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Background: As the intersection of artificial intelligence (AI) and education 
deepens, predictive analytics using machine learning (ML) and deep learning 
(DL) models offer novel approaches to assessing student performance in 
online environments. However, challenges remain in accurately predicting 
high achievers and identifying students at risk due to limitations in traditional 
assessment models. This study explores the capabilities of these models in 
predicting academic achievement and highlights their potential role in reshaping 
educational assessment paradigms.

Objectives: To evaluate the efficacy of various AI models—including Random 
Forest, XGBoost, and recurrent neural networks (RNNs)—in identifying at-risk 
students and differentiating levels of academic achievement, with an emphasis 
on inclusive and adaptive educational assessments. A key focus is on leveraging 
these models to create more inclusive and adaptive educational assessments.

Methods: We analyzed a dataset comprising interaction data from the Open 
University Learning Analytics Dataset (OULAD), which includes clickstream 
data on student interactions with course materials from over 32,000 students. 
The models were trained and evaluated using performance metrics such as 
accuracy, precision, recall, and F1-scores, specifically targeting predictions of 
student withdrawals and distinctions.

Results: The models effectively identified students at risk of withdrawing, with 
the Random Forest model achieving an accuracy of 78.68% and deep learning 
models approximately 77%. However, accurately predicting high achievers 
posed challenges, suggesting a complex relationship between interaction data 
and academic success. This limitation underscores the need for more nuanced 
modeling approaches to improve predictions for top-performing students.

Conclusion: This research demonstrates the promise of AI-driven models in 
enhancing educational assessments while also highlighting current limitations 
in capturing academic excellence. Our findings indicate a need for ongoing 
development of AI tools that are ethically designed and capable of supporting 
dynamic, inclusive assessment strategies. Future research should focus on 
incorporating additional factors, such as student motivation and study behaviors, to 
enhance predictive accuracy, particularly for high achievers. Such advancements 
can contribute to a more equitable and effective educational landscape.
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1 Introduction

In the 21st century, technological advancements have 
revolutionized various sectors, including education. Online learning 
platforms present unique opportunities to assess and predict student 
performance, yet challenges remain in accurately identifying at-risk 
and high-achieving students in these virtual environments. These 
platforms offer flexible learning opportunities, making education 
accessible to individuals in remote and developing regions who might 
otherwise be unable to attend traditional university classes in person 
(Zhou et al., 2020; Nguyen et al., 2021).

One of the key advantages of online learning platforms is their 
ability to generate and store vast amounts of student learning data. 
This data is a valuable resource for educational research, enabling the 
analysis of learning behaviors and outcomes (Dahdouh et al., 2018; 
Hernández et al., 2019). Learning Management Systems (LMS) play a 
crucial role in this context by facilitating the collection of data on 
student activities and interactions within the online learning 
environment (Macfadyen and Dawson, 2010). LMSs are equipped to 
track and record detailed logs of student behaviors, which can then 
be analyzed by early warning systems to assess learning performance, 
identify students at risk of failure, and provide timely feedback and 
support (Kotsiantis et al., 2010; Lust et al., 2013).

Educational Data Mining (EDM) has emerged as a powerful 
approach for analyzing educational big data, utilizing techniques from 
machine learning, statistics, and cognitive psychology to address 
various educational challenges (Hashim et al., 2020). Studies have 
demonstrated that data from LMSs, such as logs of online activities, 
can be leveraged to predict student performance and identify at-risk 
students (Macfadyen and Dawson, 2010; Bulut et al., 2022). Studies 
have addressed these challenges through regression problems, which 
predict performance scores, and classification problems, which predict 
whether a student will pass, fail, or drop out.

Student behavior in online learning platforms differs from traditional 
classroom settings, where motivation plays a crucial role in performance 
(Davis et al., 2014). Numerous studies have identified various factors 
contributing to student performance, with time and instructor support 
being significant in online platforms (Fidalgo-Blanco et al., 2015; Hone 
and El Said, 2016; Khan et al., 2018). Additionally, predicting students’ 
grades for future courses has been explored, with models leveraging past 
course performance and initial assessments showing significant 
correlations (Marbouti et al., 2016; Hlosta et al., 2017).

Recent research in EDM has provided valuable insights into 
factors influencing student performance. For example, studies by 
Wardat et al. (2023) examined the impact of student characteristics 
on academic success, AlAli et  al. (2024) evaluated Science, 
Technology, Engineering, and Mathematics (STEM) aligned teaching 

practices for gifted learners, and Khalil et  al. (2023) explored 
strategies to enhance mathematical writing skills. These studies 
highlight the diverse applications of EDM in improving educational 
outcomes and addressing the complexities of modern 
educational settings.

Machine learning techniques, such as Random Forests and logistic 
regression, are frequently employed in these predictive models due to 
their robustness and ability to handle complex datasets while 
providing interpretable results (Marbouti et al., 2015; Leitner et al., 
2017; Adnan et al., 2021). The integration of deep learning techniques 
into learning analytics is emerging, with studies demonstrating the 
effectiveness of neural networks in predicting student performance, 
assessing student progress, and recognizing patterns in educational 
(Fei and Yeung, 2015; Coelho and Silveira, 2017; Okubo et al., 2017; 
Alboukaey et al., 2020). Deep learning methods like Convolutional 
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) 
have shown promise in various applications, including image 
processing, handwriting recognition, and natural language processing 
(Xiang et al., 2020; Yıldırım et al., 2020; Raj et al., 2021).

