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We offer this synthesized framework as a tool to reveal mathematical activity in a 
non-formal making-space. In particular, we connect research at different grain 
sizes to illustrate and explain how mathematics plays a crucial, if often implicit, 
role in making activities. We  begin by describing the Approximate Number 
System and the Ratio-Processing System, and explaining how those systems 
connect to both embodied cognition and Thompson’s (1994) conceptualization 
of quantities. Then, we examine how prediction and anticipation relate, with a 
particular emphasis on how social feedback guided the emergent mathematical 
activity. We  offer this framework as a way to perceive, account for, and 
understand the multi-layered nature of experiencing mathematical activities.
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Introduction

Four years ago, the first and third author were crowded around a laptop, watching the 
video of a preschool-aged boy trying to put together pieces of plastic and metal to build a 
battery-powered car in a non-formal making-space. We watched him twist and turn and snap 
pieces together, trying different shapes and angles. He failed to fit two pieces together, put one 
of the pieces down, picked up another piece, failed again, and then rotated the new piece until 
it finally fit. He paused, looked at the shape of the car with the new piece attached, then cast 
around for another piece to add. We thought that perhaps mathematical play scholars would 
identify him as engaging in mathematical activities (e.g., Wager and Parks, 2014).

But then we watched a video of 4th grade students placing pieces of tape on the floor, and 
a video following two high school students creating a robotics car as part of a Science 
Olympiad1 competition. In both videos, the students fit (and failed to fit) pieces together, 
rotated and twisted pieces and their bodies, thought and talked about their robots moving in 
a variety of ways, compared what they saw with what they wanted to happen, and revised their 
activities accordingly. We started to wonder how much mathematical activity the field of 

1 More information about Science Olympiad available here: https://www.soinc.org/about/mission.
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mathematics education would see, even as they were engaging in 
similar actions to the little boy.

“There’s definitely mathematical play happening,” Caro said. 
“But I’m not sure how we  can convince other mathematics 
educators - their mathematical activity does not look or sound 
enough like math.”

“Even though it’s just as much math as the young boy. So how do 
we describe the mathematics they are experiencing and experimenting 
with?” asked Amber.

This manuscript is our answer to that question - a theoretical 
synthesis across the scales of mathematical activity, in order to provide 
layers of different types and grain sizes of evidence. We know that 
identifying mathematical cognition in non-formal contexts where 
formal math representations play little to no role can be a difficult 
proposition. Often, spoken, written, and notation-based performances 
are taken as evidence of mathematical activity, and a tempting 
corollary is that mathematical activity is thus evidenced by and 
through the same representations. Furthermore, formal educational 
contexts focus primarily on explicit learning - that is, learning that 
falls within the spectrum of consciousness (Nathan, 2021), 
where learners.

are given the goals explicitly, directed to learn a specific skill or 
pattern, shown its structure, and then engage in the learning 
activity. … Conscious learning processes are generally well 
remembered, subject to explicit monitoring and control, and can 
often be accurately described with words (p. 75).

However, the mathematics in activities that have low-to-no formal 
representations can be  easily missed, even when the learners are 
experiencing a mathematical activity and experimenting with 
mathematics. This is because a hallmark of the low-to-no notation 
environments we examine (such as non-formal making-spaces2) is 
centering the participants’ interests and goals throughout the activity - 
in fact, we could say that our learners ‘are not given the goals explicitly, 
not directed to learn a specific skill or pattern, not shown its structure, 
and then engage in the learning activity.’ As a result, our participants 
often engage in implicit learning, outside of the spectrum of 
consciousness, which is characterized as generally opposite to explicit 
learning. The most important feature of such implicit learning is that 
describing such learning is difficult - to remember and/or to verbalize 
(Nathan, 2021). Consequently, in our work (Katirci et  al., 2021; 
Shokeen et al., 2021), we link between different scales of learning in 
order to reveal and understand mathematical experiences that may 
not be  otherwise visible to the learners themselves, much less 
observers who rely upon the externalization of learning as evidence of 
learning. During this previous work, we developed and subsequently 
used a new framework for identifying mathematical activity in such 
low-to-no notation environments, and we share, illustrate, and argue 
for the importance of such a framework here.

