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This study investigated whether performance on a mathematical strategy-
generating task showed evidence for a serial order effect (decreasing fluency 
but increasing originality and creativity of strategies over time). One-hundred 
and fifty-five undergraduate students generated as many strategies as they 
could to solve a three-digit subtraction problem for 8  min, and the resulting 
strategies were evaluated using fluency and originality indexes that were heavily 
informed by research on creativity. Results showed evidence for a serial order 
effect, such that strategy fluency decreased across the working period, but later 
strategies were rated as more original/creative. These results demonstrates that 
classroom practices that encourage strategy generation can be a useful tool to 
help students think more creatively in mathematics.
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Introduction

Although many students believe mathematics is a rigid subject that overemphasizes 
memorization, creative thinking plays an important role in mathematics (Mann, 2006). The 
use of creative thinking in mathematics – mathematical creativity – can be found at all stages 
of mathematics knowledge and education, as it involves creating insightful solutions to new 
problems or finding novel ways to approach old problems (Ervynck, 1991; Liljedahl and 
Sriraman, 2006). Despite the importance of creativity in math, this aspect of numerical 
cognition remains understudied, especially regarding how students can generate new strategies 
to solve old problems. This is unfortunate, as the ability to generate multiple strategies is a 
hallmark of adaptive expertise (Hatano and Inagaki, 1986).

One finding from the larger creativity literature that would be of interest to the field of 
mathematical cognition is the serial order effect (Christensen et al., 1957; Beaty and Silvia, 2012; 
Wang et al., 2017). The serial order effect describes the phenomenon that when participants are 
asked to continuously generate ideas, over time the number of ideas generally decreases 
(fluency) but the creativity of ideas generally increases across a working session. Evidence of this 
effect in mathematics would suggest that practices that exhaust conventional strategies can be a 
fruitful activity to reach more creative ideas, even if this process feels less fluent.

The serial order effect was first noted within the broader creativity literature by Christensen 
et al. (1957), and subsequent studies found a serial order effect with children (Ward, 1969; 
Phillips and Torrance, 1977; Milgram and Rabkin, 1980; Runco, 1986; Bai et al., 2021) and 
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adults (Kraus et al., 2019; Miroshnik and Shcherbakova, 2019; Agnoli 
et al., 2020). Studies have also seen evidence of this effect across a 
variety of tasks (Phillips and Torrance, 1977; Johns et al., 2001) and 
explored a range of scoring methods, such as the subjective ratings of 
ideas as high- or low-quality (Parnes, 1961), and ratings of flexibility 
(Runco, 1986), originality, and uniqueness (Ward, 1969, Runco, 1986), 
and even automatic scoring methods using semantic distance (Beaty 
and Johnson, 2021).

Mechanisms of the serial order effect

One account for the serial order effect begins with the premise 
that people first retrieve easily accessible ideas from existing 
schemas. Schemas provide the structure for organizing information 
to quickly think about relevant information in an efficient manner. 
However, after exhausting these initial solution strategy ideas, 
students are forced to look beyond ideas in their schemas (Gilhooly 
et al., 2007) which requires slower and more effort-based search 
and problem-solving processes (Ackerman, 1988; Siegler, 1996; 
Geary et  al., 2004; Imbo and Vandierendonck, 2007). Solution 
strategies that lie outside of the typical strategy repertoire do take 
time to generate, but they can result in the production of novel 
ideas and strategies. For example, the unusual uses tasks (UUT), 
which asks participants to generate creative uses for a brick, often 
begin by providing examples such as “to make a wall” and “to make 
a path,” which can come fluently from existing schemas for using 
a brick. After exhausting more conventional ideas for how to use a 
brick, students later provide more unique strategies such as “use as 
a cooking stove” or “to fold taco shells.” Indeed, Beaty and Silvia 
(2012) found evidence for a serial order effect in UUTs. Students 
may take a similar path in mathematics by often relying on efficient 
schema-based strategies that are quick and easy to access because 
they are well-learned and familiar (Cho et al., 2011).