Despite the progress, significant gaps remain in the application of 
EDM to online learning environments and current methods often fall 
short in predicting high achievers and require more nuanced models 
to effectively capture complex engagement patterns. Previous studies 
have predominantly focused on traditional classroom settings, with 
limited exploration of comprehensive LMS data detailing every 
student (Riestra-González et al., 2021; Hooda et al., 2022). This study 
aims to bridge this gap by utilizing click data from online courses to 
predict student academic performance and develop early warning 
systems. Specifically, we investigate how data mining methodologies 
can effectively forecast student learning outcomes using click data in 
a fully virtual course.

Our study addresses this gap by applying robust AI models suited 
for analyzing intricate student data. This research involves a substantial 
cohort of students enrolled in various online courses at the Open 
University United Kingdom (OUUK). We analyze click data collected 
throughout the course duration to construct predictive models for 
identifying students at risk and also high-achieving students. By 
examining the impact of click variables on academic performance, 
we aim to develop reliable prediction models for an early warning 
system using different classification algorithms. In conclusion, this 
study aims to evaluate the predictive power of AI models to support 
early interventions, contributing to more inclusive and adaptive 
assessment strategies in online education.

The rest of this paper is structured as follows. In Section 2, 
we delve into prior research on the evolution of LMS and EDM. Section 
3 outlines the methodologies employed to construct the early warning 
model and the data collection process. Section 4 presents the 
experimental outcomes of the classification systems. Section 5 
discusses the development and assessment of the system. Finally, 
Section 6 concludes the study.

2 Methods

2.1 Dataset

This study utilizes the Open University Learning Analytics 
Dataset (OULAD), which provides a rich source of data on student 

Abbreviations: AI, Artificial Intelligence; ML, Machine Learning; DL, Deep Learning; 

EDM, Educational Data Mining; LMS, Learning Management System; OULAD, 

Open University Learning Analytics Dataset; RF, Random Forest; RNN, Recurrent 

Neural Network; XGBoost, Extreme Gradient Boosting; GBM, Gradient Boosting 

Machine; CNN, Convolutional Neural Network; ANN, Artificial Neural Network; 

MSE, Mean Squared Error; F1-Score, Harmonic mean of precision and recall, used 

to measure model accuracy; CV, Cross-Validation; STEM, Science, Technology, 

Engineering, and Mathematics; PCA, Principal Component Analysis; ODL, Open 

Distance Learning.
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interactions within an online learning environment (Kuzilek et al., 
2017). The OULAD dataset includes information on student 
demographics, course structure, assessments, and interactions with 
the virtual learning environment (VLE). The dataset encompasses the 
following key components:

 • Student information includes details on student demographics, 
such as age, gender, and highest education/educational 
background. This information is crucial for understanding the 
diverse student population and analyzing how different 
demographic factors may influence learning behaviors 
and outcomes.

 • Course information provides data on the course structure, 
including modules, assessments, and learning materials. It offers 
insights into the educational content and how it is organized, 
which is essential for understanding the context in which 
students are learning.

 • VLE interactions captures logs of student interactions with the 
virtual learning environment. These logs record every click and 
interaction a student has within the online platform, providing 
invaluable data for analyzing learning behaviors and identifying 
patterns that correlate with academic performance. This 
interaction data enables us to track how students engage with the 
course materials and the frequency and intensity of 
their interactions.

 • Assessment information includes details on the various 
assessments students undertake throughout the course, such as 
quizzes, assignments, and exams. This information helps in 
understanding how different assessment types impact student 
performance and learning progression.

The OULAD has been extensively used in educational research 
due to its depth and breadth of information. It allows researchers to 
explore various aspects of online learning and develop models that can 
provide actionable insights for improving student outcomes. By 
leveraging this rich dataset, our study aims to predict student 
academic performance and develop early warning systems that can 
identify students at risk of failure. We focus on utilizing the click data 
from the VLE to forecast student learning outcomes and establish 
early alert mechanisms. By examining these interactions, we aim to 
determine how early in the semester an early alert mechanism can 
reliably predict student learning outcomes and which data mining 
methodologies offer superior predictive capabilities for learning 
outcomes in a virtual course.

2.1.1 Extracted dataset
The VLE table from the OULAD provides comprehensive data on 

students’ interactions with the virtual learning environment. This 
includes clicks on various types of learning resources, which are 
crucial for understanding student behaviors and engagement.

A key contribution of our work is the creation of specific 
features based on click data from the VLE table. By developing 
new features such as q1q1, q2q2, q3q3, q4q4, and not_clicked, 
we aim to capture the nuances of student interactions with VLE 
resources. These features help in understanding the relationship 
between student engagement and academic performance, enabling 
more accurate predictions and early identification of 
at-risk students.

