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Detecting differential item
functioning in presence of
multilevel data: do methods
accounting for multilevel data
structure make a DIFference?
Dubravka Svetina Valdivia*, Sijia Huang and Preston Botter

Department of Counseling and Educational Psychology, Indiana University, Bloomington, IN,
United States

Assessment practices are, among other things, concerned with issues of fairness

and appropriate score interpretation, in particular when making claims about

subgroup differences in performance are of interest. In order to make such

claims, a psychometric concept of measurement invariance or differential item

functioning (DIF) ought to be considered and met. Over the last decades,

researchers have proposed and developed a plethora of methods aimed at

detecting DIF. However, DIF detection methods that allow multilevel data

structures to be modeled are limited and understudied. In the current study,

we evaluated the performance of four methods, including the model-based

multilevel Wald and the score-based multilevel Mantel–Haenszel (MH), and two

well-established single-level methods, the model-based single-level Lord and

the score-based single-level MH. We conducted a simulation study that mimics

real-world scenarios. Our results suggested that when data were generated as

multilevel, mixed results regarding performances were observed, and not one

method consistently outperformed the others. Single-level Lord and multilevel

Wald yielded best control of the Type I error rates, in particular in conditions

when latent means were generated as equal for the two groups. Power rates

were low across all four methods in conditions with small number of between-

and within-level units and when small DIF was modeled. However, in those

conditions, single-level MH and multilevel MH yielded higher power rates than

either single-level Lord or multilevel Wald. This suggests that current practices

in detecting DIF should strongly consider adopting one of the more recent

methods only in certain contexts as the tradeoff between power and complexity

of the method may not warrant a blanket recommendation in favor of a single

method. Limitations and future research directions are also discussed.

KEYWORDS

differential item functioning (DIF), measurement invariance, multilevel data, fairness,
simulation study

Frontiers in Education 01 frontiersin.org

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2024.1389165
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2024.1389165&domain=pdf&date_stamp=2024-04-29
https://doi.org/10.3389/feduc.2024.1389165
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feduc.2024.1389165/full
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-09-1389165 April 24, 2024 Time: 17:24 # 2

Svetina Valdivia et al. 10.3389/feduc.2024.1389165

Introduction

Educational and psychological assessment practices are,
among other things, concerned with fairness and appropriate
score interpretations. For example, data from international
large-scale assessments (ILSAs), such as the Programme for
International Student Assessment (PISA) or the Trends in
International Mathematics and Science Study (TIMSS), are
used to inform about student academic performance across
dozens of participating countries and educational systems,
which provides, in large part, the basis for educational
reforms in those respective countries and educational systems.
Further, constructs being measured on ILSAs ought not to
be only cognitive in nature. PISA and TIMSS, in addition to
measuring achievement in mathematics or science, also serve
as a fruitful basis from which to derive measures of affective
and motivational domains how students feel about school
or learning (e.g., Ozel et al., 2013; Segeritz and Pant, 2013;
Marsh et al., 2015).

Similarly, the Teaching and Learning International Survey
(TALIS) measures and compares teachers’ attitudes, perceptions,
and experiences related to education. Outside education, examples
of studying psychological constructs across cultures abound,
including social axioms (e.g., Bou Malham and Saucier, 2014),
physical self-perception (e.g., Hagger et al., 2003), cognitive
emotional regulation (e.g., Megreya et al., 2016), and identity
processing styles during cultural transition (e.g., Szabo et al.,
2016). Regardless of the context, scores that represent the
underlying constructs of interest on surveys and assessments
are often summarized in terms of total scores or model-
based scale scores (Olson et al., 2008; Economic Co-operation
and Development, 2010) which are then compared across the
groups.

Across the aforementioned examples, and for many others
found in social sciences, an important precursor to making
meaningful comparisons across groups on scale scores involves
the establishment of measurement invariance (MI). Namely,
this criterion states that a construct ought to be understood
and measured equivalently across groups of interest (Meredith,
1993). In practice, lacking MI has long been considered a
threat to the validity of score interpretations and use based on
such. Often times, researchers adopt the approach of multiple-
groups confirmatory factor analysis (MG-CFA; Jöreskog, 1971)
to examine if the structure of an assessment is the same across
groups.

At the item level, MI indicates the absence of differential
item functioning (DIF; Holland and Wainer, 2012). An item is
said to be a DIF item when it exhibits different psychometric
properties between individuals with similar proficiencies and from
different groups (e.g., Croatian students vs. German students on
ILSAs). DIF can be categorized as uniform when the relationship
between the group membership and response to an item is
constant for all levels of the matching proficiency (i.e., no
interaction between group membership and ability), while non-
uniform DIF is present when there exists such interaction.
When two groups are considered, the group of interest in the
analysis is referred to as the focal group, while the group to
which focal group is compared to is known as the reference

group.1 The importance of identifying DIF items in educational
measurement and assessment, as well as broadly defined social
and psychological sciences, has been well established (e.g., Magis
et al., 2010; Gao, 2019). Over the last few decades, a number
of methods have been proposed to detect DIF items more
accurately and thus aid in measurement or test development
process, such as the score-based Mantel–Haenszel procedure
(score-based MH; Mantel and Haenszel, 1959; Holland and Thayer,
1988; Narayanon and Swaminathan, 1996), and the model-based
Lord’s Wald χ2 test (model-based Lord, 1980). If an item is
determined to be differentially functioning–meaning, it is flagged
as a DIF item–test developers can choose whether to revise or
remove it dependent on what sources of DIF are determined
to be.

