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I have three more than you, 
you have three less than me? 
Levels of flexibility in dealing with 
additive situations
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Assessment and intervention in the early years should ideally be  based on 
evidence-based models describing the structure and development of students’ 
skills. Mathematical word problems have been identified as a challenge for 
mathematics learners for a long time and in many countries. We  investigate 
flexibility in dealing with additive situations as a construct that develops during 
grades 1 through 3 and contributes to the development of students’ word 
problem solving skills. We introduce the construct based on prior research on 
the difficulty of different situation structures entailed in word problems. We use 
data from three prior empirical studies with N  =  383 German grade 2 and 3 
students to develop a model of discrete levels of students’ flexibility in dealing 
with additive situations. We  use this model to investigate how the learners 
in our sample distribute across the different levels. Moreover, we  apply it to 
describe students’ development over several weeks in one study comprising 
three measurements. We derive conclusions about the construct in terms of 
determinants of task complexity, and about students’ development and then 
provide an outlook on potential uses of the model in research and practice.
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1 Introduction

Mathematics instruction at school not only aims at conveying mathematical concepts and 
procedures, but also at students’ skills in mathematical modelling, which means to apply these 
concepts and procedures in more or less realistic real-life situations (Cevikbas et al., 2022). 
Word problems are mathematical tasks, which are presented in verbal form and embedded in 
a short narrative, e.g., “Chris has 4 marbles. Chris has 3 marbles less than Alex. How many 
marbles does Alex have? “They constitute a standard part of school curricula world-wide (e.g., 
Verschaffel et al., 2020; Krawitz et al., 2022), where they serve two main purposes: They can 
be seen as very basic exercises in mathematical modelling, but more importantly they allow 
to engage students with relationships between mathematical concepts and real-world 
phenomena they can describe (Freudenthal, 1983; Verschaffel et al., 2020). In grade 1 and early 
grade 2, most of the encountered word problems require addition or subtraction since other 
operations are often not introduced before mid-grade 2. We focus on additive one-step word 
problems in this contribution, since they are frequent in mathematics text books (Gabler et al., 
2023) and research (Verschaffel et al., 2020). These word problems can be solved with a single 
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additive arithmetic operation (addition or subtraction) and contain 
no irrelevant information. They are part of primary school curricula 
from grade 1 onwards.

It is a long-standing result that solving word problems poses a 
substantial challenge for mathematics learners in primary school and 
beyond (Greeno, 1980; Verschaffel et al., 1992; Daroczy et al., 2015, 
2020). Further, it is also well-established that these problems are 
modulated by a range of individual characteristics such as general 
cognitive abilities, language skills, and arithmetic (symbolic) 
calculations skills as well as by linguistic or mathematical task 
characteristics (Daroczy et al., 2015). In addition, strategies to solve 
word problems have received substantial attention in prior research. 
Based on traditional models of word problem solving (e.g., Kintsch 
and Greeno, 1985; Blum and Leiß, 2007), some authors have proposed 
that, after initially reading a difficult word problem, learners may 
be able to reinterpret the presented situation in a way, that results in 
an easier word problem type (Greeno, 1980; Stern, 1993). Recent 
research has found that primary school students differ systematically 
in their ability to reinterpret situations presented in additive one-step 
word problems in the proposed way (Gabler and Ufer, 2021, 2022). 
The skill to engage in such re-interpretations has been studied as 
flexibility in dealing with additive situations (Gabler and Ufer, 2021, 
2022). To provide a conceptual basis for assessments and interventions 
in the early school years, we propose a level model of this skill 
construct, that is based on a re-analysis involving an IRT-scaling of 
data from three empirical studies. Such level models structure a 
one-dimensional skill construct into a sequence of discrete levels, that 
describe increasing demands and item complexity associated with the 
skill construct. They may also allow a criterial interpretation of 
students’ individual skills in terms of the demands they can or cannot 
master (Koeppen et al., 2008; Ufer and Neumann, 2018). Further, they 
may provide an important link from assessing the skill towards 
interventions building on the students’ current skill levels and 
targeting more complex, but still within-reach demands.

To introduce the flexibility skill construct and our study, we will 
first discuss models of the word problem solving process and task 
characteristics influencing students’ performance on additive one-step 
word problems. Based on this, we will introduce the flexibility skill 
construct and present methodological backgrounds on level models 
of mathematical skill constructs based on item response theory.

1.1 Word problem solving

Many established models of the word problem solving process are 
transformative in nature (Czocher, 2018): They assume that learners 
transform an initial situation model of the presented real-world 
situation into a mathematical model, and after solving the problem 
entailed in this mathematical model, they transform their solution 
back to their initial situation model (cf. Kintsch and Greeno, 1985; 
Verschaffel et al., 2020). The situation model comprises the learner’s 
mental representation of the textual presentation of the situation in 
the word problem, the text base (Figure 1). For additive one-step word 
problems, a situation model should at least contain the two quantities 
given in the word problem (number of Chris’ marbles, and the 
difference between the number of Chris’ and Alex’s marbles), the 
related numbers (4 and 3), an unknown quantity (number of Alex’s 
marbles), and a relation between the three quantities as described in 

the problem text (direction of the difference: Chris has 3 less than 
Alex). According to models of reading comprehension (e.g., Kintsch, 
1998), (re-)constructing this situation model from the text base is not 
limited to decoding and representing the presented verbal 
information, but may also comprise making further inferences about 
the situation based on students’ knowledge about the context 
presented in the situation itself (e.g., exchanging marbles, or 
shopping), or about typical situation structures that can be described 
mathematically by addition or subtraction. The reinterpretation 
strategies mentioned above (Greeno, 1980; Stern, 1993) are examples 
of such further inferences.

The mathematical model contains the numbers from the situation 
model, and the relation between them in terms of a mathematical 
operation (addition or subtraction). It may have the form of an 
operation that directly provides the number related to the unknown 
quantity (7–3 = ___), or of an implicit characterization of this number 
(e.g., ___ + 3 = 7) like a mathematical equation. Based on knowledge 
about arithmetic operations, learners may transform a mathematical 
model into an equivalent one in the further solution process, e.g., by 
solving the subtraction problem 7–3 = ___ by the indirect addition 
3 + ___ = 7 (Torbeyns et al., 2009).

Even though more extensive models, for example the modelling 
cycle (Blum and Leiß, 2007), comprise further phases such as 
interpreting and validating the results, these phases may not 
be necessary and can be omitted in simple situations such as one-step 
word problems (Kaiser, 2017). It is well-known that learners do not 
necessarily follow the model of the word problem solving process. 
Hegarty et al. (1992, 1995) provide evidence of a direct translation 
strategy (also keyword strategy), in which students focus primarily on 
the numbers and specific terms in the text base, e.g., relational terms 
such as “more” or “less,” or actions such as “getting” or “losing” to 
directly infer the necessary mathematical operation. They offer 
convergent evidence from behavioral, eye-tracking and problem-recall 
studies, that less successful word problem solvers frequently apply this 
strategy, resulting in difficulties extracting and representing relational 
information from the text. In the literature, the importance of rich 
situation models, “in which all key elements and relations in the 
problem situation that are relevant to the solution of the mathematical 
problem posed are represented” is highlighted repeatedly (e. g., 
Mellone et al., 2017, p. 3). Accordingly, many authors call to “provide 
instruction in a method that emphasizes understanding the situation 
described in the problem” (Hegarty et al., 1995, p. 29), for example by 
conveying strategies to build up and make use of rich situation models. 
They also point out, that applying this strategy is not a stable person 
characteristic but may depend on person and task characteristics.

1.2 Task characteristics

Several task characteristics have been found to influence word 
problem solution rates. In their review, Daroczy et  al. (2015) 
distinguish between mathematical factors such as the complexity of 
the entailed numerical calculation, and linguistic factors, such as the 
structure of the presented situation or the way it is presented verbally. 
In a sample of grade 2 students, and in a restricted number range up 
to 20, Gabler and Ufer (2020, p. 77, 79) could not find systematic 
differences in word problem difficulty related to the specific numbers 
(or contexts) used. Consequently, we will focus on three linguistic 
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factors that describe the situation structure presented in the word 
problem: the semantic structure, which describes the structure of the 
presented situation, the unknown set, that needs to be determined in 
the word problem, and the additive vs. subtractive wording of the word 
problem, which relates to additive (“more,” “getting”) vs. subtractive 
(“less,” “loosing”) terms used to describe the situation.