Our theoretical development of this framework will begin here, 
by focusing on the participant within a mathematical activity. We do 
so by describing two primitive structures present in the typical human 
brain (the Approximate Number System and the Ratio-Processing 
System; e.g. Matthews et al., 2015), tying those neural structures to 
Alibali and Nathan’s (2012) embodied cognition view of perception 
and action, and interpreting both of those frameworks through 
Thompson’s (1994) conceptualization of quantities. Then, we expand 
from a participant-centered perspective to the social and material 
context of that participant. We  introduce prediction (Bieda and 
Nathan, 2009), and participation and anticipation (Tzur, 2007) as 
components of mathematical activity, and describe how our 
adaptation of failure paired with feedback (e.g., Williams-Pierce et al., 
2021) manifest within the collaborative youth making activity under 
examination. In short, we begin ‘zoomed in’ at the neuron level, then 
increasingly ‘zoom out’ layer by layer in increasing grain size until 
we reach interpersonal interactions and their roles in the mathematical 
activity (see Figure  1). We  conclude this article by exhorting 
researchers to use such a layered lens in low-to-no notation 
mathematical activity environments, and emphasizing the need to 
connect this framework to mathematical learning in future 
theoretical work.

2 Our use of making-space (instead of makerspace) is to emphasize the 

active process of making while also engaging in the active process of becoming 

a maker. That is, our participants do not necessarily identify as makers, but are 

still engaging in the process of making. This distinction is further outlined by 

Simpson et al. (2020, accepted).

FIGURE 1

The theoretical layers we synthesize in this manuscript.
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We took this approach of ‘zooming out’ as a way to understand 
the layered experience of mathematical activities at each increase in 
grain size, even though this layering is not linear. For example, the first 
layer may contribute to the second layer, which then contributes to 
both the first and the third layer, and so on. We have left the circles in 
Figure  1 open instead of closed to so indicate, and move fluidly 
between the layers in our analyses later in the paper, to better 
emphasize this nonlinearity of mathematical activity.

We conceptualize each increase in grain size as an increase in 
timescale, as “every process, action, social practice, or activity occurs 
on some timescale” (Lemke, 2000, p.  275). While most research 
theorizes at a particular layer of process timescale, our framework 
threads from the fast (e.g., neurons) outside the conscious spectrum, 
to the slower (e.g., tools in use) that occurs within the conscious 
spectrum. We consider this threading to be crucial to centering the 
human experience in our work - after all, being human at a moment in 
time begins with our perceptions, our embodiedness, and then spans 
out to include the material and social context of our body.3 At each 
layer of human experience, ranging from milliseconds to years, 
different theories of mathematical learning and being in the world 
have been proposed. In order to better account for a singular human 
moment and mathematical experience, we  leveraged appropriate 
theories at each timescale. While developing stronger connections in 
the liminal space between each timescale is a future goal, we offer this 
paper as a way to share the theoretical and methodological work 
we have already done and applied.

Background and data collection

Our primary approach for this paper is theoretical, but built 
directly through observing and analyzing video data with the aim of 
examining it for evidence of mathematical play (e.g., Katirci et al., 
2021; Williams-Pierce et al., 2021). The research team who analyzed 
the data is composed of members with varying areas of expertise. 
Three are experts in embodied cognition, in both physical and digital 
learning contexts; one specializes in mathematics learning in maker- 
and making-spaces (and originally collected the video data); one 

3 And can be spanned out again to include the larger timescales, such as the 

socio-historical context of our body, and so on. However, these further layers 

are beyond the immediate scope of this paper.

specializes in mathematical play. All five have considerable expertise 
with mathematics learning in both formal and non-formal contexts. 
The multidisciplinary nature of the team is how we developed our 
comprehensive framework over time, as our collaboration during 
analysis revealed both the need and the expertise for developing this 
framework. In the remainder of this section, we describe the source of 
the video data, in order to contextualize the illustrative example we use.

Our video data is composed of three video records of the same 
20 min of a collaborative robotics activity with a group of five 4th 
grade students (3 boys and 2 girls, pseudonyms Ryan, Peter, Aaron 
and Fawn, Almond, respectively). Two of the video records were from 
the perspective of two students wearing GoPro cameras on their chest, 
while the third was a standing camera that captured the entire group’s 
activity from a slight distance. The activity took place within the 
context of a physical classroom located in a public school as part of a 
broader TinkerLab activity series. Consequently, the classroom was 
treated as a non-formal making-space (Simpson et al., 2023) by the 
facilitating teachers and students alike, and the students had all 
volunteered to participate in the TinkerLab. The robotics activity had 
two phases: Phase 1, the groups put masking tape on the floor to 
establish a path; and Phase 2, the groups switched places, seeking to 
measure the path built by the other group, and to program a robot, 
Dash, to successfully travel it. Crucially, while the students were given 
the goal of and tools for each Phase, they were not instructed 
specifically on how to achieve the goals with the given tools – rather, 
each goal required the students, as a group, to interpret the goals in 
order to collaboratively complete each Phase. We describe each phase 
in more detail later in the paper, with Phase 1 used to illustrate the first 
three layers of our framework, and Phase 2 used to illustrate the next 
two layers. The final layer is illustrated using data from both phases. 
We have split the phases and layers up in this fashion to try to simplify 
what is quite a complex data set.