Magis et al. (2010) presented a useful framework for
researchers to select and employ a DIF detection method in
their analysis when data are scored dichotomously (e.g., 0 as
incorrect/disagree; 1 as correct/agree). Specifically, the authors
organized DIF detection methods along four main dimensions
the methods are able to accommodate: (a) number of focal
groups (two vs. > 2), (b) methodological approach in creating a
matching variable (Item Response Theory-based vs. Classical Test
Theory-based), (c) DIF type (uniform vs. non-uniform), and (d)
item purification (considered). These four dimensions highlight
important considerations/aspects a researcher ought to engage with
when conducting DIF analysis with the ultimate aim to make
appropriate and valid claims. Alongside the proposed framework,
Magis and his colleagues developed an R package called difR (Magis
et al., 2010) which included a collection of standard DIF detection
methods for dichotomous items. As described below, in the current
study, we utilized two DIF detection methods employed in difR—
specifically, the single-level MH method (Mantel and Haenszel,
1959) and Lord’s Wald χ2 statistic (Lord, 1980). One aspect of
Magis et al. (2010) framework that is missing but should be
considered when choosing DIF detection methods is the nested
nature of (many) data.

While the importance of modeling nested data as such has
been recognized for decades (e.g., Rubin, 1981; Peugh, 2010),
and models such as multilevel models have been used in applied
research, little research has been devoted to identifying DIF items
in the ubiquitous multilevel data structures. When such nesting
occurs (e.g., students on ILSAs are nested within their respective
countries or educational systems), it is often times ignored and
conventional single-level DIF detection methods are applied. To
our knowledge, there exist only a handful of DIF detection methods
that account for the multilevel structures, including the score-based
multilevel MH and model-based multilevel Wald (Jin et al., 2014;
French and Finch, 2015; French et al., 2016, 2019; Huang and
Valdivia, 2023). Additionally, there lacks a more comprehensive
comparison of these methods and single-level methods in the
context of multilevel data. Part of the lack of research is due to
accessibility of the methods; namely, DIF detection methods that
incorporate the nature of nested data have only recently become
(easily) accessible to researchers (French and Finch, 2010, 2013;

1 It is possible to study more than two groups in DIF analysis. In those
situations, analyst selects one reference group and the remaining groups
are referred to as focal groups.
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TABLE 1 2 × 2 contingency table for sum scores across the reference
and focal groups.

Correct Incorrect Row total

Reference group (R) As Bs nRs = As + Bs

Focal group (F) Cs Ds nFs = Cs + Ds

Column total m1s = As +

Cs

m0s = Bs +

Ds

Ts = As + Bs +

Cs + Ds

Table contains counts, row margins, and column margins relevant to Eqs 1–3. For example,
As is the number of correct responses in the reference group for a particular item, while Ds is
the number of incorrect responses in the focal group for that particular item. Inclusion of
this table was motivated by similar tables used to illustrate the MH procedure, such the table
used by Roussos et al. (1999).

French et al., 2019; Huang and Valdivia, 2023). Thus, the main
research aim of the current study is to examine and compare the
performance of single-level and multilevel methods of detecting
DIF when data have more than one level. Through a comparison of
four popular DIF detection methods, this research aims to extend
Magis et al. (2010) framework and provide guidance for applied
researchers engaged in the DIF analysis when data are nested. This
study helps address questions that may be asked by practitioners,
such as “do single-level DIF detections perform sufficiently well
when data are multilevel?” This might be especially important as
the multilevel DIF methods are inherently harder to understand
than their single level counterparts. The current study focuses
on dichotomous items and uniform DIF and investigates the
performance of four DIF detection methods in detecting DIF when
data are nested. Specifically, the performance of the single-level
and multilevel versions of the score-based MH and model-based
Lord/Wald procedures are studied.

The remainder of our paper is organized as follows. The next
section discusses the four studied methods and research related to
their performance in detecting DIF. Next, we describe the study
design utilized to address the main research aim, including our
justifications of choices for the manipulated factors and levels, as
well as the outcome variables to evaluate the methods’ performance.
A description of the planned analyses is included to guide the
interpretation of results as well. Next, we report results as they
pertain to the main research aim. Lastly, we discuss the findings and
implications for future research, in addition to acknowledgment of
the limitations.

1.1 Single-level and multilevel DIF
detection methods

As suggested above, a myriad of methods have been developed
to investigate DIF but only a few have been developed that allow
for multilevel data structures to be directly modeled into the
DIF detection. We briefly describe each of the four methods
utilized in the current study—namely, the single-level methods
of MH and Lord, and the multilevel MH and Wald. We provide
original sources of the proposed methods for more detailed
specifications of the methods.

1.1.1 Single-level MH
MH procedure is a score-based method that flags possible

DIF items by testing whether an association exists between group

membership and item responses, conditional on sum scores. This
is done by testing the null hypothesis of no DIF using a 2 × 2
contingency table when the number of groups is two (e.g., Table 1).

Letting s = 1, 2,. . .,S denote the unique sum scores observed in
the sample, the MH hypothesis of no DIF for an item is tested using
the MH χ2statistic:{∣∣6S

s = 1 [As − E (As)]
∣∣− 0.5

}2

6S
s = 1Var (As)

(1)

where,
As = the number of correct responses in the reference group for

a particular item,

E (As) =
m1snRs

Ts
=

(As + Cs) · (As + Bs)

(As + Bs + Cs + Ds)
, (2)

Var (As) =
nRsnFsm1sm0s

T2
s (Ts − 1)

=

(As + Bs) · (Cs + Ds) · (As + Cs) · (Bs + Ds)

(As + Bs + Cs + Ds)
2
· (As + Bs + Cs + Ds − 1)

, (3)

and 0.5 is the Yates correction for continuity (Yates, 1934). The
resulting statistic χ2 is chi-square distributed with one degree of
freedom and tests the null hypothesis of no uniform DIF (French
et al., 2019) based on the assumption of a conditional binomial
distribution for the events As (Bock and Gibbons, 2021).