1.2.1 Semantic structure
A range of different real-world phenomena can be described by 

the same mathematical model (e.g., an additive operation such as 
4 + 3 = 7, Figure 1). Up to four different types of so-called semantic 
structures in additive one-step word problems have been differentiated 
(Riley et al., 1983; Figure 1). While word problems can also refer to 
other quantities, these problem types are usually exemplified with 
word problems relating to the numbers of objects in different sets. 
Change structures refer to an increase or decrease of a set of objects. 
Combine structures relate to part-whole structures between a set, and 
two subsets that together make up the whole set. Compare structures 
comprise two disjoint quantities, and a relational statement about 
their difference. Equalize structures have been studied less frequently. 
Like compare structures, they contain two disjoint sets (Chris’s and 
Alex’s marbles), but the relation between the two sets is presented by 
an action—as in change structures—that would (hypothetically) 
equalize the two sets (someone giving Chris 3 more marbles). Change 
and equalize structures are called dynamic, because they entail an 
action, while compare and combine structures are called static (Riley 
et al., 1983).

Word problems with different semantic structures have been 
found to be of systematically different difficulty. Numerous studies 
(e.g., Riley and Greeno, 1988) show that compare problems are more 
difficult than change and combine problems. Few studies have 
investigated equalize problems. However, Stern (1994) reported high 
solution rates (96%) for equalize problems, similar to those for change 
and combination problems, in a sample of first graders. Several 
reasons for this specific difficulty of compare problems have been 
discussed. Stern (1993) points out that in combine and change 
problems, all sets exist as concrete sets, that are observable separate 
quantities or in terms of an observable action. The difference in 
compare problems, in contrast does not describe a concrete set, but a 

relation between two concrete sets (a difference set), that is only 
observable when considering both concrete sets. This can be done by 
setting up a one-to-one correspondence between one concrete set and 
a subset of the other concrete set, and then counting the excess objects 
(Stern, 1998). Representing relational statements as difference sets 
may pose a substantial problem for learners. Here, it makes a 
substantial difference, if quantitative (i.e., described by numbers, e.g., 
three more than) differences are describe, or if only qualitative 
differences (more than, less than) are considered. For example, some 
learners understand quantitative relational statements such as “Chris 
has 3 marbles more than Alex” as being equivalent to “Chris has 3 
marbles, and Chris has more marbles than Alex” – interpreting the 
quantitative relation as a qualitative relation (more than) and a 
statement about a concrete set (Mekhmandarov et al., 1996; Gabler 
and Ufer, 2021). In line with these difficulties, understanding numbers 
as quantitative comparisons between sets is allocated to later phases 
in models of the development of the number concept (under the term 
“relationality”; for an overview see Hartmann and Fritz, 2021).

1.2.2 Unknown set
Three different sets are involved in one-step word problems. In 

change, compare and equalize problems, one set provides a reference: 
This can be the start of a change of equalize action, or the set to which 
another set is compared (e.g., “Chris has 4 marbles. Chris has 3 
marbles less than Alex. How many marbles does Alex have?”). One set 
serves as a result, which can be the result of the change or equalize 
action, or the set that is compared to another one (e.g., “Alex has 7 
marbles. Chris has 3 marbles less than Alex. How many marbles does 
Chris have?”). The third set describes the relation between the other 
two sets as a concrete set in the change or equalize actions, or as a 
difference set in compare statements (e.g., “Alex has 7 marbles. Chris 
has 4 marbles. How many marbles does Chris have less than Alex?”). 
The situation is different for combine problems, where two parts, 
which play similar but complementary roles in the situation, and the 
whole set need to be distinguished.

There is evidence that, at least for young learners, word problems 
with unknown reference or relation set are more difficult than those 
with unknown result set (Gabler and Ufer, 2020; Van Lieshout and 
Xenidou-Dervou, 2020). One reason may be  that the learners’ 

FIGURE 1

Different semantic structures relating to the same mathematical structure.
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standard mathematical model related to the situation structures is of 
the form <reference > <operation (+/−) > <relation > = < result>. This 
would imply, that the unknown result set situations directly provide 
all numerical information to perform the arithmetic operation 
entailed in the model. For unknown reference and relation sets, this 
standard model would result in an implicit characterization of the 
required numerical solution (e.g., <unkown reference > + < known 
relation > = < known result>). In the second case, either the implicit 
problem needs to be solved directly (e.g., by fact retrieval or trial and 
error) or it needs to be transferred into an equivalent, directly solvable 
mathematical model (e.g., <unkown reference > = < known 
result > − < known relation>). Yet, the exact reasons for the observed 
difficulty pattern are still to be clarified.

1.2.3 Additive vs. subtractive wording and 
consistency

In change, equalize, and compare word problems, the change and 
relations can be  expressed additively (“more,” “getting”: additive 
wording) or subtractively (“less,” “loosing”: subtractive wording) in 
the problem text. If students apply the direct translation strategy 
(Hegarty et al., 1995), they will use addition of the two given numbers 
as mathematical model in case of additive wording and subtraction of 
the two numbers in case of subtractive wording. For some word 
problems (e.g., those with unknown result set) this results in a correct 
mathematical model, for others (e.g., those with unknown reference 
set) it leads to a wrong model. For problems with unknown relation 
set, a correct mathematical model results only for subtractive wording. 
Word problems are called consistent, if the direct translation strategy 
results in a (addition/subtraction), that correct mathematical model, 
i.e., if the wording of the word problem (additive/subtractive) reflects 
the operation (addition/subtraction) that can be applied to the given 
numbers directly, to obtain a valid mathematical model. Consistent 
word problems have been found to be easier than inconsistent ones 
(Lewis and Mayer, 1987, “consistency hypothesis”) for primary school 
students (Verschaffel, 1994; Gabler and Ufer, 2020) and adults 
(Daroczy et al., 2020). This means, for example, that the inconsistent 
word problem “Chris has 4 marbles. Chris has 3 marbles less than Alex. 
How many marbles does Alex have?” can be expected to be more 
difficult than the very similar, but consistent word problem “Chris has 
4 marbles. Alex has 3 marbles more than Chris. How many marbles 
does Alex have?.” One explanation of this effect could be that, while 
consistent word problems can be  directly solved using the direct 
translation strategy, inconsistent word problems require a deeper 
conceptual analysis of either the situation model or the mathematical 
model, to arrive at a correct solution (Scheibling-Sève et al., 2020).

1.3 Flexibility in dealing with additive 
situations

Already slight changes to the way a word problem is presented can 
substantially affect their difficulty. Several researchers have argued that 
this could provide a starting point to help students solve more difficult 
word problems.

For example, Stern (1993) and other researchers (Verschaffel, 
1994; Fuson et al., 1996) stress the importance of understanding the 
meaning of relational statements and being able to deal with them. 
The symmetry of relational statements poses substantial challenges to 

students. Only 30% of the first-graders in Stern (1993) interview study 
could identify statements such as “Chris has 3 marbles less than Alex.” 
as equivalent to the symmetric statement “Alex has 3 marbles more 
than Chris.” Being able to do so, however, could allow students to 
convert the inconsistent word problem “Chris has 4 marbles. Chris has 
3 marbles less than Alex. How many marbles does Alex have?” with 
unknown reference set into the easier, consistent problem “Chris has 
4 marbles. Alex has 3 marbles more than Chris. How many marbles 
does Alex have?” with unknown result set.

Similarly, Greeno (1980) argued that learners might find it easier 
to solve change problems with unknown relation set (change) such as 
“Jill had 3 apples. Betty gave her some more apples. Now Jill has 8 
apples. How many did Betty give her?,” if they reinterpret the situation 
as a combine situation with the result set as a whole (8 apples 
afterwards), the reference set (3 apples initially) as one part, and the 
relation set (change) as the other part. Considering that compare 
problems have been found to be harder than equalize problems speaks 
for a similar idea for solving compare problems (Nesher et al., 1982; 
Fuson et al., 1996). Both structures contain two disjoint sets offering 
the opportunity to reinterpret static compare statements such as “Alex 
has 3 marbles more than Chris” in terms of a (dynamic) equalization 
action “If Chris gets 3 more marbles (from someone else), Chris has 
as many as Alex.”