Phase 1: the first three layers of 
mathematical activity

We will now introduce the first three layers of our framework, 
then describe two specific data excerpts while sharing what each layer 
reveals about the excerpt. Our review of these first three layers will 
focus on each individually, but the following vignettes will describe in 
more detail how the layers interact and intertwine during 
mathematical activity. These data excerpts were selected specifically 
because of their clarity  - that is, Phase 1 is composed of multiple 
moments that are as richly layered as these examples, but not all are as 
simple to reveal and describe to a newcomer.

We begin at the smallest grain size: the neurons that compose the 
learner’s brain (Figure 2). In particular, the Approximate Number 
System (ANS) ties estimation of a number of objects directly to certain 
animal neuron activation patterns, including humans (e.g., Dehaene, 
1997; Matthews et al., 2015). A human adult, glancing at a set of three 
objects on a table, immediately subitizes: they know automatically and 
without conscious thought that there are three objects present (e.g., 
Miller, 1956). If that human adult is shown three objects repeatedly, 
the part of their brain responding to those three objects begins firing 
less actively as the perceiver becomes habituated to the number of 
objects being subitized. In such a situation, if a fourth object is added, 
there is a small increase in relevant brain activity; whereas if three 

FIGURE 2

The first theoretical layer.
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more objects are added (making six in total), a larger increase in 
relevant activity occurs. In other words, when the number of objects 
being perceived increases slightly, there is little increase in brain 
activity; but if the number increases considerably, so does the brain 
activity (e.g., Dehaene, 1997; Piazza et al., 2004).

Building upon the ANS, Matthews et al. (2015) describe the Ratio-
Processing System (RPS) as a neural system in which we intuitively 
and immediately perceive and compare magnitudes4 of objects. With 
the ANS and the RPS as primitive structures that perceive and 
compare magnitudes, certain components of perception are built 
directly into our brains, while our bodies have additional perceptual 
systems that build upon those neuronal perceptions of magnitude or 
otherwise influence our cognition. Alibali and Nathan (2012) describe 
perception and simulations of perception:

When humans perceive objects, they automatically activate 
actions appropriate for manipulating or interacting with those 
objects (Ellis & Tucker, 2000; Tucker & Ellis, 1998). Thus, 
imagining an object can evoke simulations of perception (i.e., of 
the actions associated with perceiving the object) or of potential 
actions involved in interacting with the object. (p. 254).

Perception, whether based upon primitive numerical structures 
or otherwise, leads to action (such as gesture, physical movement 
upon the environment, or spoken language), and that action leads 
back into our perception. This feedback loop of perception, action, 
and imagining is described as mental simulation (Alibali and Nathan, 
2012), and together compose the embodied nature of our cognition 
(Figure 3). This feedback loop can be evidenced through spoken or 
written language, physical movements that impact the physical world, 
or  - often  - can only be  inferred by an outside observer through 
expression of gestures. These gestures are communicative acts that 
reveal perception and action in a variety of ways, such as through 
pointing (deictic) gestures that connect spoken language with objects 
or people in the physical environment or representational (such as 
iconic or metaphoric) gestures that directly reflect the state of 
perceptions and planned actions of the gesture. Consequently, we rely 

4 Although Matthews et al. (2015) describes ‘quantities’ as an inherent quality 

of magnitude of an object or representation, we  instead refer to that as 

magnitude, and reserve the term quantity for Thompson’s (1994) definition.

upon action and gesture as both composing and revealing perception, 
action, and their composite into cognition.

Lastly, our theoretical bridge between perception and action and 
the mathematical characteristics of the external world, Thompson 
(1994) specifically defines quantity as a conceptual entity - that is, 
quantity does not reside in the object, but rather in the perceiver 
(Figure  4). As noted above, our references to magnitude should 
be  taken to refer to both Matthews et  al.’s (2015) use of the term 
quantity, and to the perceived quality of an object or representation of 
taking up space [re: Thompson (1994) definition]. Thompson (1994) 
goes on to define quantity as a schematic that involves “an object, a 
quality of the object, an appropriate unit or dimension, and a process 
by which to assign a numerical value to the quality” (p. 184). We further 
describe these three layers using two vignettes in the next section.