If the serial order effect is also present in mathematical cognition 
when it comes to strategy generation, then this finding makes three 
important contributions. First, it would extend past findings of the 
serial order effect, which largely has relied on abstract tasks, to the area 
of numerical cognition which has more educational relevance. Second, 
a serial order effect in mathematics would also work to bridge the 
general creativity literature to the mathematics creativity literature, 
which may lead to additional important insights for enhancing 
creative thinking around math. Thirdly and lastly, the presence of a 
serial effect in mathematics would help lend further support to 
classroom practices that encourage students to struggle with strategy 
generation. For some time now, mathematics educators have requested 
more time for students to generate, exhaust, and share strategies 
before receiving instruction (Kapur, 2014). However, making this type 
of change requires additional support from a variety of perspectives 
and tools, which is what we hope to provide here.

The current study

The goal of the current study was to examine whether the serial 
order effect was present within the performance patterns on a 
mathematical strategy generation task. To measure mathematical 
creativity, we presented participants with a simple arithmetic problem 

(820–410) and asked them to generate as many strategies to solve the 
problem as they could think of for 8 min. We looked for evidence of a 
serial order effect by examining two response patterns within the data: 
(1) a steep decline in the frequency of strategies produced across the 
working session, and (2) an increase in creativity of strategies 
generated. Based on previous findings (Beaty and Silvia, 2012), 
we surmised that the trend would show a quadratic relationship for 
creativity scores, where initial strategies produced by participants are 
common and unoriginal, but later strategies become more creative.

Methods

Participants

A total of 155 undergraduate students at a large public university 
were recruited, primarily through a recruitment pool in the 
psychology department, and received credit in exchange for their 
participation. The resulting sample was largely female (n = 114 female), 
young in age (M = 20.82 years, SD = 2.43, range = 18–35 years), and 
represented a range of different race/ethnicity groups (40% Asian, 17% 
Latino, 17% White, 8% Middle Eastern, and 18% reported Biracial/
Other). Over 80% of the sample reported taking and passing calculus, 
suggesting the sample was sufficiently proficient in mathematics (and 
thus, should have the prior knowledge necessary to solve our three-
digit subtraction problem). The study was approved through the 
participating university’s institutional review board, and all 
participants were provided with a consent form and verbally 
consented to participate in the study. Data can be viewed (open and 
available) at osf.io/vzegu.

Mathematical strategy generation task

The mathematics task used in this study required students to 
provide multiple strategies to solve a three-digit subtraction problem 
(820–410). We opted to use a simple problem for our task as opposed 
to more complex mathematics problems for three specific reasons. 
First, a simple problem downplayed any inherent advantage that 
students with high mathematical knowledge have compared to 
students with less mathematics experience. Although mathematical 
knowledge and mathematical creativity are related (Bicer, 2021), a 
strong background in mathematics does not guarantee creative ability 
in math, and even students with lower mathematical ability may 
be able to show creative thinking otherwise be overlooked by tasks 
that require more advanced understanding of math. As we  were 
interested in student’s ability to think creatively independent of their 
mathematical ability, this was an important distinction. Second, the 
math problem selected required no carry operation or other function 
that heavily loads onto working memory, which would 
disproportionately affect the performance of students with math 
anxiety or low working memory (Ashcraft and Kirk, 2001). Third, a 
simple arithmetic problem lent itself to many possible strategies 
compared to problems with more constraints, which allowed us to 
better measure variability due to creative ability.

We note that past work has emphasized the importance of 
instructing participants to think creatively during creativity tasks (see 
Acar et al., 2019), however, the participants in this study were instead 
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instructed repeatedly to try to come up with a completely new strategy 
that they had not already reported. We opted for this approach instead 
of explicitly instructing participants to think creatively to better assess 
people’s natural tendency to think creatively in math when pressed for 
strategies. Further, we did not provide explicit instructions to think 
creatively to avoid any additional cognitive load a participant might 
experience conceiving what constitutes mathematical creativity and 
what counts as creative during the task, all while trying to 
generate strategies.

Procedure

Participants were brought into the lab individually to take part 
in a study advertised as a problem-solving study and seated in front 
of a computer. Participants were informed that they were going to 
be presented with some mathematics problems, and that they would 
be asked to provide a mathematical strategy to solve the problem. 
The experimenter walked through the example problem of “555–
234” and provided an example of a mathematical strategy that 
would count (“5–2, 5–3, 5–4 = 321”) and types of strategies that are 
not mathematical and would not count (e.g., “I could google it,” “I 
could use a calculator”). The experimenter informed the participant 
that they would be shown a single mathematics problem per page 
with the task to provide a unique strategy that had not been 
provided before. Participants were further informed that after 
providing a strategy, they should click next and proceed to the next 
page where they would repeat the procedure. Participants were 
instructed to do this for 8 min, providing as many unique strategies 
as they could by entering them into a textbox on the computer. An 
8-min working period was informed by a pilot study that found 
participants ran out of ideas at about 6 min. Thus, for this proof-of-
concept study, the decision was made to have students generate 
strategies for 8 min.