The MH procedure remains a popular DIF detection method.
In part, this is undoubtedly due to its simplicity. However, another
reason is its performance. For example, a meta-analysis (Guilera
et al., 2013) of the MH procedure found it to display adequate
statistical power and Type I error rates across a total of 3,774
conditions, especially when the sample size was between 500 and
2,000. Further, a recent review (Berrío et al., 2020) of the current
trends in DIF detection research found the MH to be the most
studied DIF detection method. Some research also showed that the
single-level MH showed promise at detecting DIF in ILSAs (Svetina
and Rutkowski, 2014) as well as in multidimensional contexts
(e.g., Liu, 2024). Lastly, we included single-level MH because its
multilevel variant (French and Finch, 2013) has been proposed. We
note that several extensions to the single-level MH procedure exist,
such as the generalized MH for polytomous data (Penfield, 2001),
though such extensions are beyond the scope of this study.

1.1.2 Single-level Lord
The first model-based DIF detection method we consider

is Lord’s (single-level) Wald χ2 test, which flags DIF items by
comparing item parameter estimates between groups (Bock and
Gibbons, 2021). The idea behind this method is that if trace lines
differ meaningfully between groups, DIF is said to be present, as
trace lines are a function of item parameters. The present study
considers only trace lines parameterized by the two-parameter
logistic (2PL) model outlined below.

The 2PL IRT model specifies the probability that respondent
j
(
j = 1, ..., J

)
correctly answers or endorses item i (i = 1, ..., I)

as presented in Eq. 4:

P
(
yij = 1

∣∣ θj
)
=

1
1+ exp

[
−
(
αiθj + βi

)] , (4)
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where θj represents a respondent’s latent variable (e.g., student
proficiency or motivation latent score), and αi and βi are item
i
′

s discrimination and location/difficulty parameters. Formally,
Lord’s Wald χ2 test tests the null hypothesis that no difference
between item parameters exist in the focal and reference group, and
specifically, χ2 statistic for each item is computed as shown in Eq.
5:

χ2
i = v

′

i6
−1
i vi, (5)

where vi =
[̂
αFi − α̂Ri, β̂Fi − β̂Ri,

]′
is a vector containing the

differences between the reference and focal groups parameter
estimates and 6i is the error covariance matrix differences are
divided by. Degrees of freedom associated with each χ2

i is equal
to the number of item parameters (per item) compared between
the reference and focal groups, which is two when the items are
modeled via the 2PL model. For an item to be flagged as displaying
DIF, its χ2statistic needs to be statistically significant, with typically
p< 0.05 being used as a criterion for flagging items.

Many variants of Lord’s χ2 DIF detection procedure exist.
Two important ways in which implementations differ are by (a)
how each group’s scale is placed on the same metric, and (b) by
whether some sort of item purification procedure is used. The
present study places the reference and focal group on the same
metric using equal means anchoring (Cook and Eignor, 1991) and
items were purified using an iterative method described by Candell
and Drasgow (1988). Alternatives to (a) include multiple group
IRT (Bock and Zimowski, 1997) and alternatives to (b) include the
Wald-1 (Cai et al., 2011) and Wald-2 (Langer, 2008) variants. Some
of these updates to Lord’s (1980) original formulation are discussed
in a subsequent section. We decided to use the difR implementation
of Lord’s χ2, which is closer to the original procedure than
newer variants, mainly because newer implementations require
knowledge of more specialized IRT software, and our desire to
study a variety of methods by leveraging accessibility/complexity
of the chosen methods.

1.1.3 Multilevel MH
Motivated by the ubiquity of multilevel data structures in

educational assessment, French and Finch (2013) proposed several
extensions to the standard (single-level) MH procedure. The
method employed in the current study is an extension based on
work by Begg (1999), which adjusted the MH statistic described
above by dividing it by the ratio of two score test statistic variances.
The two score statistic variances are obtained for each item using
the following logistic regression model as presented in Eq. 6:

log
(

Pij

1− Pij

)
= β0 + β1Xj + βaYj, (6)

where,
Pij = the probability of a correct response to item i,
β0 = the intercept,
Xj = group membership for student j,
Yj = sum score for student j,
β1 = coefficient corresponding to the (dummy-coded) group

variable,
β2 = coefficient corresponding to the sum score.
More specifically, the model is fit to each item twice, using

different estimation methods, to obtain both the naïve score

statistic variance σ2
Naive and a modified score statistic variance that

accounts for the multilevel nature of the data2 σ2
GEE. Once obtained,

these two variances are then used to calculate the f ratio:

f =
σ2

GEE
σ2

Naive
(7)

and subsequently the adjusted MH statistic as shown in Eqs. 7, 8,
respectively:

MHB =
MH

f
. (8)

The idea behind MHB is that when the population interclass
correlation (ICC) is large, σ2

GEE will be larger than σ2
Naive, resulting

in an f ratio that will decrease MHB relative to MH. This decrease
in MHB is designed to correct for the within-cluster correlation
induced by the data’s multilevel structure. However, when the
population ICC is 0, f = 1, and MHB = MH.