Analyzing the first three layers

We use examples solely from Phase 1  in this section, and 
consequently describe the Phase 1 activity here in more detail 
(Phase 2 is described when we analyze the remaining layers). In 
this phase of activity, our five students are given a roll of masking 
tape and told to create a path from one end of the classroom to 
the other. The students, knowing that the path they made would 
be  used by the other group in Phase 2, decided to create a 
challenging path. As a result, throughout the entire phase, the 
students negotiated what ‘challenging’ meant, in terms of the 
lengths of the path and the angles between two neighboring 
lengths (e.g., Shokeen et al., 2021). Our illustrative examples for 
this manuscript come from this phase.

Vignette #1
Our first data excerpt begins with Aaron (crouching on the floor 

in red shorts), who placed the sticky edge of the tape on the end of the 
already placed path, and unrolling the still-attached roll of tape, 
smoothing it down as he  goes, to create the next length of path 
(Figure 5A). Peter then says, “Too big!” about the piece of tape Aaron 
is placing, as longer pieces of path are not as ‘challenging’ as short 
pieces connected by angles. Then (Figure 5B) Aaron starts rolling the 
tape back up to shorten the path, and (Figure 5C) Peter helps him rip 
and place the final piece.

First, Peter’s judgment of “too big” indicates that the speaker is 
perceiving the length of the masking tape as a quantity by Thompson’s 
(1994) definition: the masking tape is the object; the length of the 
piece of masking tape is the quality they are considering; and the 
internal standard for magnitude is an appropriate unit or dimension. 
Although our participants did not have access to a measuring tape in 
order to assign a numerical value to the quality of length, they may 
have done such measuring if the tool had been present (as we have 
evidence they appropriately used such a tool in Phase 2). In other 
words, Peter is using quantity as conceptualized by Thompson (1994), 
and that quantity is perceived and then compared with a simulated 
perception (Alibali and Nathan, 2012) of appropriate unit or 
dimension. This perception and comparison of length is rooted in the 
speaker’s ANS and RPS: although a lack of discrete or explicit 
measurement makes it difficult to determine how their ANS is 
contributing, the comparison of the physical length’s magnitude with 
their imagined unit’s magnitude can be directly attributed to their RPS.

FIGURE 3

The first two theoretical layers.
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The speaker’s comparison of the magnitude of the tape with their 
internal standard presents a communication problem, as they must 
externalize their internal standard in some fashion for their group mates. 
One potential method of externalizing might be gesturing what “too 
long” is - while this does not externalize the internal standard, it indicates 
what magnitude the speaker is considering to be  too much, which 
implies that the desired length of tape should be  shorter. Another 
potential method was to shorten the piece by ripping the tape: this would 
serve to indicate what an appropriate length of tape would be, while 
requiring fellow perceivers to examine the magnitude of a resulting piece 
of tape in order to evaluate whether the new pieces are perhaps “too 
short.” When a piece was too short, the choice of actions was different: 
they were crumpled up and thrown away, or used to extend a pre-existing 
length of tape already on the floor. While these actions and gestures may 
differ from each other and from the action of rolling the tape back up as 
shown in the vignette, they each indicate the same perception of 
magnitude, the quantification of that magnitude, and a comparison to 
an internal standard. Our next illustrative excerpt comes from the same 
group of participants and the same phase of activity, but focuses on 
perception of magnitude of angle, instead of length.

Vignette #2
In this vignette, two pieces of tape have already been placed, and 

Ryan tentatively places a third strip of tape down at what he mentally 
simulates to be a “10-degree” angle (Figure 6, left). As the group does 
not have access to tools for measuring angles (e.g., a protractor), Ryan 

uses two modalities to communicate the magnitude of the angle which 
he  is simulating: verbally, through mathematical language, and 
concretely, by lightly placing the tape down. Pairing these two 
modalities means that other participants who may have different 
mental simulations of a “10-degree” angle from Ryan’s, can use their 
own perception of the magnitude of angle that he has created as an 
external representation of his simulation and perception.

Following the tightness of Ryan’s proposed angle, the group 
discussed whether such an angle could actually be navigated by Dash. 
As Dash brings its own constraints - through mobility and the design 
of the controlling software - the participants compared their mental 
simulation of Dash’s ability to take angles with their perception of the 
magnitude of angle as manifested by Ryan’s tape. Fawn said, “Can we do 
a ten degree angle? I do not think Dash can do ten degree angles,” and 
was confirmed by the teacher, who had overheard her: “Dash cannot 
do like really tight angles.” Almond suggested making the angle “a little 
wider,” pairing her language with a gesture that moved her hands apart 
to make the magnitude of her ‘a little wider’ visually available to 
everyone else. Fawn followed her suggestion up by moving the end of 
the piece of tape further to the right and expanding the angle (Figure 6, 
right) to what became the established location of the third piece of tape.