To measure how much a student interacts with VLE resources, 
we sorted the number of clicks in a specific classroom on a specific 
resource. Then, we placed each student into one quartile or not_
clicked based on their number of clicks. After doing this for all VLE 
resources in a specific class, we created five features: q1q1, q2q2, 
q3q3, q4q4, and not_clicked. These features represent the number 
of times a student is in the first quartile, second quartile, third 
quartile, fourth quartile, or did not click the resource at all, 
respectively.

To illustrate the type of data used in this study, a sample dataset is 
shown in Table  1. This dataset includes variables such as gender, 
region, highest education, IMD band, age band, number of previous 
attempts, studied credits, registration and unregistration dates, click 
data divided into quartiles (q1 to q4), and the final result.

The dataset contains a total of 29,570 students, with the following 
distribution of final results: 7,053 Fail, 12,362 Pass, and 10,157 
Withdrawn. By analyzing this data, we aim to understand the impact 
of student interactions with the VLE on their academic performance 
and identify at-risk students early in the semester.

2.2 Algorithms

2.2.1 Data preprocessing
The initial step involved cleaning and preprocessing the dataset to 

ensure the quality and integrity of the data. This process included:

2.2.1.1 Handling missing values
Missing data points were identified and handled appropriately to 

maintain the dataset’s consistency. The strategy for dealing with 
missing values was based on the nature of each variable. For numerical 
features, we used mean imputation to replace missing values with the 
average value of the respective feature. For categorical features, 
we used mode replacement to substitute missing values with the most 
frequent category. This approach ensures that the dataset remains 
complete and avoids the potential bias introduced by removing 
instances with missing values.

2.2.1.2 Feature encoding
Categorical variables were encoded using one-hot encoding to 

convert them into a machine-readable form. This step was crucial for 
incorporating categorical data into our predictive models. One-hot 
encoding transforms each categorical variable into a new binary 
variable (0 or 1) for each unique category. For example, a categorical 
variable with three categories, such as ‘low’, ‘medium’, and ‘high’, would 
be converted into three binary variables, each representing one of 
these categories. This process prevents the model from interpreting 
ordinal relationships between categories that do not exist.

2.2.1.3 Data scaling
Feature scaling was applied to normalize the range of independent 

variables in the data. We utilized the StandardScaler from Scikit-learn 
to scale the features, ensuring that no variable would dominate the 
model’s performance due to its scale. StandardScaler standardizes the 
features by removing the mean and scaling to unit variance, which is 
particularly important for algorithms that are sensitive to the scale of 
the data, such as Support Vector Machines and K-Nearest 
Neighbors (kNN).

https://doi.org/10.3389/feduc.2024.1421479
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Borna et al. 10.3389/feduc.2024.1421479

Frontiers in Education 04 frontiersin.org

2.2.2 Feature selection
A crucial aspect of our methodology was selecting the most 

relevant features for predicting student performance. This selection 
process involved:

2.2.2.1 Correlation analysis
We conducted a correlation analysis to identify and exclude 

features with high multicollinearity, ensuring the model’s 
interpretability and efficiency. Multicollinearity occurs when two or 
more features are highly correlated, which can distort the model’s 
estimation of the relationship between each feature and the target 
variable. By removing features with high multicollinearity, we reduce 
redundancy and improve the model’s performance. The Pearson 
correlation coefficient was calculated for all pairs of numerical 
features, and highly correlated pairs (correlation coefficient > 0.8) 
were noted. One feature from each highly correlated pair was excluded 
based on domain knowledge and its relevance to the prediction task.

2.2.2.2 Feature importance evaluation
Machine learning models, including decision trees and 

ensemble methods, were employed to assess the importance of each 
feature. Decision trees and ensemble methods like Random Forests 
provide feature importance scores, which indicate the contribution 
of each feature to the model’s predictions. Features with higher 
importance scores have a more significant impact on the target 
variable. We used these models to rank the features based on their 
importance scores and retained the top features for model 
development. This approach ensures that only the most influential 
features are included, reducing the risk of overfitting and improving 
the model’s generalizability.

2.2.2.3 Domain knowledge
In addition to the automated feature selection techniques, 

we incorporated domain knowledge to ensure that the selected features 
were meaningful and relevant to the educational context. For example, 
features related to student demographics (e.g., age, gender), academic 
background (e.g., highest education, number of previous attempts), 
and interaction data (e.g., clicks on VLE resources categorized into 
q1q1, q2q2, q3q3, q4q4, and not_clicked) were considered essential for 
predicting student performance. These features provide a 
comprehensive view of the factors influencing student outcomes and 
are supported by existing literature in EDM (Li and Xue, 2023).

2.2.3 Model development

2.2.3.1 Linear regression
Linear Regression (Schneider et al., 2010) served as our baseline 

model for performance comparison. This model assumes a linear 
relationship between the independent variables (features) and the 
dependent variable (student performance). By fitting a linear 
equation to observed data, Linear Regression estimates the 
coefficients for the features that minimize the difference between the 
predicted and actual outcomes. This model is particularly useful for 
its simplicity, interpretability, and efficiency in computation. It 
provides a benchmark for assessing the complexity needed in 
predictive modeling for this dataset, allowing us to evaluate the 
incremental value added by more complex models. The mathematical 
expression related to linear regression is as follows:T
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where:

 • Y  is the dependent variable (student performance),
 • 1, 2, ,X X Xp…  are the independent variables (features),
 • 0, 1, , pβ β β…  are the coefficients,
 • ∈  is the error term.