Coding mathematical strategies

After data were collected, two independent raters reviewed their 
responses and coded each strategy. One rater was a graduate student 
while the second rater was an undergraduate research assistant. The 
first rater developed the coding strategy which was heavily informed 
by previous coding procedures and shaped by conversations with local 
elementary school mathematics teachers about common mathematical 
strategies. Both raters underwent extensive training. Raters first 
discounted strategies that either violated the experimental instructions 
(non-mathematical strategies such as “I could google it”) or were not 
complete strategies (indicating that the participant started a strategy 
but did not complete it). All strategies provided by students were 
mathematically accurate. Appropriateness and efficiency of strategy 
were not factored into the coding, as there were only a few strategies 
that could be considered efficient for this problem, and our interest 
was to explore the fluency and creativity of these strategies. Thus, 
we did not omit any strategies that seemed less efficient or appropriate. 
If the strategy produced was mathematical, it was counted.

The two raters subsequently rated all strategies for fluency and 
were in agreement on 91% of the total strategies, corresponding to a 
Cohen’s kappa of 0.66 which is considered “substantial agreement” 

(Landis and Koch, 1977). For strategies that the two raters initially did 
not agree, the raters discussed each strategy and came to a consensus 
on all of them. This resulted in a list of legitimate mathematical 
strategies each participant provided. Each strategy then received a 
strategy number to indicate the order in which the participant 
produced them (e.g., strategy 1 indicated the first legitimate strategy 
the participant provided, strategy 2 would be the second, etc.). Raters 
scored all strategies generated for creativity, which could include 
similar strategies that had previously been reported (though 
participants were instructed to generate new strategies that they had 
not previously reported at any time point). Participants on average 
produced 5.34 strategies (1.84 SD), and participants ranged from 
producing 1 to 10 strategies (see Supplementary Table A3).

After being coded for fluency, raters coded the strategies for 
creativity on a scale from 1 to 4, with 1 representing strategies that 
were not very original and represented more common and 
conventional strategies taught in school for three-digit subtraction 
(e.g., 8–4, 2–1, 0–0), and 4 representing very original strategies that 
are not traditionally taught in school in relation to the problem and 
are considered very creative (e.g., (1000–420) – (1000–820); see 
Appendix for codebook). It is important to recognize that it is 
impossible to know with complete accuracy what types of strategies 
each participant learned throughout school growing up—further and 
more expansive research would need to be conducted to fully assess 
this (see limitation section). However, other creativity tasks share this 
limitation (e.g., UUTs). Thus, as this study is a first step, we developed 
and used a codebook informed by conversations with mathematics 
educators to analyze our strategy data. The creativity ratings between 
the two raters resulted in an ICC value of 0.81, which is considered to 
indicate general good reliability between raters (Koo and Li, 2016). 
Table 1 provides an illustration of an example student’s strategies and 
scoring. In this example, the student produced three strategies 
(fluency), one non-mathematical strategy would have been omitted 
(“I could google it”), and for each strategy, a creativity score was 
created by averaging the two raters’ scores.

Data analysis plan

The serial order effect predicts that as time goes on, it becomes 
more difficult to generate ideas – or in our case, mathematical 
strategies – because students are required to think beyond 
convention. For the analyses, we included fluency data for up to ten 
strategies as this was the maximum score produced by participants 
(e.g., each participant received a score of 1 or 0 for up to ten 
strategies, depending on whether they provided a strategy). In 
addition to predicting a general decline in fluency, the serial order 
effect would predict that the creativity of strategies become more 
creative across time and then level out across a relatively small 
amount of time (e.g.,10 min). One issue raised by Beaty and Silvia 
(2012) in testing this aspect of the serial order effect is that 
participants almost always produce a different number of ideas, so 
initial and later strategies are relative to the participant and difficult 
to compare using traditional analyses. To account for the differences 
in strategies produced, we used multilevel modeling with random 
intercepts to predict creativity from strategy number at level 1, and 
then used random intercepts at level 2 to account for individual 
differences in total strategies by participants.
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Creativity scores were created by averaging the two raters’ 
creativity scores. After the raters examined and found that the 
distribution was skewed toward lower creativity scores, we decided to 
treat creativity as an ordinal variable, consistent with past findings and 
analytical methods used in previous serial order effect research (Beaty 
and Silvia, 2012). As our interest is in reproducing the serial order 
effect in mathematical creativity, and previous work has found a 
quadratic trend (Beaty and Silvia, 2012), we tested for both a quadratic 
trend as well as cubic, following statistical convention to test one order 
above the hypothesized trend.