One idea is common to both arguments: Re-interpreting word 
problems in terms of a different situation structure may allow students 
to turn difficult word problems into easier ones. Providing students 
with a range of different perspectives—connected to different situation 
structures—on the same situation may support word problem solving. 
This resonates with works stressing the importance of deep processing 
of situation models in word problem solving or mathematical 
modelling in general (e.g., Stern and Lehrndorfer, 1992; Thevenot 
et  al., 2007; Leiss et  al., 2010). Having perspectives available that 
correspond to easier word problem types may increase the chance to 
find a mathematical model and to solve the word problem. This 
re-interpretation can be seen as a part of the reading process in terms 
of Kintsch (1998) model of reading comprehension: Based on a 
mental representation of the text base in an initial situation model, the 
learner adds new perspectives on the situation by making further 
inferences based on his or her knowledge about connections between 
different situation structures. This idea, however, strongly depends on 
students’ knowledge about these connections, their ability to identify 
similarities and differences between different perspectives on the same 
situation, and their ability to infer new perspectives that are fruitful 
for solving the problem.

Based on these considerations, Gabler and Ufer (2020, 2021) 
hypothesize that being able to perform these re-interpretations for 
additive one-step word problems might be a person characteristic, that 
shows systematic inter-individual variation between primary school 
students. Flexibility in dealing with additive situations can be defined 
as the skill to compare or restructure situation models of additive 
one-step word problems by inferring alternative perspectives on the 
situation that relate to different situation structures (e.g., different 
wording, semantic structures, or unknown sets). Flexibility is 
understood here similar as in cognitive flexibility theory, which 
“includes the ability to represent knowledge from different conceptual 
and case perspectives and then, when the knowledge must later 
be used, the ability to construct from those different conceptual and 
case representations a knowledge ensemble tailored to the needs of the 
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understanding or problem-solving situation at hand” (Spiro et al., 
1991, p. 24). It can be seen as a special case of conceptual knowledge 
of addition and subtraction in the sense of “implicit or explicit 
understanding of the principles that govern a domain and of the 
interrelations between units of knowledge in a domain” (Rittle-
Johnson et al., 2001, p. 346). We note that the conceptualization of 
flexibility applied in this manuscript differs from other views that 
relate flexibility to humans’ ability to shift between different tasks 
(Ionescu, 2012). Instead, flexibility in this manuscript refers to 
students’ knowledge how to solve a specific (word) problem in 
different ways (Heinze et al., 2009; Ionescu, 2012).

Starting from this idea, a test instrument for flexibility in dealing 
with additive situations was investigated in Gabler and Ufer (2022). 
Here, students are asked to compare two verbal descriptions of the 
same situation and decide whether they believe these are description 
about the same situation, or not. Note that this is very different from 
the work by Zorrilla et al. (2024, p. 6, Figure 3) where students were 
provided with a number of related complete word problems, among 
which one problem contained the solution to another one—potentially 
leading to the high frequency of superficial strategies found there. The 
analyses of our skill construct assumed a one-dimensional scale, and 
results showed good reliability (α = 0.80) with second graders rating 
20 dichotomous items. This finding supports the assumption of a 
flexibility in dealing with additive situations as a one-dimensional 
personal characteristic. Moreover, Gabler and Ufer (2022) report that 
the construct predicts students’ word problem solving skills above 
general cognitive abilities, language skills, and symbolic arithmetic 
calculation skills. They conclude, that language skills and symbolic 
arithmetic calculation skills, but not general cognitive abilities 
significantly explain inter-individual differences in students’ flexibility. 
Gabler and Ufer (2024) provide evidence from an experimental 
intervention study, in which training second graders flexibility in 
dealing with additive situations increased not only their flexibility, but 
also their word problem solving performance. The qualitative analysis 
in Gabler and Ufer (2021) showed that students varied substantially 
in their progress during the intervention, depending on their flexibility 
at the start of the intervention. To conceptualize adaptive support in 
future studies, models are needed that allow a criterial interpretation 
of students’ current performance in terms of concrete demands the 
students can (and cannot yet) master systematically. Moreover, little 
is known about how students’ flexibility develops over time, for 
example, if certain transitions between levels are less frequent than 
others or take more time or if certain demands take longer to cope 
with than others.

1.4 Level models for assessment and 
intervention

Prior studies have unveiled substantial inter-individual differences 
in students’ number-related knowledge and skills at the start of 
primary school (Schmidt and Weiser, 1982; Fuson, 1988), which 
persist during the first years of schooling and beyond (Krajewski and 
Schneider, 2009; Niklas and Schneider, 2017; Balt et al., 2020). Current 
models of numerical development often propose a sequence of levels, 
which describe demands of increasing complexity and are assumed to 
also reflect students’ temporal development (Hartmann and Fritz, 
2021). Each level in these models is characterized by specific 

content-related insights, e.g., grasping the idea of cardinality of a set. 
Often knowledge and skills related to previous levels are considered 
necessary to acquire the next one. This underpins the necessity to 
align instruction to students’ current knowledge and skill level, 
optimally targeting the next level that is within students’ reach. Indeed, 
Wildgans-Lang et al. (2020) argue that level models provide useful 
information that support teachers’ diagnosis of students’ current level 
of understanding.

Level models are usually generated based on analytic approaches 
towards test performance based on item response theory (IRT) 
models. They are one special case of models for cognitive knowledge 
or skill constructs, which differentiate skills along one coherent 
dimension of individual scores and define discrete levels of observable 
performance by defining the demands, that usually can be mastered 
on each level (Koeppen et al., 2008; Ufer and Neumann, 2018). Level 
models can be created for one-dimensional skill constructs, or for 
single dimensions of multi-dimensional skill constructs. This has a 
long tradition in large scale assessments (Heine et al., 2013), but level 
models also exist for different mathematical knowledge areas such as 
broad arithmetic skills in primary school (Reiss and Obersteiner, 
2019), proportional reasoning skills or fraction knowledge (Schadl 
and Ufer, 2023), and mathematical knowledge required for 
undergraduate mathematics learning at university (Rach and Ufer, 
2020; Pustelnik et  al., 2023). Often level models are seen as a 
preliminary step towards models that describe development such as 
learning trajectories (Simon, 1995) or learning progressions (Jin et al., 
2019). In this sense, level models may not only support diagnosis, but 
also provide useful (though often in the first place heuristic) hints 
towards reasonable learning goals and possible learning opportunities 
that would be most promising for a student on a specific level. If a 
student can be assigned to a level in a level model, providing learning 
opportunities and—if necessary—scaffolding on the next more 
complex level might be a plausible heuristic to support this student’s 
progress. In this sense, level models provide a heuristic to identify 
what Lave and Wenger (1991) call a “scaffolding interpretation” of the 
concept of “zone of proximal development” (Vygotsky et al., 1978). It 
can be assumed that level models are the more useful to this end, the 
more they focus on a coherent, well-defined, and well-delineated skill 
or conceptual knowledge construct.

Level models are usually generated by analyzing the difficulties of 
a set of test items based on a scaling study. Two main approaches can 
be distinguished: Some researchers use statistical clustering methods 
(e.g., Marcoulides and Drezner, 2000) based on the empirical item 
difficulties, to obtain item subsets with coherent difficulty within each 
set and large difficulty gaps between the item subsets (e.g., Jiang et al., 
2021). The main advantage of this approach is, that it results in clearly 
distinguishable item subsets. Its disadvantages are that it does not 
consider the sampling error of item difficulties and that it may result 
in item subsets that are hard to interpret in terms of common item 
demands. Variants of the so-called bookmark method are an 
alternative (Mitzel et al., 2013; Dimitrov, 2022). Items are sorted in an 
item booklet by increasing difficulty. This booklet is then analyzed for 
subsets of consecutive items, that share common item demands. This 
is an interpretative process, that results in subsets of items that cluster 
along the difficulty scale alongside with verbal descriptions of the 
common item demands. Depending on the implementation of the 
method, one expert or a group of experts are involved in this 
interpretation (e.g., Reiss and Obersteiner, 2019; Rach and Ufer, 2020; 
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Pustelnik et al., 2023; Schadl and Ufer, 2023). The item subsets from 
these analyses are interpreted as levels of demands regarding the skill 
construct. If the item difficulties stem from a one-dimensional item 
response theory (IRT) model, that can align test participants’ 
performance scores and item difficulties on the same scale, test 
participants can be allocated to one of the levels, indicating which 
levels of demand the participant usually can already master, and which 
levels the participant probably will struggle with. In this sense, the 
levels can also be  interpreted as levels of participants’ knowledge 
or skill.