2.2.3.2 Decision trees and random forests
Decision Trees (Quinlan, 1986) were chosen for their 

capability to model non-linear relationships and interactions 
between features without requiring any assumptions 
about the distribution of data. A decision tree splits the 
data into subsets based on the value of input features, 
with each node representing a decision on a specific feature 
and each branch representing an outcome of that decision. This 
process continues recursively, resulting in a tree-like model 
of decisions.

Building on the concept of Decision Trees, Random Forests 
aggregate the predictions of multiple decision trees to improve 
predictive accuracy and control over-fitting. This ensemble method 
combines the predictions from numerous decision trees constructed 
on different subsamples of the dataset. Each tree in a Random 
Forest is built from a sample drawn with replacement (bootstrap 
sample) from the training set. Moreover, when splitting a node 
during the construction of the tree, the split that is chosen is no 
longer the best split among all features. Instead, the split that is 
picked is the best split among a random subset of the features. As a 
result, this model is robust against overfitting and is better suited 
for handling complex datasets with intertwined feature interactions, 
making it a valuable tool for predicting student performance across 
various dimensions.

2.2.3.3 MultiOutputRegressor
This approach extends traditional regression models to handle 

multiple continuous outcomes by fitting one regressor per target. In 
our study, the MultiOutputRegressor framework was employed with 
an Extra Trees Regressor as the base estimator. The Extra Trees 
Regressor is an ensemble method that fits a number of randomized 
decision trees on various sub-samples of the dataset and uses 
averaging to improve predictive accuracy and control overfitting.

To address the challenge of predicting multiple target variables 
related to student performance simultaneously, we  utilized a 
MultiOutputRegressor. This approach is advantageous in EDM, 
where predicting multiple aspects of student performance, such as 
grades in different subjects or progression over time, is necessary 
to provide a comprehensive assessment.

In our study, this framework was employed with an Extra Trees 
Regressor as the base estimator. The use of an Extra Trees Regressor 
within the MultiOutputRegressor allows for capturing complex, 
non-linear interactions between features, offering robustness and 
generalizability in predicting the multi-dimensional nature of 
student performance.

2.2.4 Hyperparameter tuning
To optimize model performance, we conducted hyperparameter 

tuning using RandomizedSearchCV, which involves the following steps:

2.2.4.1 Parameter space definition
A comprehensive search space was defined for each model, 

including parameters such as the number of estimators, max depth, 
min samples split, and min samples leaf for tree-based models.

2.2.4.2 RandomizedSearchCV implementation
RandomizedSearchCV was used to perform hyperparameter 

optimization. This method involves randomly sampling a fixed 
number of hyperparameter combinations from the specified 
parameter space and evaluating each combination through cross-
validation (Liashchynskyi and Liashchynskyi, 2019).

2.2.4.3 Cross-validation strategy
We implemented a 3-fold cross-validation strategy to reliably 

evaluate the models’ performance and mitigate the risk of overfitting. 
This approach splits the data into three subsets, training the model on 
two subsets and validating it on the third, and repeating this process 
to ensure robust performance estimates.

2.2.4.4 Selection of best parameters
The combination of parameters that resulted in the best 

performance, according to the cross-validation results, was selected 
for the final model. The evaluation metrics used to assess model 
performance included accuracy, precision, recall, and F1 score, as 
detailed in next subsection.

Results of hyperparameter tuning:

 • Decision trees:
 •  Best parameters: criterion='gini', max_

depth=20, min_samples_split=2, min_

samples_leaf=1

 • Random forests:
 •  Best parameters: n_estimators=200, max_

features='sqrt', max_depth=30, min_

samples_split=2, min_samples_leaf=2, 

bootstrap=True

 • MultiOutputRegressor with extra trees regressor:
 •  Best parameters: n_estimators=500, 

criterion='mse', max_features='auto', 

max_depth=None, min_samples_split=2, min_

samples_leaf=1, bootstrap=True

 • Neural network:
 •  Best parameters: hidden_layer_

sizes=(100,50,10), activation='relu', 

solver='adam', alpha=0.0001, learning_

rate='adaptive', max_iter=500

These hyperparameters were selected based on cross-validation 
performance, ensuring the models are optimized for the 
given dataset. This tuning process plays a vital role in enhancing 
the model’s predictive accuracy and overall performance 
(Qiu, 2024).

2.2.5 Model evaluation
The final step in our methodology was the evaluation of the 

selected model’s performance. We employed the following metrics 
to provide a comprehensive assessment of the models’ 
predictive capabilities:
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2.2.5.1 Mean squared error

2.2.5.1.1 Description
MSE quantifies the average squared difference between the actual 

and predicted values. It provides a measure of model accuracy, with 
lower values indicating better performance. Its formula is:

 
( )2

1

1 ˆ
n

i i
i

MSE y y
n =

= −∑

where iy  is the actual value, ˆiy  is the predicted value, and n is the 
number of observations.