The MHB was considered in the present study mainly because it
seemed to be the most popular DIF detection method that accounts
for multilevel data structures. Another reason was its accessibility
in the DIFplus R package (Dai et al., 2022). Finally, it should
be noted that the multilevel MH method is not the only MH
procedure developed for multilevel data structures, as French and
Finch (2013) and others (French et al., 2019) have proposed similar
extensions that show promise. Here, we only evaluate the MHB
variant (hereupon referred to as multilevel MH) simply to focus
our study on a handful of DIF detection methods.

1.1.4 Multilevel Wald
In order to motivate our discussion of the multilevel DIF

detection method proposed by Huang and Valdivia (2023), we
return to our earlier presentation of the 2PL model [under single-
level Lord section, Eq. 4]. Extension of 2PL IRT model to account
for the multilevel data structure can be accomplished through
incorporating a between-level latent construct. As Marsh et al.
(2012) explained, the between-level latent construct can be defined
as a clustering of characteristics of individuals within the between-
level unit. For example, assume we have students (within-level)
nested within schools (between-level). Then, the probability that
a student j in school k

(
k = 1, ..., K

)
correctly responds to item

i would be expressed as,

P
(
yijk

∣∣ θjk, θk
)
=

1
1+ exp

[
−
(
αi,Bθk + αi,Wθjk + βi

)] , (9)

where θk is a between-level latent variable and can be interpreted
as mean proficiency of students in school k. θk is assumed to
follow a normal distribution N(µ, τ2). θjk is a within-level latent
variable and captures the deviation in proficiency of student j
to θk. θjk is assumed to follow a normal distribution. αi,B and
αi,W are the item discrimination parameters associated with the
between- and within-level latent variables, respectively, while βi
is item i′s location/difficulty parameter. Model in Eq. 9 can be
identified by constraining the lower-level variance term σ2 and the
discrimination parameters αi,B and αi,W ; for example, the term σ2

2 The score statistic variance, which accounts for the multilevel nature of
the data, was calculated using generalized estimating equations—a method
that corrects for clustered data commonly found in fields such as medicine,
biology, and epidemiology (McNeish et al., 2017).
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can be set to 1, at the same time, αi,B and αi,W can be constrained
to be equal (i.e., αi,B = αi,W ).

Huang and Valdivia (2023) introduced a procedure to detect
both uniform and non-uniform DIF in the presence of multilevel
data. This procedure extends the Hansen et al. (2014) approach by
applying the Metropolis-Hastings Robbins-Monro (MH-RM; Cai,
2008, Cai, 2010a,b) to estimate parameters in multilevel IRT models
and obtain the associated standard errors. The procedure for DIF
in multilevel data consists of two stages. Specifically, an initial
screening stage is employed first to designate the items as either
anchor items or candidate items through an extended Wald-2 test.
Then the formal evaluation stage further evaluates the candidate
items to identify DIF items using the extended Wald-1 test, A
simulation study indicated that this two-stage procedure has great
power for detecting DIF and well controls the Type I error rate.

2 Research aim

As noted above, our main research aim is to compare
performance of single-level and multilevel methods of detecting
DIF when data are multilevel. To our knowledge, limited literature
exists on comparing methods in detecting DIF for nested
data. Hence, we aim to evaluate the performance of four DIF
detection methods: single-level MH, single-level Lord, multilevel
MH, and multilevel Wald and their ability to detect DIF when
data are nested.

3 Materials and methods

The research question regarding the performance of the DIF
detection methods was addressed using a Monte Carlo simulation
study. Our design choices, including manipulated factors and their
levels, were motivated by empirical and methodological research
including but not limited to assessments found in psychological
research and education (e.g., Sulis and Toland, 2017; French et al.,
2019; Huang and Valdivia, 2023).

3.1 Fixed factors

We simulated data to 20 dichotomous items following
the multilevel 2PL IRT model as shown in Eq. 9. Item
location/difficulty and discrimination parameters for the 20 items
in DIF-free (baseline) conditions are presented in Appendix
A in Supplemental materials.3 The selection of data-generating
item parameters was made by randomly sampling 20 item
location/difficulty and discrimination parameters from the TIMSS
2015 eighth-grade mathematics assessment. Item parameters for
DIF-induced conditions were produced by adding a constant to two
DIF items of varied magnitude (see “3.2 Manipulated factors”).

Two groups, reference and focal, were considered in the study,
and DIF was modeled such that a difficulty/location parameter for
two items was shifted upward by a specified magnitude in the focal

3 https://osf.io/96j3g/?view_only=49e6378ac0da4b4ba78b9f17949aa1c2

group. We considered uniform DIF only. While we recognize that
nonuniform DIF is also possible (see “5 Discussion”) our choice to
only examine uniform DIF was driven by several factors, including
that uniform DIF has been more prevalent in operational settings
in some contexts (e.g., Joo et al., 2023), that it would allow us
to examine commonly used methods (e.g., single-level MH), and
lastly, to keep our study manageable.4

3.2 Manipulated factors

Due to emphasis on nested data and methodological
approaches that allow/do not allow for modeling nested data
in DIF detection, we designed a simulation study that examined
various conditions present in nested data. Specifically, we
considered the following manipulated factors:

(a) the number of clusters (N2; between-level units),
(b) the number of subjects (N1; within-level units),
(c) the sample size ratio (N2/N1 ratio),
(d) the intraclass correlation in focal group (ICC),
(e) latent trait proficiency means for the reference (θr) and

focal (θf ) groups, and
(f) DIF magnitude.

3.2.1 Number of clusters (N2)
We considered two levels of N2 factor: 10 or 30 between-

level units (clusters). These choices represented small to medium
numbers of clusters, aiming to better understand DIF application
when fewer between-level units are present (these choices are also
similar to other studies, such as Jin et al., 2014; French et al., 2019;
Huang and Valdivia, 2023).