2 The current study

Assuming a relevance of flexibility in dealing with additive 
situations, central steps for targeted assessment and intervention in 
early primary school have been achieved in prior research. An 
applicable test instrument is available, that is based on a clear skill 
construct definition, and there is evidence speaking for its validity in 
terms of the importance for learning word problem solving. However, 
a level model that can guide teachers’ diagnosis and adaptive 
instruction is still missing. The main goal of this study was to develop 
a level model for flexibility in dealing with additive situations, and to 
describe students’ current flexibility and its development using this 
model. We  analyzed data of students’ flexibility in dealing with 
additive situations from prior studies with an IRT approach aiming at 
the construction of a level model for this skill construct.

To clarify whether constructing a level model is reasonable, at all, 
we first investigated if a one-dimensional model is suited to describe 
participants’ flexibility in dealing with additive situations in our 
data (Q1).

Since models allowing to describe students’ current performance 
in terms of concrete demands, they can master are rare, we the aimed 
to construct a level model for the flexibility construct, focusing on 
question Q2: Can we distinguish levels of coherent difficulty and item 
demands in primary school students’ flexibility in dealing with 
additive situations? Which task features differentiate consecutive 
levels in terms of item demands?

Based on the generated level model, we aimed to characterize 
students’ performance on the flexibility construct in more detail and 
investigated how students from our sample distributed across these 
levels (Q3).

Finally, we were interested whether such a model would be of 
added value to describe how students’ flexibility develops over the 
span of few weeks. We investigated to which extent the model can 
be used to descriptively characterize students’ progress in flexibility 
across a span of several weeks (Q4).

3 Materials and methods

3.1 Design and sample

We reanalyzed data from three studies which measured 
students’ flexibility in dealing with additive situations. Study 1 was 
an unpublished, cross-sectional scaling study and comprised 
N = 130 grade 3 students (62 female, 68 male, Mage = 8.5 years) who 

worked only on the flexibility test instrument and provided some 
demographic data. In study 2, N = 119 grade 2 students (56 female, 
63 male, Mage = 7.6 years) worked on this and other instruments in 
a cross-sectional experimental study. Some data from this study 
were reported in Gabler and Ufer (2021), but not including data 
on flexibility. Study 3 was an intervention study with N = 134 
grade 2 students (66 female, 73 male, Mage = 7.6 years), in which 
the instrument was applied together with other measures in a 
pre-test, five weeks later in a post-test and four more weeks later 
in a follow-up test. Here, data from all three measurements were 
included in the analysis, including students who participated in 
only one (N = 5) or two (N = 17) of the measurements. Results of 
the intervention study are reported in (Gabler and Ufer, 2024). 
Overall, data from N = 624 test participations by N = 383 students 
were included in our analyses.

3.2 Flexibility instrument

The flexibility instrument was slightly adapted between the three 
studies. In study 1, an initial instrument with 18 items was used. Two 
items were removed due to their psychometric properties after initial 
scaling and replaced by four new items in study 2. After study 2, again 
five items were removed, because they turned out to be of very similar 
difficulty as other items, and five additional items were introduced to 
better cover areas of higher difficulty. Consequently, 27 different items 
in total were included in our initial analyses. The Marginal Maximum 
Likelihood Approach was used, so that the missing data for some 
items in small groups of participants could be accommodated when 
estimating the IRT models, by only including those items into the 
Likelihood Function for a specific person, which the person had 
worked on.

The test was framed as a story about a birthday party of two 
twins, Alma and Ben. In each item, two statements from participants 
of the party were given, and the students were asked, whether the 
two participants tell the same thing about the party. All presented 
statements were similar to the sentences that present changes or 
relations in usual word problems, e.g., “There were four chairs less 
than children on the party.” and “There were four more children 
than chairs on the party.” Most statements comprised change 
actions, equalize actions, and quantitative or qualitative 
comparisons. Integrating combine situations into the item format 
proved difficult, thus only few items contained two combine 
statements. Since combine situations are considered quite easy 
anyway, we did not see this as an issue. All statements contained 
exactly one numerical information, except for qualitative 
comparisons, which contained no numerical information. If an item 
contained a numerical information, the same number was provided 
in both statements. The two statements within each item differed in 
terms of different additive vs. subtractive wording, different 
semantic structures, or both. Note that calculations were neither 
possible nor useful, as at most one numeric information was given 
in each item. The answer options were “yes” (the two participants 
tell the same thing), “no” (they do not tell the same thing) or “I do 
not know.” The last answer option was used very rarely, so that a 
probability of 50% for choosing the correct solution just by guessing 
must be assumed for all items.
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3.3 Analyses

The generation of a level model (Q2) usually requires modelling 
the response data with an appropriate IRT model (Q1). Different IRT 
models were estimated using the R package tam (Robitzsch et al., 
2020) and compared using Chi-Square-Likelihood-Ratio tests 
(investigating differences in model-data-fit), and the Akaike (AIC) 
and Bayes Information Criterion (BIC, lower values reflect better 
model fit) as information indices. First, we  explored different 
one-dimensional models, that reflect different assumptions about how 
to model the item answer process: A three-parameter model, that 
assumes varying difficulty, guessing, and discrimination parameters 
over all items (model 1), a model that assumes constant item 
discriminations, but varying difficulty and guessing parameters 
(model 2), a model that assumed constant item discriminations, 
constant guessing parameters of 50%, and varying item difficulty 
parameters (model 3), and a one-parameter Rasch model with 
constant item discriminations and no (zero) guessing parameter 
(model 4). When testing these models, we balanced model parsimony 
with fit to the data and interpretability. For example, model 4 with 
varying item discriminations has the disadvantage of crossing item 
characteristic curves, which implies “substantive illogic in attempting 
to define a construct with item characteristic curves (ICC) that cross, 
because their slopes differ due to differing discriminations, or their 
asymptotes differ due to differing guessing parameters. Crossing 
curves cause the hierarchy of relative item difficulty to change at every 
ability level. This destroys the variable’s criterion definition” (Wright, 
1999, p. 74). We primarily used Warm’s unbiased maximum likelihood 
estimator (WLE) for person parameters (Warm, 1989). Expected-A-
Posteriori (EAP) (Bock and Aitkin, 1981) estimators were used to 
calculate a second measure of person reliability, but not for person 
parameter estimation, since these typically have a “larger inward bias 
toward the prior mean but smaller variance” (Wang, 2015, p. 445) than 
WLE estimates.

For example, the one-dimensional, restricted three-parameter 
model 3 would mean, that a difficulty parameter for each item and a 
single ability estimate for each person are estimated, assuming equal 
discrimination indices for all items, as well as a constant guessing 
parameter of 50%. The probability that a student i with performance 
parameter θi solves an item j with difficulty parameter δ j in this model 
can be calculated as
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j i j
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with guessing parameter α j = 0 5.  and discrimination parameter 
β j =1 for all items j.

Given the decision for specific assumptions on the item answering 
process, we furthermore explored whether a two-dimensional model 
(model 5) would be  superior for our purpose compared to the 
corresponding one-dimensional model. To this end, we investigated 
the two-dimensional model that was most plausible from our 
perspective, separating the ability to identify equivalent statements as 
equivalent from the ability to identify non-equivalent statements as 
non-equivalent into separate dimensions.

When deciding for a final model we used information criteria 
(AIC, BIC) and Chi-Square-Difference tests to compare models. 