2.2.5.2 R-squared

2.2.5.2.1 Description
R2, or the coefficient of determination, assesses the proportion of 

variance in the dependent variable that is explained by the 
independent variables. It indicates the model’s explanatory power, 
with values closer to 1 indicating better fit. Its formula is:
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where y  is the mean of the actual values.

2.2.5.3 Precision

2.2.5.3.1 Description
Precision measures the proportion of true positive predictions 

among the total positive predictions made by the model. It is 
particularly useful for evaluating the relevance of positive predictions. 
Its equation is:

 
TPPresicion

TP FP
=

+

where TP is the number of True Positives and FP is the number of 
False Positives.

2.2.5.4 Recall

2.2.5.4.1 Description
Recall, or sensitivity, measures the proportion of true positive 

predictions among the actual positive cases. It is crucial for assessing 
the model’s ability to identify positive instances. Its equation is:

 
.

TPRecall
TP FN

=
+

where FN is the number of False Negatives.

2.2.5.5 F1-score

2.2.5.5.1 Description
The F1-Score is the harmonic mean of precision and recall, 

providing a balanced measure of the model’s performance in terms of 
both metrics. Its formula is:

 
1 2 Precision RecallF Score

Precision Recall
×

− = ×
+

These evaluation metrics offer a robust framework for assessing 
the performance of our models, ensuring that both accuracy and the 
quality of predictions are taken into account. The inclusion of these 
metrics allows for a comprehensive evaluation, highlighting the 
strengths and weaknesses of each model.

3 Results

3.1 Random forest model evaluation

3.1.1 Initial model with all features
The first assessment involved training a Random Forest Classifier 

using all available features. The model’s performance is summarized 
in Tables 2, 3.

The initial evaluation of the Random Forest Classifier, utilizing all 
available features within the dataset, yielded an accuracy of 78.68%. 
The classification report for this model demonstrates a varied 
performance across different classes, with precision, recall, and 
f1-score reflecting the model’s effectiveness in predicting outcomes. 
Notably, the model showed a strong performance in identifying the 
withdrawn students with a precision of 99% and an f1-score of 98%, 
while it struggled more with the distinction class, evidenced by a lower 
f1-score of 15%. Also, the confusion matrix of this classifier is 
presented in Figure 1.

3.1.2 Optimized random forest model
Further analysis was conducted by training a new Random Forest 

Classifier, excluding specific features (student id, region, imd band, 
age band, gender) and implementing an imputation strategy for 
missing data. The performance of this optimized model is detailed in 
Tables 4, 5.

This optimized model achieved an accuracy of 77.40%, with the 
classification report showing a consistent performance pattern as 
observed with the initial model. The exclusion of the specified 
columns and the adoption of data imputation had a marginal impact 
on model performance, decreasing accuracy by approximately 1% (see 
Figure 2).

3.1.3 Performance comparison and key 
takeaways

The comparison between the full-feature model and the optimized 
model revealed a slight decrease in accuracy, indicating a marginal 
impact from the excluded features. The most influential features for 
model performance have been identified as VLE interactions and 
educational background, suggesting these areas as focal points for 
future model tuning and analysis.

3.1.4 Influence of educational background
An experiment removing the “highest education” feature showed 

a minimal impact on accuracy, suggesting that this variable is not a 
critical determinant of predictive outcomes. This insight led to a focus 
on “VLE interactions” as the primary influential factor on 
model performance.
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3.1.5 Experimentation with additional features
In light of these findings, further experimentation was planned by 

excluding course details as well as educational background from the 
feature set, as explained in Table 6. Preliminary expectations suggested 
that their removal would not significantly affect model accuracy.

3.1.6 Anticipated outcome
The approach aimed to demonstrate the model’s robustness with 

a reduced feature set, emphasizing the pivotal role of VLE interactions 
in predictions. The forthcoming analysis is expected to validate the 
negligible impact of removing additional features on overall accuracy. 
The last iteration of this approach yielded an accuracy of 76.53%, with 
the classification report indicating a slight decrease in performance 
across various metrics.

Our results underscore the significance of feature selection in 
building effective predictive models. While certain features like 
‘highest education’ showed minimal impact on model accuracy, the 
primary focus on ‘interactions’ has been validated as crucial for 
understanding and predicting student performance. The marginal 
decrease in accuracy, as features were streamlined, highlights the 
robustness of our model and the potential for optimizing feature sets 
without substantially compromising predictive performance.

Continuing from the analysis of Random Forest, we delve into the 
exploration of deep learning and other advanced modeling techniques 
to enhance predictive accuracy further. The following sections detail 
the performance of these models and strategic shifts towards 
integrating diverse modeling approaches.

3.2 Transitioning to deep learning

3.2.1 Deep learning model evolution
We advanced our analysis by incorporating a deep learning 

model, designed with multiple hidden layers. This model signifies a 
shift from traditional machine learning methods, aiming to capture 
complex patterns within the data more effectively. The performance 
of the model is described in Table 7.