3.2.2 Number of subjects per cluster (N1)
Two levels of N1 factor were manipulated. For the balanced

conditions, the numbers of subjects (within-level units) per cluster
were 25 or 50. For imbalanced conditions, the N1 unit was 60
to 40% for half of the subjects (see more detail next under “3.2.3
N2/N1 ratio”). Sample size for N1 of 25 and 50 levels are suggestive
of a smaller sample size per cluster (e.g., such as a classroom of 25
students) or a medium sized unit (e.g., a group of participants in
a feasibility study). These values also resemble choices in similar
research studies.

3.2.3 N2/N1 ratio
We considered two levels: a balanced sample size ratio, where

all clusters (between-level units) had the same number of within-
level units (e.g., 25 subjects in each of 10 clusters), or an imbalanced
sample size ratio, where half of the between-level units contained
the N1 within-level units, and the other half had 60% of the N1
size. For example, under imbalanced conditions, when N2 = 10 and
N1 = 25, five clusters (between-level units) units had 25 subjects

4 We also note that Huang and Valdivia (2023) found that ML-Wald method
yielded better results (higher power rates and controlled Type I error rates) in
detecting non-uniform DIF in polytomous multilevel data than uniform DIF
thus motivating us to consider uniform DIF only.
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(within-level units) each and the remaining five clusters had 10
(0.60 ∗ 25) subjects, each. This imbalanced scenario represents a
situation where clusters contain a different number of subjects,
which may be more realistic in empirical data.5

3.2.4 Intraclass correlation for focal group (ICC)
We manipulated three levels of ICCs for the focal group in

the study. The reference group’s ICC was fixed at a 0.33 level.
The focal group’s ICC varied at levels of 0.33 (same as focal); 0.20
(smaller than focal), or at 0.50 (larger than focal). Specifically, we
manipulated the value of ICC through varying the between-cluster
variance (σ2

B) while fixing the within-cluster variance (σ2
W ) at 1.

Effectively, this means that for the focal group, the σ2
B values were

set at 0.25, 0.50, and 1.6 Choices for ICCs were selected based on
previous studies (Jin et al., 2014; French et al., 2019) and aimed to
reflect ICC values observed in practice (Muthen, 1994).

3.2.5 Latent proficiency means (θr and θf)
We considered two levels of latent trait means: reference and

focal group means were equal at 0 (i.e., θr mean = 0 and θf
mean = 0), or focal group’s mean was shifted downward to −0.75,
suggesting that the latent proficiency distributions of the two
groups were unequal (i.e., θr mean = 0 and θf mean = −0.75). We
considered conditions where both groups were modeled with the
same latent variable mean value (of 0) as a baseline condition; while
different means represented contexts, such as in ILSA, where some
participating countries (or educational systems) might have a lower
latent variable mean.

3.2.6 DIF magnitude
We simulated uniform within-cluster DIF (e.g., gender identity

with two levels) with two different magnitudes. The two DIF
magnitude values considered were 0.5, and 1, which, respectively,
reflected small and large DIF. The uniform DIF was introduced by
adding DIF magnitude values to location/difficulty of the first two
items in the focal group.

3.3 Data generation and analysis

Our fully crossed design yielded 48 baseline (non-DIF
conditions) and 96 DIF conditions for a total of 144 conditions.
Each condition was replicated 100 times. We simulated the data
using the popular IRT software flexMIRT R© (Cai, 2017) according
to the specific conditions.

Once data were simulated, datasets were submitted to each of
the four studied DIF detection methods to examine their ability
to detect DIF. Specifically, for single-level MH, we employed
difMH function in difR package (Magis et al., 2010) in R
(R Core Team, 2023), with most of its default options. Two changes

5 We recognize that 60% choice to create imbalance is somewhat arbitrary
and that other choices are possible. Studies such as (French et al., 2019)
included balanced cases, thus our efforts here are to provide initial insights
into the sample size imbalance.

6 Stated differently, we examined ICCs to be either equal in value (0.33)
between the reference and focal groups, or varied, where varied took on
two different values: ICC for reference group was set at 0.33, while for focal
group at either 0.20 or 0.50.

were made to defaults, such that we increased the number of
iterations to 100 (from default 20) and we employed purification
process in the analysis. Similarly, for single-level Lord, we utilized
difLord function with same changes to defaults (in the difR package
in R). For multilevel MH, we used ML.DIF function in the DIFplus
package (Dai et al., 2022) with most of its defaults, except we
specified argument correct.factor = 0.85 and opted for purification.
Lastly, for the multilevel Wald, we employed flexMIRT and
proposed a two-stage DIF detection procedure which implements
both the MH-RM algorithm and Wald tests (per Huang and
Valdivia, 2023).

To evaluate the performance of the four DIF detection
methods, two outcome variables were computed. First, we
examined Type I error rates, which we computed as the proportion
of times that a DIF-free item (an item that was simulated to have
no DIF) was identified as a DIF item (false positive rate) across
converged replications. Second, for DIF conditions, we computed
power by examining the number of times that the two DIF-
simulated items were correctly identified as DIF items, across the
converged replications. Lastly, to guide our results presentation, we
conducted an analysis of variance (ANOVA) to evaluate the impact
of each of the manipulated factors and DIF detection methods
on the outcome variables. Where appropriate, post-hoc pairwise
comparisons were performed using the Bonferroni method. Sample
code for data generation, analysis, and additional results are
included in Supplemental materials at https://osf.io/96j3g/?view_
only=49e6378ac0da4b4ba78b9f17949aa1c2.