Infit (weighted) and outfit (unweighted) Root Mean Square 
Deviation (RMSD) item fit measures (Adams and Wu, 2007) were 
used to evaluate model fit, with values above 1.5 considered 
unproductive for measurement (Linacre, 2002). Additionally, 
we inspected the Q3 statistics, interpreting values above 0.25 as 
indication of a violation of the local independence assumption in 
IRT models (Christensen et  al., 2017). Consideration of these 
model comparison and model fit measures was balanced against 
model parsimony (preferring models with fewer parameters, that 
were equally plausible) and usefulness of the model for 
measurement (e.g., acceptable reliabilities).

To generate a level model (Q2), items were first ordered by their 
difficulty in an item booklet as in the bookmark method (cf. Mitzel 
et al., 2013 for a similar approach). Then, each item was characterized 
in its specific demands (e.g., involved statement types, necessity to 
deal with qualitative or quantitative comparisons, direction of the 
wording, equivalence of the two statements), to identify similarities 
between consecutive items as well as differences between neighboring 
groups of items with similar demands (cf. Rach and Ufer, 2020). In this 
way, groups of items with similar difficulty and similar item demands 
were identified. This mostly focused on the similarities and differences 
between the two statements in each item, but also considered 
reasonable comparison strategies and possible errors from the 
literature. This resulted in verbal descriptions of the common demands 
of the items in each level. Later, the differences in the demands 
between adjacent levels were analyzed based on these texts to make 
the model more accessible. Moreover, thresholds between the levels 
were established by calculating the average difficulty of the easiest item 
of one level and the most difficult item of the next lower level. 
Furthermore, the difficulty of the easiest and the most difficult items 
in the test were used as lower threshold of the lowest and upper 
threshold of the highest level.

To allocate student performance on the item difficulty scale for 
Q3, we assigned a student to that point on the scale, where she or he 
would have a 75% probability of solving the item, which is exactly the 
position of the students’ performance parameter θ . In large scale 
studies that do not apply guessing parameters, values from 62.5 to 70% 
have been used. The exact cut-off value has been found to make little 
difference in some analyses (Rolfes and Heinze, 2022). We decided to 
use a substantially higher cut-off due to the high assumed guessing 
probability of 50%.

Assigning students to levels is usually done by assigning a student 
to the level, in which his or her performance parameter θ  is located 
(i.e., between the lower and the upper threshold of this level). 
Consequently, being on a level means that a student can solve all items 
of the easier levels with more than 75% probability and all items of the 
more difficult levels with less than 75% probability. The assigned level 
comprises items, which the students has not (yet) mastered, but which 
are closest to being mastered. A far-reaching interpretation would be, 
that this level is the students’ “zone of proximal development” 
(Vygotsky et al., 1978). Since person parameters often carry substantial 
measurement error, this assignment procedure with strict cut-offs can 
be debated: A student that has an estimated performance parameter 
close to a level threshold has a high probability of being assigned to 
the wrong level, since the (unknown) real performance parameter 
might be on the other side of the threshold. Therefore, we applied an 
alternative approach: For each student with estimated person 
parameter θ, corresponding standard error seθ and each level i, 
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we  calculated a statistics S(θ, i) as the percentage of a normal 
distribution around θ with variance seθ, that falls within the respective 
level. This results in one value per level and student, and the sum of 
the values across all levels for a single student is one. S(θ, i) can 
be  interpreted as the probability density of obtaining a measured 
person parameter around θ, if one repeatedly would test students, 
whose real person parameter was surely at the respective level. Thus, 
summing S(θ, i) over all levels i yields a sum of one (since each real 
person parameter is one of the summed levels) for each (measured) 
person parameter value. We  interpret the sum of S(θ, i) over all 
participants as a measure of the number of participants that can 
be allocated to level i, weighting each student by its distance to the 
respective level. We will refer to individual values of S as level sampling 
probability and to sample sums of S as number of persons allocated to 
this level.

Students’ average development (Q4) was investigated using 
analysis of variance. A deeper, more qualitative description using the 
generated level model was based on bivariate density plots and local 
regression models.

4 Results

4.1 Item selection and model comparison 
(Q1)

Initial scaling analyses revealed that one item asking for a 
comparison of two combine statements showed a very high solution 
rate (90%) and problematic item fit values. Consequently, this item 
was excluded from further analyses. During the further analysis, 
another item that required to match equivalent compare and equalize 
statements was removed from the analysis due to substantial residual 
correlations with two other items (Q3 = 0.35 and Q3 = 0.36).

Table 1 shows the fit information and Table 2 shows Chi-Square-
Likelihood-Ratio tests for the models reflecting different assumptions 
about the item answer process. Model 3 shows the lowest AIC and BIC 
indices, making it preferable over the other three models. Model 2 
with freely estimated guessing parameters did not fit significantly 
better than model 3 with constant guessing parameters of 50%. It did, 
however, fit better than model 4 without guessing parameters. 
Guessing parameters in model 2 ranged between 34 and 50%. Model 
1 showed significantly better fit than model 3. However, we decided to 
use the more restrictive model 3 for several reasons: (i) It contained 
less parameters but was preferable in terms of information indices. (ii) 
We  considered the number of parameters in model 1 as high in 
relation to our restricted sample size. (iii) Varying item discriminations 
make it hard to describe students’ performance in terms of item 

demands as item characteristic curves may intersect (“This destroys 
the variable’s criterion definition,” Wright, 1999, p. 74).

For model 3 the person reliabilities were acceptable (WLE: 0.67, 
EAP: 0.75). Also, item RMSD infit (0.98–1.03) and outfit (0.64–1.68) 
indices were mostly within the acceptable range (Linacre, 2002), 
except for one item with a high outfit (1.68) indicating some underfit. 
An analysis of the item showed that it contained statements about the 
height of block towers, while all other items dealt with numbers of 
objects. Since it was one of the few items containing qualitative 
comparisons, and since it was not of extremely low or high difficulty, 
we decided to keep the item in the analysis. The other items showed 
outfit values of 1.30 and below. Residual correlations between items 
(Q3) provided no indications of substantially violating the local 
independence assumption of the applied IRT model. The average 
person performance parameter was M = 1.49 (SD = 1.54).

Moreover, we investigated a two-dimensional model separating 
items with pairs of equivalent statements and items with pairs of 
non-equivalent statements into different dimensions (model 5). 
Indeed, this two-dimensional model fit the data significantly better 
than model 3 (Table 2). However, the WLE reliabilities of the two 
dimensions were unacceptably low (equivalent statements: WLE: 0.37, 
EAP: 0.67; non-equivalent statements: WLE: 0.34, EAP: 0.73; 
correlation between the two dimensions latent: 0.86, manifest WLE: 
0.39). Since this indicates that the model is not well suited to derive 
individual person parameter estimates, the two-dimensional model 
was disregarded.

4.2 Level model (Q2)

Analyzing the item booklet sorted by empirical difficulty revealed, 
that investigating two qualitative compare statements or two combine 
statements constituted the easiest demands (level 1, δ = − −2 65 1 81. .to ). 
For example, one item required to match the (equivalent) qualitative 
comparison statements “Alma’s tower is smaller than Ben’s tower.” and 
“Ben’s tower is higher than Alma’s tower.”

All of the remaining items involving two equivalent statements 
(two statements referring to the same situation) turned out to 
be  harder than items requiring to find differences between the 
descriptions in the two statements. Within those items asking the 
students to identify two statements as describing different situations, 
one set of eight items contained either two change statements in 
different directions (additive vs. subtractive), or a statement describing 
a temporal change of one of two initially equal sets and a compare 
statement about the two sets after the change (e.g., item 10: “Before 
the party, Alma and Ben had equally many wristbands. Ben got 3 
bands more on the party” vs. “Alma has 3 bands more than Ben now”). 

TABLE 1 IRT model fit indices.

Model # Parameter restrictions LogLikelihood Npar AIC BIC

Model 1 Free guessing and discrimination param. −5147.6 76 10446.1 10783.2

Model 2 Free guessing param., discrimination = 1 −5177.4 51 10456.7 10683.0

Model 3 Guessing = 0.5, discrimination = 1 −5191.5 26 10435.1 10550.4

Model 4 Guessing = 0, discrimination = 1 −5260.5 26 10572.9 10688.3

LogLikelihood, Logarithmized likelihood of the model; Npar, number of model parameters; AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion.

https://doi.org/10.3389/feduc.2024.1340322
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Ufer et al. 10.3389/feduc.2024.1340322

Frontiers in Education 09 frontiersin.org

Also, two items containing two compare statements each can be found 
on this level (level 2, δ = − −1 81 0 78. .to , e.g., item 11: “Ben got 2 
presents more than Alma” vs. “Alma got 2 presents more than Ben”). 
Different from the items on level 1, these items contained a quantitative 
relation information, but the two situations could be  identified as 
different by a qualitative comparison – even if the quantitative relation 
was misunderstood as a concrete set. Similarly, one item with an 
additively worded equalize statement and a non-equivalent 
subtractively worded compare statement was in this interval, as well. 
Level 2 primarily requires establishing a change statement as being 
different from another change or a compare statement.

