to gain nuanced insights into aspects that students considered 
to be strategies for approaching proof construction tasks.

3.4.3 Evaluative perceptions
To measure students’ evaluative perceptions of the videos, 

we assessed satisfaction with the video and perceived video quality. 
The characteristic values of the individual scales are shown in 
Table 1.

To measure the students’ satisfaction with their assigned video, 
we used an adapted version of the satisfaction with taught content 
scale (ZSI; Schiefele and Jacob-Ebbinghaus, 2006). Students 
evaluated the learning opportunity relative to their expectations 
and demands.

To assess the video quality, we used three items from the item pool 
for instructional quality based on the PaLea scale (Kauper et al., 2012). 
Students rated how comprehensible they found their assigned video. 
Three additional items were developed according to the design choices 
to determine whether the students thought the inserted information, 
the structure, and the written comments were helpful.

3.5 Data analysis

To conduct the preliminary analyses and to answer RQ1 and RQ3, 
we used parametric tests [one-way analysis of variance (ANOVA) and 
multivariate analysis of variance (MANOVA)]. The homogeneity of 
variances was tested using Levene’s test (p > 0.05). Kolmogorov–
Smirnov tests revealed non-normal score distributions for some 
measures, but because of the sample size and because there were no 
outliers in the distributions, parametric tests could still be employed 
(cf. Rasch and Guiard, 2004). For the multivariate analyses, the 
homogeneity of variance–covariance matrices was tested using Box’s 
M test (p > 0.001; Verma, 2015).

To identify the different facets of knowledge for proof 
construction that students had extracted from their assigned videos 

(RQ2), their answers were segmented and coded. The data-driven 
development of categories followed the principles of qualitative 
content analysis (Kuckartz, 2019). The related themes that emerged 
were summarized as categories, and these categories were 
continuously systemized and organized. The final category system 
is presented in Table 2. All data were coded by the first and second 
author, yielding a very good interrater reliability (Cohen’s κ 0.91–
0.96; Landis and Koch, 1977).

4 Results

First, we checked whether students had exceeded the time limit of 
25 min for watching their assigned video; 14 students exceeded this 
limit and were excluded, leaving 163 students included in the analysis 
(see Figure 2).

Second, as a check for randomization, we compared the extent to 
which students had engaged with the proof construction task prior to the 
video (assessed by the points they received in the homework and the 
proportion they said they contributed to the solution) with a MANOVA 
in which the assigned video was the factor. The results showed no 
significant differences between the video groups [F(4,122) = 0.58, p = 0.68, 
Wilks’s Λ = 0.96]. Table 3 presents the descriptive statistics for the three 
video groups and shows, in particular, that the proportion students said 
they contributed to the solution varied largely in all video groups.

Third, we used an ANOVA to check whether the time spent 
watching the video differed between the groups. As such, the 
dependent variable was the time spent watching the video, and 
the factor was the assigned video. We  found a significant 
difference between the groups [F(2,160) = 10.84, p < 0.001, partial 
η² = 0.12], corresponding to a medium effect (Cohen, 1988). Post 
hoc tests using the Bonferroni correction revealed that the 
heuristic proof video group (M  = 14.51, SD = 4.08) spent 
significantly more time watching the video than the proof video 
group (M = 11.05, SD = 3.91, p < 0.001) and the prompted proof 
video group (M = 12.24, SD = 3.79, p = 0.01). No significant 
difference was found between the proof video and the prompted 
proof video groups (p = 0.34).

TABLE 1 Overview of the characteristic values of scales on students’ evaluative perceptions.

Sample item Value # Items α
Satisfaction “I am so satisfied with the video that I would watch more such videos.” 1–4 4 0.86

Video quality “I can easily follow the line of thought in the video at any time.”

“The structure of the video supports my understanding.”

1–4 6 0.84

TABLE 2 Categories related to the students’ stated knowledge for proof construction.

Category Description

Knowledge on proof methods

 Applicable Students named a proof method that was applied in the task.

 Non-applicable Students named a proof method that was not applied in the task.

Meta-knowledge Students indicated on a meta-level how proof construction tasks can be approached.