4 Results

All tabulated results, as well as additional graphical
visualizations, can be found in Supplemental documentation
(in Results folder, as extended Appendix B [Figures B1-B6] and
Appendix C [C1-C6]). In what follows, we describe the main
trends in results for the two studied outcomes: Type I error rates
and Power rates. For each outcome separately, we fit a between-
subjects ANOVA where manipulated factors in the study served
as independent variables. Due to complexity of the models, only
main effects and associated effect sizes expressed as η2

partial were
examined. However, given that we used ANOVA results only to
guide presentation of the findings, examination of the interactions
was not viewed as problematic.

4.1 Type I error rates summary

Based on ANOVA, it was found that five of seven factors
were statistically significant at the 0.05 level (i.e., N2, N1, θ,
method, and DIF magnitude), while two were not (ICC and
N2/N1 ratio). Post-hoc analysis suggested significant pair-wise
differences among all method pairs except for single-level Lord
and multilevel Wald methods. The effect size was large for the
method factor at η2

partial = 0.51, followed by moderate effect sizes
for θ (η2

partial = 0.08), DIF Type (η2
partial = 0.05) and N2

(η2
partial = 0.05). Table 2 and Figure 1 show the results based

on Type I error rate, averaged across the ICC and N2/N1 ratio
levels due to their main effects being statistically nonsignificant
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and negligible effect sizes (η2
partial = 0.003 and 0.005, respectively).

Corresponding results for all levels of manipulated factors can be
found in Supplemental materials (under Results, B1-B6).

In null conditions, Type I error rates were maintained quite
well at around the 0.05 level for three of the four studied methods
(see Table 2 and Figure 1). When no DIF was simulated (null
conditions), only multilevel MH rates rose above 0.05 level, in
particular in conditions where numbers of between-level (N2) and
within-level (N1) units increased (in the range of 0.054 to 0.079).
The pattern of performance was quite similar when small DIF and
large DIF conditions were studied, in that multilevel MH Type I
error rates were again higher across the studied conditions when
compared to the other methods. For example, when small DIF was
introduced, elevated Type I error rates were observed in particular
for the multilevel MH method and under unequal θ conditions (i.e.,
when means for the two groups were different) with Type I error
rates reaching 0.15 levels. When large DIF was simulated, patterns
of elevated Type I error rates were similar to those previously noted,
in that higher Type I error rates were found in conditions with
unequal θ and a larger number of N2 and N1.

It is noteworthy that two methods, as reported in Table 2,
single-level Lord and multilevel Wald test, yielded Type I error
rates at or below 0.05, suggesting methods’ ability to maintain levels
of false positives at a reasonable level (see “5 Discussion” for a
more detailed reporting). The single-level MH method yielded rates
below 0.05 across conditions, particularly those with fewer N2 and
N1 and across theta levels. One exception was noted in a condition
with unequal θ, and large N2 and N1, where the Type I error rate
reached 0.058. Under large DIF, across studied conditions, elevated
Type I error rates were observed for the multilevel MH where Type
I error rates ranged from 0.071 to 0.263. Unsurprisingly, the highest
rates were observed in conditions where means between the focal
and reference groups were unequal (i.e., the focal group’s mean
was lower by 0.75 standard deviation) and when between-level and
within-level units were 30 and 50, respectively.

4.2 Power rates summary

Based on ANOVA, it was found that five of seven factors
were statistically significant at the 0.05 level (i.e., N2, N1, N2/N1
ratio, method, and DIF magnitude), while two were not (ICC and
θ). Post-hoc analysis suggested only one, statistically significant,
pairwise comparison—single-level Lord and single-level MH.
The effect sizes were large for DIF Type (η2

partial = 0.49), N2
(η2

partial = 0.45), and N1 (η2
partial = 0.22), and moderate for the

method factor at = 0.07. A small η2
partial = 0.04 was associated

with N1/N2 ratio, while negligible effect sizes were found for
the two remaining statistically nonsignificant main effects of θ

(η2
partial = 0.001) and ICC (η2

partial < 0.001). Corresponding results
for all levels of manipulated factors can be found in Supplemental
materials (under Results, C1-C6).

Several observations were noted in examining results for power,
as shown in Table 3 and Figure 2. Namely, across all four methods,
when large DIF was introduced, high power rates were observed
across all conditions. Rates of 0.80 or higher were noted, with
large N2 and N1 yielding near or 1.00 power rates. The lowest
power rates when DIF was large, albeit still above 0.80, were found T
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FIGURE 1

Type I error rates across ICC and sample size ratios across Level-2 and Level-1 sample sizes for studied conditions with 0.05 reference line.

in conditions when N2 = 10 and N1 = 25. It was only in these
conditions with fewer observations at between-level and within-
level that we observed some variation in methods’ performance,
such that the highest power rates were observed by single-level MH,
followed by multilevel MH, multilevel Wald, and single-level Lord,
respectively.

More differentiations among the methods to detect items that
were simulated as DIF was found under small DIF conditions.
Namely, here again we observed that the order of more powerful
methods (i.e., higher observed power rates) remained similar to
those in small sample sizes of large DIF conditions. Single-level
MH and multilevel MH yielded the highest power rates across
conditions, but to differing levels. Specifically, the power rates were
considerably lower across the conditions when DIF was small for
all methods. For example, in conditions with the lowest number of
N2 and N1, power rates ranged from 0.350 to 0.559 for balanced
and 0.240 to 0.437 for imbalanced sample sizes, respectively. As N1
increased to a sample size of 50, power rates increased to 0.590 to
0.811 for balanced and 0.707 to 0.892 for imbalanced conditions,
respectively. The impact of sample balance/imbalance was observed
across the conditions such that, on average, imbalanced sample
sizes across N1 yielded lower power rates when compared to the
balanced sample sizes, although those differences diminished as
sample sizes increased.