Similarly to Vignette #1, the speaker’s comparison of the 
magnitude of the angle with their internal standard presents a 
communication problem, as they must externalize their internal 
standard in some fashion for their group mates. Ryan externalized his 
preferred magnitude in language and in concrete action by placing the 

FIGURE 4

The first three theoretical layers.

FIGURE 5

(A) Aaron unrolls the tape; Peter says, “Too big!”; (B) Aaron starts rolling the tape back up to shorten the piece; (C) Aaron and Peter rip the tape (length 
represented by red line).
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tape, perhaps because the magnitude represented by “10-degrees” may 
not share consensus (that is, Ryan’s mental simulation of 10 degrees 
may be different from the mental simulations of others in the group). 
Another potential method of externalizing could be gesturing what 
“10-degrees” is - much as Almond externalized the magnitude of “a 
little wider” through gesturing. Then, participants introduced a new 
constraint based on their past experience with Dash. They mentally 
simulated Dash’s ability to turn, and compared that simulation to their 
simulation of the turn that would be required with Ryan’s placement 
of the tape. As the comparison of those two magnitudes found Dash’s 
maneuverability wanting, they then communicated Dash’s angle 
movement constraints through language and gesture, and proposed a 
different magnitude of angle that Dash could navigate.

This vignette highlights how each participant perceived and 
quantified the magnitude of angles, compared with their own internal 
standard of the desired angle. While the language, actions, and gestures 
may differ from each other and from those shown in Vignette #1, they 
each indicate the same perceptual bases for magnitude, quantification 
of that magnitude, a comparison to an internal standard, and resulting 
communication about preferred magnitudes, whether of length or angle.

Phase 2: the next two layers of 
mathematical activity

We use Tzur’s (2007) description of two stages in mathematical 
activity (participation and anticipation) operationalized through 
Bieda and Nathan’s (2009) description of prediction to specifically 
identify moments of failure and feedback (e.g., Williams-Pierce, 2019). 
In this section, we  focus on the next two layers of mathematical 
activity. See Figure 7 for the added layer.

Tzur’s (2007) two stages in mathematical activity are defined as 
participation and anticipation5. During the participatory first stage, the 

5 Tzur (2007) actually titled these stages participatory and anticipatory. 

He uses ‘anticipation’ as a form of ‘anticipatory,’ but avoids using ‘participation’ 

learner has a mathematical understanding that emerges only when 
prompted by the activity at hand, and cannot be  independently 
demonstrated without the contextual cues or tools. During the 
anticipatory second stage, however, “the learner can independently 
call up and utilize an anticipated activity-effect relationship proper for 
solving a given problem situation” (p. 278) - in other words, they are 
able to use their mathematical understanding without engaging in the 
activity first. Since we are examining a single group activity rather 
than a single student engaging in multiple mathematical learning 
contexts, we operationalize Tzur’s definition using Bieda and Nathan’s 
(2009) conceptualization of prediction.

Bieda and Nathan (2009) describe prediction as looking at a 
pattern, and predicting a later instance of that pattern, whether near 
or far. While Bieda and Nathan focused on a function represented on 
a Cartesian plane, and having students predict a point on the function 
that appears beyond the represented plane, we adapted their work to 
our context and content. In particular, we consider every piece of 
programming to be an indication of prediction - the students are 
predicting that the code they input will result in Dash traversing the 
tape path. Although this may seem quite different at first blush, Bieda 
and Nathan’s focus on mathematics, overt predictive work by students 
prior to execution, and representational fluency - that is, engaging in 
mathematical activities that involve moving between multiple forms 
of the same phenomena – aligns powerfully with our own work (e.g., 
Simpson et al., 2021; Katirci et al., 2022).

When students engage in prediction, we  consider them to 
be engaging in the anticipation stage; when their predictions fail to 
manifest as expected, we examine how they adjust in the moment. In 
those moments of failure, we  use an adapted version of Williams-
Pierce’s (2019) failure and feedback framework, originally developed for 
mathematical play within videogames. In this case, a moment of failure 
is indicated by what Tzur (2007) describes the “the well-known ‘oops’ 

as a form of ‘participatory’ (we hypothesize because of the very common usage 

of the word ‘participation’ with quite a different definition). We switch regularly 

between both forms of both terms throughout this manuscript.