Knowledge on process-related activities Students referred to an activity that supported one phase of proof construction.

Domain-specific knowledge Students described domain-specific knowledge that was helpful for proof construction.

Not indicated Students indicated that they did not know.
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4.1 Proof comprehension

We excluded six students from the proof comprehension analysis 
due to missing values in the proof comprehension test. To explore 
whether differences in proof comprehension appeared across the 
video groups, we conducted an ANOVA; it revealed no significant 
differences between the video groups [F(2,154) = .90, p = 0.41]. The 
mean score for proof comprehension was rather low (M = 1.94, 
SD = 1.19). However, the descriptive analysis revealed that the solution 
rates for the local level of proof comprehension tended to be higher 
than those for the holistic level (see Table 4).

4.2 Knowledge for proof construction

When asked to name all the strategies on how to approach 
proving tasks that had been (explicitly or implicitly) mentioned in 
the videos, students referred to various aspects (see Table  2). 
Knowledge on proof methods refers to proof methods that were 
either applicable (direct proof or demonstrating the equivalence 
by showing the implication and converse) or were not applied 
within the video, such as mathematical induction or proof 
by contradiction.

Meta-knowledge consists of knowledge on how the proof 
construction task was approached on a global level, for example:

Student: Understand, look up theorems, definitions, etc., and 
consider which are applicable and then apply. Then formulate 
the proof.

When referring to knowledge on process-related activities, students 
stated activities that had been helpful in a certain phase of proof 
construction; for instance, in the phase of understanding, a stated 
activity might be taking notes on the premise and the claim, which 
could help the student identify the goal of the task. For both 
understanding and identifying arguments, a helpful activity might 

be  familiarizing oneself with the definitions and concepts that 
emerged from the task, as the following answer illustrates:

Student: For initial understanding, you should also take notes on any 
helpful theorems, examples, etc., from the lecture that might fit here.

Concerning domain-specific knowledge, students referred to the 
theorem that a k-linear map is injective if and only if the kernel 
consists of the zero vector. Using this theorem is a common proof 
technique within the domain.

Comments stating that the students did not know were categorized 
as not indicated.

All in all, students’ answers contained 259 references to aspects 
indicating knowledge for proof construction. The students in the 
proof video group referred to, on average, 1.5 aspects, those in the 
heuristic proof video group to 1.8 aspects, and those in the prompted 
proof video group to 1.7 aspects. Students in all groups gave responses 
related to all aspects, although students in the heuristic proof video 
group did not refer to domain-specific knowledge (see Figure 5).

Overall, we found a significant association between the video group 
and the types of knowledge [χ2 (10) = 74.88, p < 0.001]. Note that the 
category domain-specific knowledge was excluded from this and the 
following tests because a cell frequency was zero. Post hoc pairwise tests 
with the Bonferroni correction indicated significant pairwise differences 
between the heuristic proof video group and the other two groups [χ2 
(5) > 39.93, p < 0.001].

A significant association was found between knowledge on applicable 
proof methods and the video group [χ2 (2) = 9.25, p = 0.01], suggesting that 
the heuristic proof video group referred less frequently to applicable proof 
methods. Moreover, a significant association was found between meta-
knowledge and the video group [χ2 (2) = 50.84, p < 0.001], indicating that 
the heuristic proof video group stated meta-knowledge more often than 
the other two groups. No significant associations were found between the 
video group and other types of knowledge.

Over 40% of the answers in the proof video group could 
be considered evasive, since students referred to non-applicable proof 

TABLE 3 Means and standard deviations (in parentheses) of the variables included in the preliminary analysis.

Proof video Heuristic proof video Prompted proof video

Achieved points (0–8) 5.56 (1.90) 5.59 (1.95) 5.80 (1.76)

Own proportion (%) 43.93 (34.15) 37.17 (29.57) 40.74 (30.71)

Time spent (0–25) 11.05 (3.91) 14.51 (4.08) 12.24 (3.79)

TABLE 4 Means and standard deviations (in parentheses) for each item of the proof comprehension test based on the assessment model by Mejía-
Ramos et al. (2012).