5 Discussion

To achieve equitable measurement, identifying DIF items in an
assessment is of paramount importance. While research on DIF
detection methods abound, little is known about their ability in
the presence of multilevel (nested) data. Given the prevalence of
nested data in various social sciences (e.g., students are nested
within schools; employees are nested within companies/industries),
it is important to consider multilevel structures of data when
conducting DIF analysis and evaluate the consequences of applying
single-level methods when data are multilevel. Thus, the current
study examined the performance of the four DIF detection methods
in their ability to appropriately identify DIF items when data are
nested. Specifically, we considered two methods that directly allow
for modeling of nested data within the procedure and two routinely
used single-level DIF detection methods in the score- and model-
based frameworks. As such, the current study extended Magis
et al. (2010) framework and provided important information for
practitioners to consider when investigating DIF, in particular of
their choice of the method.

A simulation study was conducted to evaluate the performance
of the four DIF detection methods under various conditions
when data were generated as multilevel. In addition to the
aforementioned observations which were averaged across factors
that yielded nonsignificant main effects and minimal effect sizes,
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we reflect further on the methods’ performance. As presented in
Figures B1–B6 (Type I error rates) and C1-C6 (Power rates) under
Results in the Supplemental materials, we observed in a more
nuanced way that no one method outperformed the other three
across all conditions. For example, recently proposed multilevel
Wald and single-level MH had similar performance in terms of
controlling Type I error rates under or around 0.05 levels across
most conditions. In only two exceptions, these two methods yielded
Type I error rates above 0.05. Specifically, for multilevel Wald, Type
I error rates averaged above 0.05 levels (the rates were around 0.07
and 0.08) included conditions where DIF was modeled as small,
N2 = 30 and N1 = 50, unequal θs with fixed ICC and imbalanced
N1/N2 ratio. For single-level Lord, Type I error rates of 0.06 and
0.07 were observed only when both N2 and N1 units were small
(i.e., 10 and 25, respectively), conditions with fixed ICC, when
N2/N1 ratio was imbalanced and DIF was large. Similarly, as shown
in Figures under Results in the Supplemental materials, power
rates across various conditions tended to be the highest for single-
level MH and multilevel MH methods, and differentiation among
the methods was largely found in small sample sizes (N2, N1, as
well as N2/N1 balanced and imbalanced ratios) when DIF was
modeled as small.

In addition to the performance in detecting DIF, it is worth
noting that the four studied methods vary in complexity. The
two model-based methods, the single-level Lord and multilevel
Wald require estimating item parameters, while the two score-
based methods rely on summed scores. The multilevel Wald
method consists of two stages, with an initial screening stage
that uses extended Wald-2, followed by the formal evaluation
stage that uses extended Wald-1. This approach is more complex
and requires a researcher to have specific methodological skills
when compared to, for example, a more straight forward single-
level MH method. Another promising technique for selecting
anchor items is Regularized Differential Item Functioning (Reg-
DIF; Belzak and Bauer, 2020), which introduces a penalty function
during the estimation process for anchor item selection. This model
can be implemented using either frequentist (Magis et al., 2015;
Robitzsch, 2023) or Bayesian (Chen and Bauer, 2023) estimation
methods. Additionally, Tutz and Schauberger (2015) proposed
a new penalty approach to DIF in Rasch models. Currently, it
appears that neither method has been adapted to handle nested
data structures. Despite this, we find the Bayesian approach
especially promising. This is because Bayesian software, like Stan
(Carpenter et al., 2017), seamlessly integrates with other advanced
DIF detection methodologies, such as Moderated Nonlinear Factor
Analysis (MNLFA; Bauer and Hussong, 2009). Furthermore, the
accessibility of Bayesian approaches to IRT (Fox, 2010) has been
greatly enhanced by R packages like brms (Bürkner, 2017), which
enable the fitting of complex models with minimal coding effort.

Related, the accessibility of the four studied methods also varies,
with three of the four methods being developed and implemented
with relatively easy access within R, while multilevel Wald method
requires knowledge of flexMIRT. Therefore, given the reasonably
good performance of single-level methods when multilevel data
are present, we recognize that it might not be necessary to always
employ a more complex DIF detection method that accounts for
the nested structure.

As with any simulation study, generalizability of our results
and interpretations of them is bound by the choices of simulation
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FIGURE 2

Power rates across ICC and theta levels for studied conditions with 0.80 reference line.

conditions. In what follows, we discuss limitations of our study
while reflecting on the future research directions. One limitation
is related to the choice of our use of dichotomously scored data
and the 2PL model for data generation. Namely, we studied only
dichotomous items which while prevalent in educational contexts
may be limiting to contexts where Likert-type items or partial
credit items are used. It would be important to further study
methods’ performance in polytomous scored nested data to have
a more complete understanding of the impact of multilevel data on
detecting DIF. We briefly reflect on that Huang and Valdivia (2023)
study which introduced the novel method of multilevel Wald
examined polytomously scored data, and the authors demonstrated
a promise of multilevel Wald in such context. While generating
item responses based on the 2PL model, the score-based MH
methods were relatively disadvantaged since they use unweighted
raw scores as the matching criterion. However, we did find that they
perform well in many simulation conditions. Additionally, ILSAs
such as PISA, use 2PL to calibrate binary scored items, further
motivating our study design choices. Second, we encountered some
issues in convergence which should be further studied. As noted
in Appendix D, the vast majority of the methods had high levels
of convergence, with over 99% of replications within conditions
converged for the three methods. The lowest convergence rates,