Results

Serial order effect

To assess whether there was a serial order effect in students’ 
mathematical strategies, we first looked at how fluency changed across 

the strategy-generating process. As seen in Figure  1, over 90% of 
participants provided three mathematical strategies, but afterward 
their ability to provide more strategies sharply declined. To further 
examine this relationship, we conducted a logistic regression that used 
strategy number to predict the odds of generating an additional 
strategy (Equation 1).

 Strategy ovided b b StratNum ei i ijPr = + +0 1  (1)

If there is a serial order effect in mathematical fluency, then 
our model would be  statistically significant with a negative 
coefficient, indicating that for every strategy a participant 
provides, the expected odds of providing another strategy 
decrease. This is exactly what we  found— strategy number 
statistically significantly predicted the odds of providing a 
strategy b = −0.97, SE = 0.05, p < 0.001, such that it becomes more 
difficult for students to provide an additional strategy with each 
strategy they produced.

TABLE 1 Example coding of a Student’s strategies.

Strategy 
number

Participant’s reported strategy Fluency 
score

Rater 1 creativity 
score

Rater 2 creativity 
score

Average 
creativity rating

1

Subtract 0 from 0

Subtract 1 from 2

Subtract 4 from 8

1 1 1 1

2
We can divide both by 410. then we get 2–1 = 1 and 

then multiply 410, we can get 410
1 3 3 3

3

Subtract 820 from 1,000 then subtract 410 from 

1,000 and then subtract the difference of (1000–

820) from (1000–410)

1 4 4 4

4 I could google it 0 NA NA NA

FIGURE 1

Percent of sample who provided a mathematical strategy, across mathematical strategy number. Shaded regions represent ±1 standard error.
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To assess whether creativity increased with each strategy 
generated, we ran a random-intercept multi-level model analysis 
(represented by Equation 2), in which we tested for linear (b1), 
quadratic (b2), and a cubic trend (b3). The result of this model 
showed a significant cubic effect (b3 = 0.03, p < 0.001). 
We additionally ran a separate model with only the linear and 
quadratic term (Equation 3) and compared the two models using 
a likelihood ratio test.

 

Creativity b b StratNum b StratNum b StratNum eij j i i i ij= + + + +0 1 2

2

3

3

bb uj oj0 00= +γ  
(2)

 

Creativity b b StratNum b StratNum e
b u

ij j i i ij

j oj

= + + +
= +

0 1 2
2

0 00γ  
(3)

We found that the model with the cubic term had better 
model fit than just the quadratic and linear terms alone, χdiff

2

(1) = 33.83, p < 0.001 (AIC of quadratic model = 1990.49, AIC of 
cubic model = 1958.65). This indicated that the serial order effect 
was also present in mathematical creativity and followed a cubic 
trend, however, this effect warrants caution as it is likely driven 
by a few individuals who contributed creative strategies toward 
the end. We saw further evidence of this cubic trend in Figure 2, 
which displays the mean creativity score for each strategy and 
shows a pattern where creativity scores started relatively low, 
increased to a plateau, and then increased again at the end (with 
greater variability, as only 8 participants were able to produce a 
9th strategy, and only 5 participants able to produce a 
10th strategy).

Discussion

In this study, we investigated whether mathematical creativity as 
measured by students’ multiple strategies to solve a three-digit 
subtraction problem showed evidence for a serial order effect. 
Performance on our mathematical strategy generation task revealed 
evidence for a serial order effect, such that a large percentage of 
students were able to provide a handful of initial strategies, but the 
frequency of additional strategies declined thereafter. Yet, the 
strategies that were produced by students down the line were rated as 
more creative than those that were initially produced, consistent with 
past findings of the serial order effect (Beaty and Silvia, 2012).

One unexpected finding was that our data followed a cubic trend, 
whereas we only predicted a quadratic based on prior research. This 
cubic trend illustrated an initial rise, followed by a plateau, and then a 
subsequent surge in creativity. We believe this cubic trend was largely 
driven by a subgroup of students who were able to generate more 
creative strategies toward the end of the working period, which 
differed from the broader quadratic pattern we  saw in most 
participants where students first exhausted conventional ideas and 
then generated a few more creative strategies.