The next set of six items (level 3, δ = − −0 78 0 18. .to ) comprised 
items that involved either two equalize statements (e.g., item 18. “If 
Ben takes 3 cards more, he has as many cards as Alma.” vs. “If Ben puts 
3 cards away, he has as many cards as Alma.”) or an equalize statement 
and a compare statement with the same (additive vs. subtractive) 
wording (e.g., item 21: “Currently, Alma has 4 postcards more than 
Ben.” vs. “Alma needs to get 4 more postcards, so that she has as many 
postcards as Ben”). Regarding the matching of equalize and compare 
statements, statement pairs with different wording (level 2) were 
assigned to lower levels than statement pairs with the same wording 
(both additive or both subtractive). Level 3 requires establishing an 
equalize statement as being different from another equalize statement 
or a compare statement with the same wording.

Within those items asking to identify two statements as being 
equivalent (describing the same situation), three items contained 
either two change statements or two equalize statements (level 4, 
δ = 0 18 0 79. .to , e.g., item 23: “Alma sold 3 lemonades to Ben” vs. 
“Ben bought 3 lemonades from Alma.”). Thus, level 4 requires 
establishing two dynamic (change or equalize) statements 
as equivalent.

The next set of four items contained either a change and a compare 
statement or an equalize and a compare statement (similar to level 2 
resp. 3, but with two statements matching the same situation; level 5, 
δ = 0 79 1 79. .to , e.g., item 19: “If Ben gives 3 cookies to another child, 
he has as many cookies as Alma.” vs. “Ben currently has 3 cookies 
more than Alma.”). Level 5 requires establishing quantitative 
comparisons as being equivalent to change or equalize statements.

Each of the two items from the last set (level 6, δ =1 79 3 90. .to ) 
contained two symmetric compare statements, one with additive and 
one with subtractive wording (e.g., “On the party, there were 4 chairs 
less than children.” vs. “On the party, there were 4 children more than 
chairs.”). Thus, level 6 is characterized by identifying symmetric 
quantitative compare statements as equivalent.

Figure 2 shows the level descriptions and the differences between 
consecutive levels.

4.3 Student distribution across the levels 
(Q3)

Figure 3 displays the smoothed level sampling probability of a 
participant being allocated to each level, depending on the participant’s 
performance parameter θ . As expected, there is substantial overlap 
around the level thresholds. Note that participants have the highest 
level sampling probability for the narrow level 4 only in a very small 
interval of performance parameters. Moreover, for participants with 
very low performance parameters, level 1 assignment is hard to 
differentiate from assignment below level 1. On the other hand, for 
example, a high-level sampling probability of belonging to level 3 can 
be determined for performance parameters around zero.

To investigate students’ distribution over the levels, 
we considered data from study 1, study 2, and the first measurement 
of study 3 (N = 374). Figure  4 and Table  3 display participants’ 
distribution across the levels. Note that Figure 4 and the second 
column of Table 3 show the expected number of persons per level. 
In this sense, every participant counts into all levels, with higher 
shares on levels near to the participant’s performance parameter 
and lower shares on more distal levels, as described by their level 
sampling probabilities. The findings indicate that while few 
participants can be found at level 1 or below, about one quarter of 
all participants was allocated to level 2 or 3. This indicates that 
these students still struggle with establishing two situation 
descriptions as being different. On the other hand, 26.0% of the 
participants can be assumed to be at level 6, indicating that they 
are able to identify change or equalize statements and quantitative 
compare statements as equivalent, but still struggle with symmetric 
quantitative comparisons. The finding, that only 7.6% of the 
participants seem to be able to identify symmetric quantitative 
compare statements as equivalent must be interpreted with care, 
since only two items of very different difficulty constitute this 
highest level.

4.4 Describing development using the level 
model (Q4)

To analyze the development in students’ levels, we considered data 
from N = 112 grade 2 students only, who participated in all 
measurements of study 3. A repeated measures ANOVA with 
flexibility as dependent variable showed a significant effect for 
measurement [F p222 2 33 63 0 001 0 23

2
, part( ) = < =. , . , .η ] and 

pairwise contrasts between each of the two measurements were 
significant (p’s < 0.05, Tukey correction). Figure  5 shows the 
distribution of participants (counted by their level sampling 
probability) across the levels by measurement. A decrease can 
be observed for the levels 4 and below, primarily between T1 and T2. 
Level 5 assignment remained stable, most likely due to students from 
lower levels progressing to level 5 and students from level 5 progressing 
to higher levels. An increase can be observed for level 6 between T1 
and T2, and above level 6 between each pair of measurements.

Even though Figure  5 may indicate that level population 
decreases for lower levels and increases for higher levels, it allows 
only restricted insight into students’ development. To obtain a 
clearer picture, we plotted students’ performance parameter in T2 

TABLE 2 IRT model comparisons.

Model 
comparison χ 2 df p

Model 1 vs. model 2  60.6 25 <0.001

Model 2 vs. model 3  28.4 25 0.29

Model 2 vs. model 4 166.2 25 <0.001

Model 3 vs. model 5  14.6 2 <0.001

χ 2 , Chi-Square statistics; df, degrees of freedom.
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(resp. T3) against their performance in T1 (resp. T2) using 
two-dimensional density plots (Figures  6A,B). Lighter colors 
indicate more students in the respective areas. The number of 
students allocated to each combination of levels from pre-and post-
test (resp. pre-and follow-up-test), calculated from the sum of level 
sampling percentages, is provided in Supplementary Tables S1, S2. 
Moreover, we  used bivariate non-linear regression methods to 
estimate the average local T3 performance score for each T1 
performance score.

Figure 6A indicates that, on average, participants throughout the 
whole range of initial (T1) performance, except those with very high 
values (above 2.5), show significant progress until T2 (the non-linear 

regression line and its confidence interval lie below the diagonal line 
indicating no progress from T1 to T2 for these students). This may 
be due to a ceiling effect, meaning that the flexibility test was very 
easy at T2 for participants with initially high scores. The regression 
line is a bit steeper at the upper end of level 4, indicating that being 
able to identify change (or equalize) and compare statements as 
equivalent already initially may substantially benefit students’ 
progress from T1 to T2.

Analyzing the two-dimensional distribution in Figure  6A 
indicates that few students outperform level 6 even at T2 (dark colors 
at the upper end of the figure). Out of those students who were on 
level 5 at T1, quite some—but not all—were allocated to level 6 at T2, 

FIGURE 2

Level thresholds, level descriptions, and differences between consecutive levels.

FIGURE 3

Level sampling probability by level and person performance parameter. Blue lines indicate level thresholds, light grey lines indicate item difficulties.
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showing that these students could benefit and learn how to match 
equalize and compare statements. Students who were on the (narrow) 
level 4 at T1 spread out across levels 3–5 and—less frequently—level 
6 at T2. Some students remain on level 4 or even show lower scores 
at T2—possibly due to measurement error variation. Others show 
scores on level 5 and the lower end of level 6. This indicates that 
students at the transition to being able to identify statements as 
equivalent benefited very differently from learning opportunities 
between T1 and T2. Moreover, many of those students who were on 
level 3 at T1, who were still struggling to identify compare and 
equalize statements as different, remained at this level and showed 
little progress.

Figure 6B indicates significant progress also from T2 to T3 
over almost the whole range of T2 performance, again except for 
T2 scores above 2.5. Now, some of the students who were at level 
3 at T2 progress to level 4 at T3. The pattern is less clear for level 
4 at T2, which is less populated than at T1 (cf. Figure 5). Similarly, 
there is some progress for students from level 5 at T2 to level 
6 at T3.