Item of proof comprehension Proof video Heuristic proof video Prompted proof video

Local

(1) Justifying claims 0.63 (0.49) 0.60 (0.50) 0.68 (0.47)

(2) Understanding the meaning of terms and statements 0.19 (0.28) 0.28 (0.38) 0.31 (0.40)

(3) Justifying claims 0.48 (0.50) 0.54 (0.50) 0.55 (0.50)

Holistic

(4) Summarizing the high-level idea/transferring a 

method
0.19 (0.31) 0.20 (0.34) 0.15 (0.30)

(5) Summarizing the high-level idea/transferring a 

method
0.28 (0.45) 0.34 (0.48) 0.40 (0.49)

1.78 (1.09) 1.96 (1.13) 2.09 (1.34)

https://doi.org/10.3389/feduc.2024.1438355
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Wirth et al. 10.3389/feduc.2024.1438355

Frontiers in Education 10 frontiersin.org

methods or indicated nothing. Other than that, students in this group 
offered applicable proof methods most frequently.

Besides the frequently mentioned meta-knowledge in the 
heuristic proof video group, knowledge on process-related activities 
was an important theme. This was also the most frequently mentioned 
type of knowledge in the prompted proof video group. By contrast, 
domain-specific knowledge was only mentioned to a small extent by 
students in the proof video and the prompted proof video groups (and 
not at all in the heuristic proof video group), thus it was not prevalent.

4.3 Evaluative perceptions

On the scales for assessing students’ evaluative perceptions 
(satisfaction with the video and perceived video quality), eight students 
had missing values and were excluded from the analysis. To determine 
whether students perceived their assigned video differently measured 
as the satisfaction with the video and the perceived video quality, 
we  conducted a MANOVA with the assigned video as the factor. 
We found a significant difference between the groups [F(4,302) = 4.06, 
p = 0.003, partial η² = .05,Wilks’s Λ = 0.90], corresponding to a small 
effect (Cohen, 1988). Post hoc tests using the Bonferroni correction 
revealed that students in the heuristic proof video group were more 
satisfied with their assigned video (M = 3.21, SD = 0.65) than those in 
the proof video group (M = 2.77, SD = 0.65, p = 0.002) or the prompted 
proof video group (M = 2.81, SD = 0.65, p = 0.006). Moreover, students 
who watched the heuristic proof video rated the video quality higher 

(M= 3.42, SD = 0.48) than those watching the proof video (M = 3.07, 
SD = 0.58, p = 0.003) or the prompted proof video (M = 3.09, SD = 0.51, 
p = 0.007). No significant differences were found between the proof 
video and the prompted proof video groups in terms of satisfaction 
(p = 0.99) and video quality (p = 0.99). Table 5 presents the descriptive 
statistics and highlights that, despite the differences, students rated 
satisfaction and video quality relatively highly in all the groups.

5 Discussion

Despite the widespread use of instructional videos in flipped 
undergraduate classrooms, little is known about how to design videos that 
present proofs in ways that support students in comprehending and 
constructing proofs. Therefore, we theoretically derived three video types 
by combining research on how to support students with proofs and 
research on instructional videos. We then investigated their potentialities 
regarding proof comprehension, knowledge for proof construction, and 
evaluative perceptions of the videos in a flipped proof-based linear 
algebra classroom.

5.1 Proof comprehension

The results on proof comprehension revealed no statistically 
significant differences between the three video groups. This finding is 
encouraging because it suggests that additional elements targeting 

FIGURE 5

Type of knowledge corresponding to the three video groups (relative to the number of coded segments within each group).

TABLE 5 Means and standard deviations (in parentheses) of students’ evaluative perceptions in terms of satisfaction and rated video quality.

Proof video Heuristic proof video Prompted proof video

Satisfaction (1–4) 2.77 (0.65) 3.21 (0.65) 2.81 (0.65)

Video quality (1–4) 3.07 (0.58) 3.42 (0.48) 3.09 (0.51)
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knowledge on proof construction did not hinder concentration in such 
a way that students were distracted from comprehending the proof. In 
particular, we were concerned that the length of the heuristic proof video, 
which was approximately twice as long as the other videos and well over 
6 min, might have impeded engagement (Guo et al., 2014), but this was 
not the case.