however, with an overall average of just over 82% was found
in multilevel MH. While convergence was not an issue in the
majority of the conditions, it was most pronounced in conditions
where N2 = 10 and N1 = 25, with unequal theta, which as
noted above would be something to keep in mind when analyzing
data. Furthermore, we examined Monte Carlo standard errors
(MCSEs) across studies outcome variables, in order to better
understand our choice of 100 replications. As noted in Appendix
E (Supplemental materials), we computed MCSEs and found them
to be stable and comparable in size across the methods (with
some variation). We also generated new data for two conditions
with 1,000 replications and analyzed results for three of the four
methods.7 The goal here was to examine whether the MCSEs
would change (possibly decrease) when a much larger number
of replications was considered. First selected condition yielded
MCSEs based on 100 replications that were similar to the average
MCSEs across the studied methods/conditions (∼0.05 and 0.36,

7 Due to computational time, we computed MCSEs for three of the four
methods (all but multilevel Wald method), although given similarity of MCSEs
when replications = 100 and 1,000 for any of the three studied methods, we
would expect multilevel Wald results based on 1,000 replications to also be
very consistent.
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for Type I and power, respectively). Second selected condition
yielded MCSEs that were more varied across the studied methods
(e.g., for Type I rate, MCSEs ranged from 0.05 to 0.10, and for
power, MCSEs ranged from 0.05 to 0.15 across the methods).
Both of these conditions included N2 = 10 and N = 25, with
fixed ICC, while DIF and θ were different between them. As
summarized in Appendix C, the results suggested very small
changes when replications were increased to 1,000 compared to
those found under 100 replications. Recognizing that we only
examined two such conditions, and because it is a good practice,
we encourage researchers to consider MCSE computation when
deciding on what number of replications are desirable in the
study to achieve stable results, preferably prior to conducting the
analysis.

Additional limitation of the current study is related to our
DIF-related factors. Because we wanted to establish impact of
nested data structures on DIF detection methods, we focused
on the simulation design that reflected more features related to
features of data (e.g., between- and within-level units sample sizes,
ICC values, etc.) rather than DIF. In addition to including other
choices across the data structure factors, further attention should
be given to DIF-related factors. For example, we only studied
uniform DIF, and while a reasonable choice (e.g., Huang and
Valdivia, 2023 found good performance of multilevel Wald in
polytomous data for uniform and non-uniform DIF), it would
be important to incorporate other DIF features, including non-
uniform DIF. In the current study, we assumed that latent
proficiency variances were equal across the groups. As Pei and
Li (2010) found, latent proficiency variance had an impact on
DIF detection. Thus, future research should consider examining
this feature as well. Another aspect of DIF consideration concerns
what is known in the literature as within- and between-DIF. Our
study exclusively focused on the within-cluster DIF, as opposed
to between-cluster DIF. In a multilevel data context, within-
level DIF is generated at the individual level, whereas between-
level DIF is generated at the cluster level. Outside a multilevel
data context, most simulation studies generate DIF in a way
that is analogous to the within-cluster DIF, as DIF effect sizes
are typically not moderated by cluster membership. Given this,
the present study focused only on within-cluster DIF, as we are
most interested in research scenarios where one may reasonably
consider well-established single level methods. Future research
should focus on between-cluster level DIF in the presence of
clustered observations, as past research has shown that this is
when DIF detection methods explicitly designed for multilevel
data structures are most advantageous (per French and Finch,
2010, 2013, 2015; French et al., 2019). Additionally, we only
surveyed four DIF detection methods, which as one of the
first studies that conducted such comparison, seems reasonable.
However, we recognize that several other options exist. Thus, future
researchers studying DIF in contexts of nested data might include
other possible methods, such as aforementioned SIBTEST (Shealy
and Stout, 1993), hierarchical logistic regression, or Bayesian
approaches.

The current study provided important information to
practitioners to aid the selection of DIF detection method. We
recognize that aspects of the design (such as sample size) play
an important role which a researcher should consider when
gathering validity evidence for generalization when engaging

in DIF detection analysis. For example, having larger sample
size at the between-level (N2) was shown to be advantageous
in detecting DIF items (i.e., generally, power rates were higher
for conditions where N2 increased while keeping N1 the same,
compared to analogous conditions where N1 units were increased
but N2 were the same). Thinking about design, this would
suggest when designing a study, a researcher might consider
having larger sample size at the between-level units. We further
observed that ICC levels we investigated did not seem to make
a big impact on the results, which might partially explain
why the single-level methods also performed quite well. Given
that it was not a single method that outperformed the rest in
the simulation, we recommend that researchers consider the data
structure, along with additional information regarding accessibility,
complexity, knowledge of the methods, when selecting any DIF
detection method.

Our recommendation for applied researchers regarding which
method to use when studying DIF is somewhat complex.
Given the results, we cannot provide a blanket recommendation
in favor of one method over another, as their performance
depended on context. For example, when focusing on detecting
only large DIF effects, most methods, except the multilevel
MH, exhibited sufficient power and displayed appropriate Type
I error rates. Multilevel MH performed particularly well (as
did the other methods), yielding high power rates across
conditions when sample sizes were larger. When small DIF
effects were modeled, our results suggested a more complex set
of recommendations is warranted. Namely, when the number
of between-level units is small, the single-level MH may be
the best choice as it (along with the multilevel MH) had
the highest power while maintaining an acceptable Type I
error rate. On the other hand, when the number of between-
level units is large, either the single-level Lord or multilevel
Wald is preferable as they maintain adequate power and
Type I error rates.
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