Past work has highlighted how individual differences, such as 
higher fluid intelligence, moderated the typical serial order effect 
curve (Beaty and Silvia, 2012), and recent work has found among 
children, divergent thinking ability was related to generating more 
original ideas faster, and that selective attention moderated the serial 
order effect (Bai et al., 2021). Such individual differences may be able 
to shed light on why some students may show a higher spike in 
creativity at the end of a working period compared to others, as well 
as make better predictions about serial order effect curves, but more 
research is needed.

FIGURE 2

Average creativity scores for each strategy number. Shaded region represents ±1 standard error.
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What might explain this trend in fluency and creativity? Some 
work has suggested that semantic spreading of activation may 
be responsible for the serial order effect, as the semantic distance 
between the target word and participants’ responses increased 
across a working period for tasks such as the UUT (Hass, 2017). 
Others have focused more on an executive function account of the 
serial order effect, where time allowed for executive functions to 
come online to help with creative idea generation (e.g., inhibition 
of previous responses, interference management to reduce 
fixations, and executive switching to switch categories of ideas and 
come up with more creative ideas, see Beaty and Silvia, 2012). 
According to this view, the first strategies produced were 
conventional because they were directly retrieved from existing 
memory schemas (e.g., “build a wall” to describe a creative use for 
a brick). However, after exhausting convention, students relied on 
creative thinking processes to generate more remote ideas, and 
creativity relied on executive functions that take time to come 
online. Despite potential distinct or collaborative mechanisms, the 
results of our work showed that this effect is not just found in 
abstract laboratory tasks, but also in the educationally relevant 
domain of mathematics.

Implications

Our findings show that students’ mathematical strategies 
gradually become more creative in a relatively short amount of time 
(8 min), suggesting that classroom practices that encourage strategy 
generation, such as “invented strategies,” can not only lead to more 
creativity in mathematics but help students recognize mathematics 
involves creative thinking. This follows in line with the calls of 
mathematics educators to encourage more thinking time into their 
practice (Tobin, 1987), and time for students to generate, exhaust, and 
share strategies before receiving instruction (Kapur, 2014). Our results 
demonstrate that students are capable of generating unique and 
appropriate strategies when given the time to do so. But there is 
variability in student’s ability in this practice and understanding the 
specific sources of this variability is an important follow-up to 
our work.

Limitations and future studies

This study attempted to bridge findings from the larger 
creativity field to the domain of mathematical cognition, but 
there were several limitations. First, we were unable to capture 
what strategies students had learned during their schooling or 
did not learn in the schooling, in order to gauge exactly how 
remote and creative a strategy was for a given participant. 
Although we share this limitation with other creativity tasks that 
depend on assessing original or non-original ideas, future work 
at the classroom level where all students learn the same strategies 
would bolster our findings.

Second, our results could have looked differently if we had asked 
participants to explicitly “be creative” or framed the mathematics task 
as a “creativity task” (Wallach and Kogan, 1965). Ultimately, we chose 
not to present the mathematical strategy generation task as a creativity 

task, as we were concerned about increasing the cognitive load of the 
participant (by trying to figure out what counts as creativity in 
mathematics while generating strategies), and as such instructions 
may have removed some of the ecological validity from the paradigm. 
It is interesting to note that despite not having framed the task as a 
creativity task, students still showed a serial order effect pattern that 
aligned quite well with the serial order effect found for domain-
general creativity tasks.

Third, our sample included university students at a competitive 
university, in which students must take and pass mathematics 
courses with high grades to be  admitted. This population of 
students is not representative of all students, and while the purpose 
of this study was to find evidence of the serial order effect in 
mathematics, future research would bolster our findings if 
replicated among various subpopulations of students and other sets 
of mathematics problems.

Lastly, all research on the serial order effect must be limited to a set 
amount of time to collect data, in this case, 8 min. An important 
follow-up to this work would be to extend the time by minutes, hours, 
or days to better understand how creative thinking in mathematics may 
unfold over longer periods of time. Additionally, we encourage future 
studies to follow-up on this line of work with preregistered hypotheses 
and analyses, as the current study was not preregistered and thus, 
cannot be considered confirmatory but rather exploratory in nature.
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