While in this study proof comprehension can be  treated as a 
one-dimensional construct, overall, we  found that students scored 
better on the local level of proof comprehension than on the holistic 
level. This finding may have occurred because all videos showed a step-
by-step explanation that focused on the local level of the proof. 
Moreover, the audio explanation and some visual explanations to 
retrospectively retrace individual steps were transient, such that 
students might not have had an overview of the complete proof. As in 
other studies on instructional videos in undergraduate mathematics 
(Weinberg and Thomas, 2018), students may have been unable to 
monitor their understanding, potentially because they perceived the 
proof presentation as “easy” (Salomon, 1984), which is one risk when 
using videos.

As students scored rather low overall on the proof comprehension 
test, measures of support are necessary to support proof comprehension. 
For example, integrating pauses at key steps might help students handle 
the transient information (Spanjers et al., 2012; Biard et al., 2018), and a 
review at the end might help them gain an overview of the proof 
presented. Additionally, the students might have needed to be more 
actively involved to comprehend the proof because, particularly for the 
holistic level of proof comprehension, they had to make inferences by 
themselves. Although the students had already been working with video 
proof presentations for 8 weeks, they might not yet have possessed 
beneficial strategies for profiting from this format. Thus, such strategies 
could be  discussed during the in-class component, offering a self-
explanation training that aims to have students explain each step of the 
proof (Hodds et al., 2014). Finally, the prompts used in this study focused 
students on the steps of proof construction. In order to focus students 
more on comprehending the proof, justification prompts, such as 
prompting students to identify the justification for different steps, could 
be used (Nokes et al., 2011). Similarly, the heuristic proof video focused 
more on explaining the different steps of proof construction and what 
those steps entail, and less on comprehending the product of that process. 
Therefore, it may need a heuristic proof video on comprehending a 
presented proof, if proof comprehension and not learning about proof 
construction is the predominant goal of a video.

All in all, these results must be interpreted with caution because the 
proof comprehension test was quite short. However, this limitation was 
helpful to keep the test duration short and motivate students 
to participate.

5.2 Knowledge for proof construction

One of our research questions was to determine what knowledge 
for proof construction students indicated after watching their assigned 
video. This was of particular interest because the heuristic proof video 
explicitly stated key knowledge for proof construction and focused on 
the decision-making process, while the prompted proof video aimed 
to have students reflect on that knowledge through prompts.

Students’ answers were categorized as different types of 
knowledge, namely knowledge on applicable and non-applicable proof 

methods, meta-knowledge, knowledge on process-related activities, and 
(although not often mentioned) domain-specific knowledge.

The results suggest that students who watched the heuristic proof 
video indicated knowledge about the proving process (meta-knowledge). 
Meta-knowledge can be considered important for proof construction 
because knowing that different phases of proof construction exist 
addresses the misconception that proofs are linearly constructed 
(Selden and Selden, 2008), and knowledge about the different phases 
may guide the process of proving. In line with studies on text-based 
heuristic examples (Hilbert et al., 2008), heuristic examples presented 
as videos can also offer knowledge about the proving process.

Students’ indication of knowledge on process-related activities, 
which are helpful in different phases of the proving process (Schoenfeld, 
1985), was comparable in the heuristic and the prompted proof video 
groups. Yet, students in the prompted proof video group spent less time 
watching the video than students in the heuristic proof video group 
(and a similar amount of time as students in the proof video group), 
such that the prompted proof video may offer advantages when the 
central learning goal is to offer knowledge on process-related activities.

Overall, it is important to consider that our study included no 
pre-test on knowledge for proof construction, so we cannot provide 
information about knowledge gains but we can describe differences in 
students’ indicated knowledge according to their assigned video. 
Further, to fully capture the influence of the video types on students’ 
knowledge for proof construction, additional studies will need to 
investigate the extent to which students can apply that knowledge in 
proof construction tasks.