Accuracy stabilized at approximately 77%, maintaining 
consistency with previous models. This maintained accuracy level 

suggests that deep learning techniques closely align with the predictive 
performance of earlier models, without significant differences.

3.3 Advancing to gradient boosting 
machines

3.3.1 XG boost integration
The exploration continued with the application of Extreme 

Gradient Boosting (XG Boost), a renowned Gradient Boosting 
Machine library, known for its performance and efficiency.

 • Accuracy: Recorded at 77.33%, aligning with the accuracy levels 
of prior models.

 • Interpretation: The consistent accuracy, despite the sophistication 
of XGBoost, indicates a potential plateau in performance 
improvement with the current dataset and features. The result is 
shown in Table 8.

3.4 Developing an integrated modeling 
strategy

3.4.1 Comprehensive approach
An integrative strategy was crafted, combining Principal 

Component Analysis (PCA), XG Boost, a sophisticated deep learning 
model, and stacking techniques, aiming for enhanced prediction 
accuracy and deeper data insights (see Table 9).

Integrated model performance:

 • Random forest classifier accuracy: 0.7283
 • XGB classifier accuracy: 0.7342
 • Voting classifier accuracy: 0.7385
 • Deep learning model accuracy: 0.7757

Key finding: the deep learning model emerged as the most 
effective, maintaining an accuracy rate of approximately 77.57%.

3.4.2 Simplifying with logistic regression
Optimization shifted towards a logistic regression model, aiming 

for simplicity and efficiency in model development without 
compromising performance.

 • Accuracy: 66.48%, indicating a reduction in predictive accuracy 
compared to more complex models.

3.4.3 Transition to recurrent neural network

3.4.3.1 RNN integration
The exploration of deep learning techniques advanced with the 

incorporation of a Recurrent Neural Network (RNN), focusing on 
capturing temporal dependencies and patterns.

3.5 RNN model performance

 • Accuracy: Consistently maintained at 77%, indicating that even 
sophisticated RNN architectures might not significantly surpass 
the predictive accuracy plateau with the current dataset.

TABLE 2 Accuracy of initial Random Forest model with all features.

Metric Value

Accuracy 0.7868

TABLE 3 Classification report of initial Random Forest model with all 
features.

Class Precision Recall F1-
score

Support

Fail 0.75 0.62 0.68 1,355

Withdrawn 0.99 0.96 0.98 2087

Pass 0.67 0.90 0.77 2,354

Distinction 0.55 0.09 0.15 591

Macro average 0.74 0.64 0.65 6,387

Weighted average 0.78 0.79 0.76 6,387
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3.5.1 Comprehensive analysis with full dataset 
RNN

3.5.1.1 RNN model with full dataset performance
 • Accuracy: Improved slightly to 78%, suggesting that utilizing the 

full dataset enables the RNN to capture more comprehensive data 
nuances, achieving a slight accuracy improvement.

The exploration of various machine learning and deep learning 
approaches, from Random Forest and XG Boost to deep learning and 

RNN models, highlights the challenges of surpassing an accuracy 
plateau. However, the integrative and sophisticated modeling 
strategies, especially with the full dataset, show promise for slight 
improvements and deeper insights into predictive dynamics.

3.6 Classifier performance comparison 
using McNemar’s test

To evaluate the statistical significance of the performance 
differences between the classifiers, we conducted McNemar’s test for 
each pair of classifiers. McNemar’s test is a non-parametric method 
used for comparing paired proportions, making it suitable for 
evaluating the performance of two classifiers by comparing their 
predictions on a paired basis. This test provides a statistical basis for 
determining whether there is a significant difference in the 
performance of the classifiers.

3.6.1 Methodology
The contingency table used in McNemar’s test was constructed 

based on the number of correct and incorrect predictions made by 
each classifier. Specifically, for each pair of classifiers, we compared the 
number of instances where both classifiers made correct predictions, 
both made incorrect predictions, and where one classifier made a 
correct prediction while the other made an incorrect prediction. The 
test statistic and p-value were then calculated to determine the 
significance of the performance difference.

FIGURE 1

Confusion matrix with all features.

TABLE 4 Accuracy of optimized Random Forest model.

Metric Value

Accuracy 0.7740

TABLE 5 Classification report of Optimized Random forest model.

Class Precision Recall F1-score Support

Fail 0.75 0.60 0.67 1,441

Withdrawn 0.99 0.96 0.98 2050

Pass 0.66 0.89 0.76 2,409

Distinction 0.48 0.11 0.17 619

Macro average 0.72 0.64 0.64 6,519

Weighted average 0.77 0.77 0.75 6,519

https://doi.org/10.3389/feduc.2024.1421479
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Borna et al. 10.3389/feduc.2024.1421479

Frontiers in Education 09 frontiersin.org

3.6.2 Results
The results of McNemar’s test for each pair of classifiers are 

presented in Table 10. The table includes the test statistic and the 
corresponding p-value for each pair of classifiers. The p-values 
obtained from McNemar’s test (p-value less than 0.05) indicate the 
statistical significance of the differences in performance between the 
classifiers as it is shown in Table 10.