FIGURE 6

Ryan begins to lay the next piece of tape down at a tight angle to the previous length (left); Fawn moves the tape over to increase the angle (right).
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experience” (p. 277) in the participatory first stage, where a student does 
something, notices a mistake as it manifests in their activity, and goes 
on to adjust it in the moment. We consider this ‘oops experience’ to be a 
moment of recognizing the failure of their prediction, alongside the 
attendant feedback of what actually happened - that is, an in-activity 
adjustment due to the failure and feedback pairing. Such failure and 
feedback can take multiple forms - here, we focus on a single form: the 
physical manifestation of failure and feedback through Dash enacting 
code. See Figure 8 for the added layer.

Analyzing the next two layers

In this phase of the activity, the goal for the group was to make a 
single code-based program for Dash, so that the robot would travel 
accurately on a new path (designed by the other group). The tools 
available were a roll of measuring tape, a pencil, an iPad loaded with 
Blockly (the software for programming Dash; see Figure 9, left), and 
Dash itself. Figure 9, right shows the path and Dash, as well as Ryan, 
the student in the red shirt, actively measuring a segment of the path. 
To achieve this goal, students needed to measure the path, then 
program those measurements into Blockly, as well as the direction and 
angle between segments.

In this excerpt, the students were engaged in the activity of 
measuring, then programming Dash to travel over the first length of 
tape, turn 90 degrees to the right, and then travel over the second piece 
of tape. We now analyze this excerpt with our additional theoretical 
framings to help reveal what happened as a result of that activity.

Vignette #3
This vignette involves students in the anticipatory phase using 

the measuring tape and pencil to measure segments of the path. 
We consider them to be in the anticipatory phase because they are 

efficiently measuring and annotating their measurements on the 
path, anticipating (predicting) that those measurements will 
be  accurate and appropriate for programming Dash. Other 
indicators of the anticipatory phase are evidenced by a lack of 
indicators of the participatory phase: for example, the students do 
not discuss in detail how to use the measuring tape, explicate any 
moments of failure during their measuring, or make adjustments to 
their measuring in-activity in order to improve their measuring 
practices. The activity of measuring simply occurs, smoothly and 
without remark, as they engage in the Thompson’s quantification 
process: the object is the tape path; the quality of the object is the 
length of a segment of the tape path; the appropriate unit is 
centimeters; and the process by which to assign a numerical value to 
the quality is to place the measuring tape over the segment and 
annotate the result on the tape path itself.

However, a complication with this quantification emerges during 
the programming of Dash. Although the measuring process is 
occurring within the anticipatory phase, the use of those 
measurements - and the programming and enacting of Dash’s code - is 
occurring within the participatory phase, as students recognize 
various aspects of the activity they did not expect. In particular, as the 
students program Dash to travel over the first part of the path, which 
has been measured to be 90 centimeters, they do not account for the 
fact that Dash is a broad object. In other words, how Dash is placed 
on the starting point - perhaps it is just at the very tip of the tape, or 
perhaps Dash’s center is located on the tip of the tape  - greatly 
influences its final location. Dash will go 90 centimeters regardless, but 
placing Dash at the very tip of the tape will result in a closer location 
to the start than if Dash is centered on the beginning of the tape.

In this part of this vignette, students programmed Dash to travel 
over the first length of tape, turn 90 degrees to the right, and then 
travel over the second piece of tape. However, when they placed Dash 
on the starting point of the line, they placed Dash’s ‘front’ at a slight 

FIGURE 7

The first four theoretical layers.
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FIGURE 10

(A) Dash is slightly off the path after traveling the first length; (B) Dash turns 90 degrees to the right; (C) Dash travels forward and stops right at the end 
of the first length of the path.

angle to the tape, resulting in Dash getting further to the left of the 
tape path with every movement forward (see Figure 10A). After Dash 
turned 90 degrees to the right (Figure 10B), its forward movement just 

brought it to the end of the first part of the tape path  - that is, 
essentially correcting for the angled start (see Figure 10C), instead of 
traversing the second length of tape.

FIGURE 8

The first five theoretical layers.