5.3 Evaluative perceptions

We found that students generally perceived all the videos positively. 
This is encouraging, because students need to positively perceive a 
learning resource to engage with it (Engelbrecht et al., 2020). This is 
especially important in flipped classrooms, because not engaging with 
the out-of-class component may hinder a student’s ability and 
performance during the in-class component (Cevikbas and Kaiser, 2023).

Regarding whether students’ evaluative perceptions differed for 
the three video types, we found that those in the heuristic proof video 
group had a more positive perception of their assigned video, as 
measured by their satisfaction and evaluation of video quality. This 
result is notable given that the heuristic proof video was almost twice 
as long as the other two videos, and students generally prefer videos to 
be as short and efficient as possible (Shoufan, 2019). Therefore, despite 
its longer length, students seemed to appreciate that this video made 
strategic elements explicit, and they did not find this content redundant.

5.4 Limitations

This study represents a first step toward enhancing knowledge about 
three different video formats that can be used to present proofs, especially 
in the context of a flipped proof-based classroom. Because we do not 
know how students actually engaged and worked with their assigned 
videos, additional qualitative studies would help to develop a fuller picture 
of each video type. Such studies would be required to examine students’ 
study habits (e.g., pausing, rewinding, and taking notes). Particular 
attention should be paid to the extent to which students engage with the 
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prompts and to the quality of their self-explanations, especially since 
students did not spend significantly more time watching the prompted 
proof video than the proof video. In addition, in this flipped classroom 
design the in-class component is (currently) used to prepare students for 
solving their homework (see Sect. 3.1), but some of this in-class time 
might be better spent by providing support measures to help students 
comprehend proofs. Specifically, more in-class time could be used to 
discuss and practice strategies that students can apply while watching 
proof presentation videos to gain the most benefit from them.

All in all, when interpreting the data, it is important to consider 
that our study examined instructional videos that presented only 
one proof. This allowed us to thoroughly investigate students’ proof 
comprehension, knowledge for proof construction, and evaluative 
perceptions of the videos for a characteristic problem in 
undergraduate linear algebra. To better understand the use of the 
proposed video types, further studies will need to investigate 
problems on other concepts or domains. Such studies could build 
on the proposed video design. The proof construction phases and 
the activities displayed in the video were used in the context of 
linear algebra, but are not specifically limited to this domain. 
Moreover, it is important to bear in mind that convenience sampling 
was used, considering a relatively small sample of first-semester 
students from a German university. The chosen sampling procedure 
carries limitations in terms of generalizability. However, teaching 
about proofs through presenting proofs is a common teaching 
method in mathematics courses internationally (Melhuish et al., 
2022). In addition, the difficulties related to proofs that the videos 
used in this study addressed are widely reported (Stylianides et al., 
2017; Gueudet and Thomas, 2020). Therefore, similar results may 
be expected for different student populations. Overall, the study 
conducted provides initial insights into the design of instructional 
videos that address students’ difficulties, and further studies can 
build on the present study to examine such videos in their 
respective settings.

6 Conclusion

Overall, we found that students in a flipped proof-based linear 
algebra classroom perceived proof videos, heuristic proof videos, and 
prompted proof videos positively.

The heuristic proof video group showed encouraging results 
regarding meta-knowledge on proof construction and knowledge on 
process-related activities, indicating that this video type, though longer 
than the others, may be beneficial, especially at the beginning of proof-
based courses. This claim is further supported by the fact that students 
perceived this video type more positively than the other two types.

Along with the heuristic proof video, the prompted proof video 
also focused students’ attention on process-related activities. If 
knowledge on these activities is the goal of the video, then the 
prompts used, which were easy to implement, seem to give this video 
type an advantage over the proof video, which required a comparable 
amount of time, and the heuristic proof video, which required more 
time. Thus, the prompted proof video might be suitable at later steps 
of proof-based courses.

However, regardless of the video type used, particular attention 
should focus on providing students with learning opportunities to 
apply their knowledge for proof construction and to discuss and 
practice strategies that foster proof comprehension. When instructional 

videos presenting proofs are used in flipped proof-based classrooms, 
additional support could be implemented as an in-class component.
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