5 Discussion

In this study, we report the development of a level model of 
primary school students’ flexibility in dealing with additive 
situations. We  were able to distinguish six different levels of 
coherent difficulty and coherent item demands. Further, students 
were assigned to the most likely levels according to their person 
performance parameters which were estimated from their ability 
to rate whether two mathematical statements referred to the same 
or a different situation. The data from three different studies with 
a total of 383 primary school children in Grades 2 and 3 were used 
in the development of the model and children were assigned 
mostly to levels 5 and above with only few children in level 2 and 
below. However, a substantial number of students remained below 
level 6, which describes beginning mastery of symmetric 
comparison statements. In addition, we  were able to analyze 
children’s progression across about 2 months. Children on level 4 
and 5 at the beginning of the assessments often progressed to the 
next level, whereas children on level 3 often did not progress to 
higher levels. This may indicate a qualitative step between levels 3 
(and below) and levels 4 (and above). This kind of information will 
be valuable for teachers in their support of children’s flexibility and 
their mathematical word problem solving skills.

5.1 A level model for flexibility in dealing 
with additive situations

To generate a level model, we applied an exploratory approach 
using data from an existing test instrument. With our IRT approach, 
we were able to identify a fairly clear level structure for children’s 
flexibility in dealing with additive situations. The most pronounced 
differentiation was visible for identifying statements as non-equivalent 
(on lower levels) and as equivalent (on higher levels). It remains to 
be explored, if this reflects a general tendency of students to mark 
statements as different in the case of doubt. Taking a closer look, it is 

FIGURE 4

Allocated students per level for the whole dataset.

TABLE 3 Absolute and relative number of persons allocated per level.

Level Number of 
persons allocated

Proportion

Above 6 28.5 7.6%

6 97.2 26.0%

5 86.4 23.1%

4 54.7 14.6%

3 70.9 19.0%

2 31.6 8.4%

1  4.2 1.1%

Below 1  0.6 <0.1%

Sum 374 100.0%
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sufficient to identify even a small difference in the described situations 
to establish two statements as non-equivalent. Contrary, to establish 
two statements as equivalent, the existence of such two differences 
must be ruled out, for example by explicitly transforming perspective 
described by one statement into the one described by the other (e.g., 
by seeing that an equalization action described in one statement 
would balance the quantitative relation described in the other one). 
Apart from these two broad areas, the easiest level 1 comprised dealing 
with combine statements and qualitative comparisons.

A bit different patterns occurred within each of the two areas 
(identifying statements as non-equivalent resp. equivalent). For 
identifying statements as equivalent, matching with two dynamic 
statements was easiest (level 4) followed by matching a dynamic 
statement and a compare statement (level 5) and two compare 
statements (level 6). This speaks for a learning trajectory from 
dynamic situations to static situations, as it was also conjectured in 
(Gabler and Ufer, 2021). For identifying two statements as different, 
matching two quantitative compare statements was part of the lower 

FIGURE 5

Assigned students per level and measurement for study 3.

A B

FIGURE 6

Density plots for person performance parameter at T2 (A) resp. T3 (B) by person performance parameter at T1 (A) resp. T2 (B) with bivariate non-linear 
regression line and 95% confidence interval. Grey lines indicate level thresholds.
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level 2, together with dealing with two change statement or one change 
and one compare statement. This low difficulty of identifying two 
quantitative compare statements as different should not 
be overestimated, as it can be solved by just considering the entailed 
qualitative comparisons (“Chris has 3 marbles more than Alex” vs. 
“Alex has 3 marbles more than Chris”), and it can be even solved 
correctly if statements such as “Chris has 3 marbles more than Alex” 
are interpreted as “Chris has 3 marbles, and Chris has more marbles 
than Alex” (Mekhmandarov et al., 1996). Apart from this, dealing with 
equalize statements (possibly along with one compare statement, level 
3) turned out more difficult than dealing with change statements 
(possibly along with one compare statement, level 2). Since equalize 
statements comprise a (imagined) change action together with a 
statement about the effect of this action, this can be explained by the 
different complexity the two dynamic statement types.

It should be noted that these differences in item difficulty can not 
necessarily be interpreted as a naturally occurring, individual learning 
trajectory in the psychological sense. As a didactic model, progressing 
from identifying statements as non-equivalent to identifying 
statements as equivalent would not make sense. Our results still may 
serve to generate hypothetical learning trajectories, which are not 
purely descriptive psychological models, but are strongly engendered 
within a specific instructional context (Simon, 1995; Clements and 
Sarama, 2012). They also carry a normative component, making 
proposals on how to (more effectively) treat a certain content in 
instruction. Progressing from the analysis of qualitative comparison 
and dynamic statements to matching dynamic statements with 
quantitative compare statements and finally pairs of compare 
statements would be  reasonable based on our findings. When 
informally reviewing first grade mathematics textbooks in Germany, 
we did not find activities related to the interpretation of quantitative 
comparison statements and Gabler et al. (2023) found few compare 
word problems in German first and second grade textbooks. Even 
though it does not follow from our findings, discussing the meaning 
of quantitative compare statements, for example by considering two 
concrete sets, establishing a one-to-one-correspondence between the 
smaller set and a subset of the larger one, and highlighting the 
remaining items as the difference set, seems to be  a reasonable 
learning opportunity before matching compare statements to 
other statements.

The most striking difference in difficulty was between qualitative 
comparison statements, which belonged to the lowest levels, and 
quantitative comparison statements, which made up the upper end of 
the difficulty continuum. This reflects the specific difficulty of 
representing (Mekhmandarov et al., 1996; Gabler and Ufer, 2021) and 
flexibly interpreting (Stern, 1993) quantitative comparison statements.

5.2 Students’ flexibility in dealing with 
additive situations

Even though the average student performance parameter was in 
the range of level 5, the substantial standard deviation raises the 
question about a qualitative interpretation of inter-individual 
differences in students’ performance. Our model allows to allocate 
students to the levels, offering ways to provide teachers with more 
specific information than a rough overall performance measure (in 
terms of, for example, percent tasks solved correctly). Each level 

comes with a criterial interpretation (Ufer and Neumann, 2018) of the 
demands students can systematically master (below the assigned 
level), which they master partially (assigned level) and which demands 
they will typically fail currently (above the assigned level). This may 
allow teachers to identify individual learning needs of each student. 
However, we also note that level assignment underlies measurement 
error. Determining the level sampling probability of a student “being” 
on this level allows to make this natural uncertainty transparent to 
teachers by reporting the two or three most likely levels for a student—
at the cost of providing a quite conservative (i.e., too much spread out) 
picture of the assignment uncertainty. It might be of interest how 
teachers deal with this kind of uncertainty when evaluating this 
information as diagnostic evidence and deriving didactical 
conclusions (Heitzmann et  al., 2019). This uncertainty is part of 
teachers’ everyday practice and should also be  acknowledged in 
teacher education—instead of, for example, asking (active or 
pre-service) teachers to make definite decisions between levels in 
simulations (Wildgans-Lang et al., 2020).

We found that around 60% of the students are systematically 
able to identify non-equivalent statements as non-equivalent. 
However, this also means that about 40% of the students in our 
sample are not able to do so. Thus, comparing and contrasting 
(Hattikudur and Alibali, 2011) different verbal statements about 
mathematical structures in real-world situations may be promising 
for all students—either learning about differences between 
non-equivalent pairs of statements, or learning to correctly match 
equivalent statements.

It must be noted that almost all students in our study mastered 
level 1, comprising combine and qualitative compare statements, 
and few still struggled with differentiating descriptions of different 
change situations (level 2). This indicates, that change situations 
might be a good didactical starting point for the learning trajectory 
proposed above. Dealing with equalize statements posed problems 
to at least 40% of the students, indicating that understanding them 
may not be  taken for granted and should also be  addressed in 
instruction. Since equalize statements may provide a didactical 
bridge to reinterpreting and understanding compare statements, 
more than the currently still restricted evidence (one example is 
Stern, 1994) on students’ understanding of and performance on 
equalize word problems might be desirable. Finally, less than 10% 
or our sample systematically mastered to identify symmetric 
quantitative compare statements as equivalent. This is in line with 
findings by Stern (1993) and underpins the importance of dealing 
with compare statements in more depth in first years 
mathematics instruction.