Significant differences in model performance were observed in 
several comparisons. For instance, the comparison between the 
Random Forest All Features model and the Deep Learning model 
yielded a p-value of 0.000294, indicating a statistically significant 
difference. Similarly, comparisons involving other classifiers, such as 
the Logistic Regression Model, RNN Model, and XGBoost, often 
showed significant differences in performance, as evidenced by the 
significant p-values (<0.05).

In contrast, certain comparisons demonstrated non-significant 
differences in performance. For example, the comparison between 
the Random Forest All Features model and the Random Forest model 
excluding specific features resulted in a high p-value (e.g., 1.000000), 
suggesting that the performance differences were not 
statistically significant.

These results provide a detailed understanding of how 
different classifiers perform relative to each other, allowing 
researchers to make better decisions on which classifiers to use for 
specific tasks.

4 Discussions

This study embarked on a comprehensive exploration of predictive 
modeling techniques to forecast student performance in online 
courses, leveraging a rich dataset encapsulating students’ interactions 
with course materials. Our analysis spanned from traditional Random 
Forest models to advanced deep learning approaches, including GBMs 
and RNNs. The primary objective was to ascertain the predictive 

FIGURE 2

Confusion matrix of random forest after excluding some features.

TABLE 6 Performance of the model after further experimentation.

Configuration Accuracy

All features 0.7868

Excluding specific features 0.7740

Further optimized model analysis 0.7742

Reduced feature set 0.7653

TABLE 7 Classification report for deep learning model.

Class Precision Recall F1-
score

Support

Withdrawn 1.00 0.93 0.96 2050

Pass 0.65 0.93 0.76 2,409

Distinction 0.00 0.00 0.00 619

Fail 0.73 0.58 0.65 1,441

Accuracy 0.7655 6,519

Accuracy measures the proportion of true prediction among all cases and Support refers to 
number of cases.
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power of these models, particularly in identifying students at risk of 
withdrawing and those poised to achieve top grades.

4.1 Predicting students who withdraw

A significant finding from our study is the models’ pronounced 
ability to predict the withdrawal class with high accuracy. This outcome 
is particularly evident in the Random Forest and deep learning models, 
where the precision for identifying withdrawn students reached as 
high as 99%, with an f1-score of 98% (see Tables 3, 5, 8). This robust 
predictive capability implies that the models can effectively use student 
interaction data to flag those who are likely to disengage and potentially 
drop out of the course. Such insights are invaluable for educational 
institutions and online course providers, enabling timely interventions 
to support at-risk students and reduce dropout rates.

4.2 Predicting students who pass

Predicting high achievers remains challenging due to the 
complexity of factors influencing academic excellence. High 
engagement with VLE resources does not necessarily translate to top 
grades, suggesting that other qualitative factors, such as study habits, 
intrinsic motivation, and external support, play a significant role 
(MacLaren et al., 2017). Further research into these factors and their 
impact on the challenges faced by the models in accurately predicting 
high achievers is warranted. Exploring additional data sources that 
capture behavioral, motivational, and cognitive dimensions could 
yield richer insights into student success.

4.3 Distinguishing between students who 
pass and those who obtain distinction(s)

Our analysis revealed a notable limitation in the models’ ability to 
distinguish between students who merely pass the course and those 
who achieve distinction. The performance metrics indicate a 
significant drop in precision and recall for the distinction class across 
most models, with some unable to differentiate between the two 
categories effectively. This suggests that while high interaction with 
course materials is a good predictor of course completion, it does not 
necessarily correlate with top academic performance. This limitation 
may also stem from the fact that these two categories are not mutually 
exclusive, as students who pass may share overlapping behavioral 
traits with those who achieve distinction, complicating the models’ 
ability to make clear distinctions. This outcome aligns with Section 3, 

which highlights that the features derived from interaction data, while 
effective for identifying disengagement, may lack the nuance required 
to capture the full complexity of academic excellence.

This finding prompts a critical discussion on the nature of student 
engagement and its impact on academic success. It challenges the 
assumption that the quantity of interaction with learning materials 
directly translates to higher achievement. Instead, it may imply that 
the quality of engagement, the effectiveness of study strategies, or 
other factors not captured by interaction data alone play a crucial role 
in determining academic excellence.

Overall, the discrepancy in model performance between 
predicting withdrawals and distinguishing top performers 
underscores the complexity of educational outcomes and the 
multifaceted nature of learning. It highlights the need for more 
nuanced models that can incorporate a broader spectrum of 
predictors, including qualitative aspects of student engagement and 
personalized learning paths. Additionally, while the models 
achieved strong performance for at-risk predictions, the consistent 
accuracy plateau across various modeling techniques, despite their 
sophistication, suggests we  may be  approaching the limits of 
predictive performance with the current feature set and dataset. 
These findings are consistent with previous research by Fynn and 
Adamiak (2018) who compared different data mining algorithms in 
an open distance learning (ODL) context. Their work highlighted 
the importance of algorithm selection and optimization in 
addressing diverse educational challenges, particularly in 
environments with unique data structures. Furthermore, the dataset 
itself has limitations that may contribute to this plateau, as different 
teaching styles, course structures, and content delivery methods 
likely influence student interaction patterns in unique ways. Thus, 
the results may reflect certain biases inherent in the dataset, 
underscoring the need for a more diversified data collection across 
varied educational contexts.