FIGURE 9

Left: The app Blockly on an iPad; Right: has multiple important components – the path in yellow tape; Dash, the blue robot on the yellow tape; Ryan, 
in the red shirt with the measuring tape laid over a segment of the path.
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The students inputting Dash’s code indicates their prediction that 
Dash will - in enacting their code - result in Dash correctly traversing 
the first part of the path, turning, and finishing at the end of the 
second part of the path. However, as their prediction failed to 
materialize and they experienced an ‘oops’ moment (a moment of 
failure), they realized that they failed to arrange Dash’s ‘front’ 
correctly so that it was aligned with the tape path. Dash ending up off 
the path is their visual feedback (paired with that moment of failure), 
which supported them in adjusting their activity and prediction 
successfully. As additional evidence that their input code acts as a 
prediction, when they put Dash back at the beginning of the path, 
carefully make sure the front is aligned with the path, and then re-run 
the same program, they chant “perfect, perfect, perfect” with each 
move, confirming that Dash is traveling exactly how they wanted 
and predicted.

This ‘oops’ moment indicates that they are in the participatory 
phase, recognizing in the moment the visual feedback that indicates 
their failure. In particular, the students are perceiving the path Dash 
is traveling, and comparing that path with the path they predicted 
– this comparison leads to the students experiencing the failure of 
their prediction and correctly interpreting that attendant in-activity 
visual feedback. This recognition and interpretation supports the 
students in being able to shift into the anticipatory phase, as Dash’s 
directionality requires that they attend to exactly how Dash is 
placed before executing the code. In other words, if they did not 
perfectly line up Dash in all future attempts, Dash would end up in 
a variety of different places each time, which would prevent the 
students from seeing whether or not their code was actually correct. 

This one instance of this error was sufficient, however, and the 
students never again placed Dash without correctly positioning the 
front. In summary, the result of failure and feedback in the 
participatory phase helped the students recognize a requirement of 
the activity that made it actually possible for them to achieve the 
anticipatory phase.

Analyzing the final layer

Our final layer extends failure and feedback to the social 
environment, resulting in a description of how social feedback 
influenced the collaborative mathematical activity (Figure  11). In 
other words, we shift to describing how failure and feedback also 
manifest socially, as a key component of collaboration and interaction 
within this low-to-no notation environment. Social feedback is our 
operationalization of how these participants engaged in collaboration 
throughout the activity, with each participant bringing their own 
perception of quantity, anticipation, and so on from the previous 
layers. As a result, each layer interleaves complexly with the other 
layers from the other participants, and consequently, we have given 
this final layer its own section, and we present examples from both 
phases here.

Vignette 4
The role of social feedback was particularly crucial in Phase 1, as there 

was a lack of mathematizing tools: each student had to use their own 
perception and mental simulation of quantities, as no more precise 

FIGURE 11

All six theoretical layers.
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method was at hand. For example, at one point the students decided that 
they wanted to lay the path underneath two chairs that are tucked under 
a table. As one student began laying the tape underneath the chairs, 
another student, Hannah, said something in a doubtful tone (not captured 
on audio), while tracing the floor under the chairs to indicate that there 
might not be enough room for Dash (Figure 12, left). Aaron says, “No no, 
that would work” and Ryan agrees, also tracing the floor under the chairs. 
As Hannah spoke, she was mentally simulating her perception of the size 
(quantities) of Dash, comparing that mental simulation with her 
perception of the space available underneath the chair, and visualizing a 
conflict between those two perception-based simulations such that Dash 
would run into the chair, rather than go smoothly underneath it. Aaron 
and Ryan, though, are either engaging in different mental simulations – 
one in which Dash fits under the chairs – or are merely thinking of Dash 
following the path (a participatory view), while Hannah was anticipating, 
and using that anticipation to predict that some issues would arise. Aaron 
and Ryan keep placing the tape, and then Peter joins to place the last piece 
of tape that brings the path out from under the chairs (Figure 12, middle). 
As Peter finishes, he says, “We should move the chairs out, too, if it does 
not fit,” and Ryan says, “Yeah.” Then, when Phase 1 is ending, and the 
group is leaving their tape path for the other group to use, this group runs 
back to remove the chair from the path, indicating that the mental 
simulations of Peter and Hannah have convinced the others that Dash 
probably will not fit (Figure 12, right). In other words, this is a moment of 
social feedback, in which members of the group convinced other 
members that a moment of failure (Dash getting stuck under a chair) was 
imminent unless adjustments were made.