5.3 Development of flexibility in dealing 
with additive situations

The longitudinal analyses provide insights into students’ 
development of flexibility in dealing with additive situations. As may 
be expected when a skill develops positively over time in a population, 
lower levels decrease in frequency, while higher levels increase, and 
middle levels remain rather stable over the short period of several 
weeks in our study. Thus, in terms of an interpretation of students’ 
development, level frequencies contain little more information than 
analyses of average development. At least we can say, that an increasing 
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number of students master symmetric quantitative compare 
statements after several weeks.

Deeper, qualitative analyses of the bivariate distributions based on 
performance from two consecutive measurements allows to derive 
more elaborate conjectures. Firstly, some progress seems to 
be  observable for students all over the whole range of prior 
performance range. Students with high initial flexibility form an 
exception, most likely due to a ceiling effect of the instrument. This 
indicates that flexibility is a skill that can be learned and developed.

However, there are first indications that this progress is not equally 
strong for all students. Until T2, there was little progress of students 
who were initially on level 3, and from T2 to T3 only few students 
progress towards level 4. The levels 3 and 4 differentiate between 
finding differences between statements (level 2 and 3) and identifying 
statements as equivalent (levels 4 and above). It seems that students, 
who were on level 3 initially, cannot really benefit from eventual 
opportunities in the investigated time span between T1 and T3. It 
seems that the challenge to identify different descriptions of the same 
situation as equivalent requires specific instructional support, for 
example by establishing strategies such as the dynamization or the 
inversion strategies described above. On the other hand, the 
acquisition of these strategies might still require a basic understanding 
of the corresponding situation structures. It remains an open question 
if what constitutes level 3  in our model provides sufficient prior 
knowledge and skills for this purpose.

Indeed, students who were on level 4 initially, showed varying 
progress from T1 to T2. This may indicate that other factors, not 
explicitly investigated in our analyses, influence students’ progress 
here. Given that flexibility comprises verbal descriptions of 
mathematical structures in everyday situations, students language 
skills (Purpura and Reid, 2016; Peng et al., 2020; Ufer and Bochnik, 
2020) may be an important factor here, but also their mathematical 
prior knowledge. Future research should clarify not only which 
student characteristics explain students’ performance in word problem 
solving or flexibility, but also the development of this performance 
(e.g., Paetsch et al., 2016).

Moreover, almost exclusively those students progressed to level 6, 
who were on level 5 at the preceding measurement. This indicates that 
being able to match compare statements to equivalent dynamic 
statements might be an important prerequisite for (at least partially) 
mastering symmetric compare statements. Future research 
considering students’ development with a better temporal resolution 
or applying deeper analysis of their learning and reasoning processes 
when dealing with symmetric quantitative compare statements should 
investigate this hypothesis in more detail.

One option to put the developmental hypotheses from this study 
to a test would be  to provide students adaptively with instruction 
targeting the assigned next level and compare this to offering 
instruction targeting different higher levels. This may provide useful 
insights into whether students’ prior flexibility plays a role, at all, for 
further learning, and if yes, which level of instruction requires which 
prior skills. Furthermore, such evidence may support the 
conceptualization of adaptive instruction (Plass and Pawar, 2020) that 
teachers (or other actors in the educational system) may provide based 
on a diagnosis of students’ flexibility. Finally, the results are also of 
practical significance, as they may be used in the development of 
textbooks which may even contain activities to train flexibility, and for 
specific diagnostic processes, in which the current student’s approach 

towards additive situations and their current level of flexibility are 
assessed and considered in a subsequent training.

5.4 Limitations

This study is marked by several limitations. We  used an 
interpretational method based on item contents and item difficulties 
to arrive at our levels and their characterizations. It would be helpful 
to replicate the model with an independent sample if persons and, 
optimally, with a new set of items that was constructed based on the 
model. This would also allow to extend the test beyond the few items, 
that were used to build the level model. It would also be helpful to 
improve the level model and to contribute to a better differentiation 
between different learners. Future extensions of the instrument should 
cover typical errors, such as the misinterpretation of quantitative 
compare statements as statements about a concrete set and a 
qualitative comparison. Moreover, demands on higher levels of 
flexibility still need to be conceptualized. One idea would be to have 
students actively produce alternative, equivalent descriptions of the 
same situation (using, for example, provided words) instead of judging 
given statements. This would, however, also come with stronger 
demands in terms of language skills (Gabler and Ufer, 2022). Finally, 
other kinds of situations could be  included, covering not only 
statements about the cardinality of sets, but also about other measures 
such as lengths, weights, etc.

When doing so, dimensionality of the construct should 
be considered further. The observed reliability of the whole scale was 
satisfactory, but not optimal. Including more items per dimension by 
varying the existing situation description statements could potentially 
remedy the very low reliabilities of the whole scale or the two assumed 
subscales. However, an eventual two-dimensional model would 
differentiate matching vs. unmatching statement pairs, which are also 
separated into the upper and the lower end of the one-dimensional 
current difficulty scale. For many participants one the two dimensions 
would end up being either very easy or very hard. Furthermore, the 
two dimensions showed a very high latent correlation in our analysis, 
also pointing to little added explanatory value above a one-dimensional 
model. If multi-dimensional models are considered, level models 
would need to be established for each dimension separately. For the 
two-dimensional model considered in this manuscript, it would 
be plausible that levels 1 to 3 would arise for one scale and levels 4 to 
6 for the other one. Alternative multi-dimensional could be explored, 
e.g., differentiating the type of statements entailed each item.

Our study applied mostly descriptive methods to either 
characterize observed student performance or to derive hypotheses 
about developmental questions. Formal statistical inference methods 
could be applied to investigate the average development in the study 
3 sample—which is not the main contribution of the study. Other 
methods such as think aloud methods, more intensive tracking of 
student performance over a longer time span, or intervention studies 
are necessary to further investigate our exploratory findings. 
Developmental conclusions are also limited by the ceiling effect of the 
test instrument, speaking again for an extension of the test with more 
complex demands. Relatedly, we  assumed sufficient longitudinal 
measurement invariance in this manuscript, but this assumption 
needs to be tested. Such analyses might also provide deeper insights 
into the development of students’ flexibility. Finally, note that our 
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approach to allocate participants to the levels is still quite pragmatic 
and not based on a systematic estimation of participants’ probability 
to belong to the profiles. Future works might explore more advanced 
allocation techniques, such as calculating this probability by using the 
overall score distribution, or even a-priori-distributions for each 
participant based on prior measurements as a reference.

Finally, our results are limited by the fact that they are solely based 
on an observation of students’ final performance on the flexibility test 
items. A closer consideration of students’ solution strategies, in 
particular for items containing equivalent vs. non-equivalent findings 
could extend prior results that primarily address the interpretation of 
quantitative compare statements (Mekhmandarov et al., 1996).

6 Conclusion and outlook

The contribution proposes a model of different levels of 
complexity for students’ flexibility in dealing with additive situations. 
Even though longitudinal interpretations should be taken with care, 
the model itself may support informal observation and formative 
assessment of students’ flexibility in the first 2 years of primary school. 
To this end, it should be investigated to which extent teachers can 
make use of this model to either observe students or interpret students’ 
solutions on statement matching tasks or word problems, or to make 
use of findings from an externally applied assessment of students’ 
skills with a flexibility test like the one analyzed here. Regarding the 
latter use of the instrument, the uncertainty entailed in the level 
assignment from such tests is a matter that should be  addressed 
explicitly when informing teachers about their students’ performance, 
but also when investigating teachers’ use of such information.

A further step would be to conceptualize and investigate adaptive 
instruction based on the model. This could provide useful and more 
reliable insights into the contingencies between different subskills in 
the development of students’ flexibility, but also evidence about 
effective strategies to support this development. Specific focus could 
be put on the difference between levels 1–3 and levels 4–6, which 
turned out to be particularly challenging in our longitudinal analysis.

Summarizing, we highlight a skill in this manuscript that plays an 
important role in students’ development of word problem solving 
skills. The proposed level model requires further validation, extension, 
and investigation, but may develop into a useful tool for assessment 
and intervention in mathematics instruction in the early school years.
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