5 Conclusion

Our investigation into machine learning and deep learning 
models for predicting student performance in online courses provides 
essential benchmarks for educational analytics. By evaluating a range 
of models, including Random Forest, XGBoost, and RNNs, 
we established their predictive capabilities in identifying students at 
risk of withdrawal and their limitations in accurately distinguishing 
high achievers. Notably, the Random Forest model’s accuracy of 
78.68% and the consistent performance of deep learning models 
around 77% highlight the potential of these models for early warning 
systems, with the Random Forest achieving a precision of up to 99% 

TABLE 8 Classification report for XGBoost model.

Class Precision Recall F1-
score

Support

Fail 0.73 0.61 0.66 1,411

Withdrawn 0.99 0.95 0.97 2031

Pass 0.67 0.89 0.77 2,472

Distinction 0.41 0.08 0.13 605

Accuracy 0.7733 6,519

Accuracy measures the proportion of true prediction among all cases and Support refers to 
number of cases.

TABLE 9 Classification report for logistic regression model.

Class Precision Recall F1-
score

Support

Fail 0.50 0.36 0.42 1,441

Pass 0.80 0.85 0.83 2050

Withdrawn 0.63 0.85 0.72 2,409

Distinction 0.41 0.01 0.02 619

Accuracy 0.6648 6,519

Accuracy measures the proportion of true prediction among all cases and Support refers to 
number of cases.
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in predicting withdrawals. This high level of precision underscores the 
value of these models in identifying at-risk students, allowing 
educational institutions to implement timely interventions and 
enhance student retention.

However, the study’s reliance solely on interaction data from the 
OULAD presents limitations in capturing the full spectrum of factors 
that influence academic excellence. While interaction data is effective 
for predicting course engagement and withdrawal, it does not fully 
encompass qualities associated with top academic performance, such 
as intrinsic motivation, study strategies, and external support systems. 

Our findings, particularly the modest improvement in accuracy to 
78% with the RNN model, underscore the complex relationship 
between engagement levels and academic success, suggesting that 
high interaction with VLEs does not necessarily translate to top grades.

To address these limitations, future research should incorporate a 
wider range of behavioral and qualitative data, such as the time 
students spend on specific tasks, engagement with various content 
types, and cognitive factors that impact learning outcomes. 
Additionally, experimenting with hybrid models that combine 
traditional statistical approaches with deep learning techniques may 

TABLE 10 McNemar’s test results for classifier comparison.

Classifier1 Classifier2 Statistic P-value

Random forest all features Random forest excluding specific features 3 1.000000

Random forest all features Random forest further optimized model analysis 4 1.000000

Random forest all features Random forest reduced feature set 5 1.000000

Random forest all features Deep learning model 8 0.000294

Random forest all features Logistic regression model 13 0.004534

Random forest all features RNN model 10 0.000156

Random forest all features RNN model with full dataset 5 0.301758

Random forest all features XG boost 5 0.000000

Random forest excluding specific features Random forest further optimized model analysis 1 1.000000

Random forest excluding specific features Random forest reduced feature set 1 1.000000

Random forest excluding specific features Deep learning model 7 0.000116

Random forest excluding specific features Logistic regression model 13 0.003088

Random forest excluding specific features RNN model 9 0.000066

Random forest excluding specific features RNN model with full dataset 4 0.179565

Random forest excluding specific features XG boost 4 0.000000

Random forest further optimized model analysis Random forest reduced feature set 1 1.000000

Random forest further optimized model analysis Deep learning model 6 0.000117

Random forest further optimized model analysis Logistic regression model 12 0.003658

Random forest further optimized model analysis RNN model 9 0.000106

Random forest further optimized model analysis RNN model with full dataset 3 0.226563

Random forest further optimized model analysis XG boost 4 0.000000

Random forest reduced feature set Deep learning model 7 0.000191

Random forest reduced feature set Logistic regression model 13 0.004534

Random forest reduced feature set RNN model 10 0.000156

Random forest reduced feature set RNN model with full dataset 4 0.266846

Random forest reduced feature set XG boost 5 0.000000

Deep learning model Logistic regression model 9 0.663624

Deep learning model RNN model 3 0.507813

Deep learning model RNN model with full dataset 6 0.001431

Deep learning model XG boost 1 0.000977

Logistic regression model RNN model 8 0.286279

Logistic regression model RNN model with full dataset 11 0.020074

Logistic regression model XG boost 6 0.003719

RNN model RNN model with full dataset 8 0.000753

RNN model XG boost 0 0.001953

RNN model with full dataset XG boost 5 0.000001
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provide a more nuanced understanding of student performance, 
especially for high achievers. Such advancements would enable 
educational institutions to tailor interventions for diverse student 
needs, supporting both at-risk learners and those striving for academic 
distinction. By developing these models further, we move closer to 
achieving adaptive, inclusive, and personalized educational 
experiences that foster success for every student.
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