Vignette 5
As another example from Phase 2, students are using a measuring 

tape and a pencil to measure a part of the path, and then write their 
measurement of that strip of tape on the path. After measuring and 
writing down the measurement, they move directly on to measuring 
the next part of the path without commenting, because they have 
successfully completed a step of the measurement. Measuring by itself 
is an activity that can be successful or unsuccessful in itself, even 
before Dash enacts the measurement – but the data showed no 
example of the students accidentally flipping the measuring tape to the 
inches side, or noticing any other potential measuring issues that 
could happen. This illustrates the other side of the ‘oops moment,’ 
because it is a ‘we measured the path appropriately and are not 
surprised by it’ moment. Sometimes, the students are successful but 
remark on their success, such as when Aaron coded Dash to traverse 
the first three lines and the angles within them, and after Dash ended 

up in the correct spot, Aaron said, “That’s perfect!” We consider this 
to be an example of social feedback paired with success, rather than 
failure, and an illustration of the participatory stage rather than 
anticipatory, because they were at least mildly surprised that it worked 
(e.g., they lacked confidence in their prediction), unlike when using 
the measuring tape.

Conclusion

We have described all six of our layers for theorizing about 
mathematical activity (Figure 11), each building upon the previous layers, 
using one of the many rich moments of mathematical activity to describe 
what each layer looked like in situ. These first three layers describe how 
quantities in the world are perceived by our neuronal structures, and 
we mentally simulate and act upon those perceived quantities. In other 
words, this part of the framework describes a perceiver-centered view of 
how different layers of experience are involved in implicitly mathematizing 
our world, in order to better reveal the mathematical activity within a 
low-to-no notation environment. Then, we moved up to the next two 
layers, which expanded further around the participants into their shared 
spaces and community, and provided insight into how the implicit 
mathematizing from the first three layers builds the foundation for the 
next layers of mathematical activity. In particular, we focused on how 
mathematical predictions and anticipation of certain mathematical results 
contribute to mathematical activity, and how feedback contributed to the 
shifting shape of mathematical activity.

We then separated out the final layer, social feedback, because the 
relationship of social feedback to other aspects of our theoretical layers 
can be quite complex. For example, prediction, anticipation, and social 
feedback combined in an example from Phase 2 where Dash went too 
far and moved off the tape path. The students had input a centimeter 
measurement that they anticipated and predicted would lead Dash to 
the correct location on the tape. Consequently, when Dash stopped at 
the wrong place, the students received that paired feedback and 
failure, and amplified that feedback and failure through talking about 
it (e.g., social feedback). However, often feedback and failure are not 
clearly evident, because if what the students predicted would happen 
did happen, they had no need to remark upon it. In situations like this, 
where feedback and failure are missing, and the students move on to 
the next step, we concluded that they were content with their previous 
work. We also suggest that this is an indicator that students have 
shifted from participatory to anticipatory, because they have learned/
internalized what to do or not to do, which results in no failure and 

FIGURE 12

Hannah tracing the tape under the chairs (left); Peter placing the last piece of tape (middle); and moving the chairs at the end of Phase 1 (right).
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often no social feedback. However, how social feedback relates to the 
other layers deserves further attention in future research.

The primary goal of this framework is to support scholars in 
identifying rich mathematical activity that may not look very 
mathematical at first glance, such as occurs in non-formal making spaces. 
Threading through multiple scales of the human experience serves to 
build up layers of evidence of mathematical activity, revealing the complex 
interplay of perception and simulation of quantities underlying choices 
about simple pieces of tape. These layers offer a multi-layered view of 
activity that can serve as a guide for understanding mathematical learning 
in similar contexts. In particular, we anticipate that the six layers can act 
as guideposts for researchers seeking evidence of learning in low-to-no 
notation environments. Examining the role of perception, simulation of 
magnitude, and quantification can both reveal, establish, and value the 
implicit mathematization of activities that otherwise lack explicit 
characteristics of mathematical activity and learning. Then, the additional 
three layers incorporate the embodied and social nature of mathematical 
learning  - how tools and community can influence our learning as 
we  move through mathematical activities with other learners.  
We  hope that future research investigates the relationship between  
often-implicit mathematical activity, as we  describe here, and often-
explicit mathematical learning, as is particularly valued in formal 
learning contexts.

With this work, we hope to contribute to the “domestication of the 
eye” described by Radford (2010, p. 4) in his work on understanding the 
embodied nature of mathematical seeing and objectifying. However, the 
eye we wish to domesticate is our own - that of mathematics educators 
and researchers who likewise seek to connect up and through the layers 
of human mathematical experience. In particular, we hope the field will 
use these layers when examining low-to-no notation environments for 
mathematical activity and value, regardless of the age group, context, or 
mathematical content. Future work will focus specifically on connecting 
the layers of mathematical activity directly to how mathematical learning 
occurs within and between each layer – but for now, the goal is to merely 
see and respect the mathematical activity.
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