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Note on the radical inflation in 
the estimates of error variance in 
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This note discusses the radical technical inflation in error variance and the 
related standard error of test scores from both conceptual and empirical 
viewpoints. This technical inflation arises as a direct consequence of the 
technical underestimation of item-score correlation by the product–
moment coefficient of correlation (PMC), which is embedded in the 
traditional estimators of reliability such as coefficients alpha, theta, omega, 
or rho (maximal reliability). Specifically, in educational settings where 
compilations usually include both easy and difficult items, the estimate by 
PMC may substantially deviate from the true association between an item 
and the score. Consequently, the use of traditional estimators of reliability 
leads to technically inflated estimates of standard errors, as the error 
variance related to these traditional measurement models is significantly 
inflated, resulting in deflated reliability estimates. In educational testing, 
employing deflation-corrected standard errors, calculated using deflation-
corrected reliability estimators, would provide a more accurate measure of 
the test score’s true precision.
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1 Introduction

This note focuses on a consequential outcome concerning significant deflation 
observed in the primary reliability estimators used within classical test theory, namely, 
coefficients alpha, theta, omega, and rho (maximal reliability), as previously discussed 
by researchers such as Zumbo and colleagues (e.g., Zumbo et al., 2007; Gadermann 
et al., 2012) and more recently by Metsämuuronen (2022a,b,c,d,e,f, 2023). The reader is 
led to the concepts and literature from four perspectives. Section 1.1 discusses the 
general phenomena of deflation in reliability and inflation in error variance. Section 1.2 
explores the phenomenon where correlation estimates serve as the primary cause of 
deflation in reliability estimates and inflation in error variance. Section 1.3 briefly 
examines conceptual aspects related to error variance inflation. Section 1.4 provides a 
hypothetical example illustrating the magnitude of error variance, inflation, and 
standard error. The empirical section investigates the extent of error variance, inflation, 
and standard errors, aiming to elucidate the circumstances under which notable effects 
are expected.
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1.1 Deflation in reliability and inflation in 
error variance as phenomena

In certain kinds of tests, which typically include items of 
extreme difficulty levels, as is common in educational testing 
settings (see discussion in Metsämuuronen, 2023), the technical 
deflation in the estimates of reliability has been reported to range 
from 0.40 to 0.70 units of the reliability coefficient. In these types 
of tests, the standard errors related to the score are significantly 
inflated. For extremely easy or difficult tests, standard errors can 
be more than ten times higher when using traditional reliability 
estimators compared to deflation-corrected reliability estimators 
(DCER) (Metsämuuronen and Ukkola, 2019; Metsämuuronen, 
2022b; for DCER details, see Metsämuuronen, 2022c,d,e). When 
tests include easy, medium, and difficult items, the standard 
errors can be two to three times higher with traditional estimators 
(Metsämuuronen, 2022f). This indicates that the estimated error 
variance related to the measurement model is radically inflated.

The deflation of 0.40–0.70 units of reliability discussed above 
related to the artificial technical or mechanical errors in the 
estimation of correlation needs to be separated from attenuation 
related to the violations against the measurement model. The 
attenuation related to estimators of reliability and, consequently, in 
the estimated standard errors has been discussed widely, especially 
the challenges related to coefficient alpha (Kuder and Richardson, 
1937; Jackson and Ferguson, 1941; Guttman, 1945; Cronbach, 
1951), which are well known (see discussions and literature in, e.g., 
Sijtsma, 2009; Cho and Kim, 2015; Hoekstra et  al., 2019; 
Metsämuuronen, 2022b,d).

Guttman (1945) was the first to show that the coefficient we know 
today as coefficient alpha always gives estimates that are lower in 
magnitude than true population reliability. The magnitude of the 
attenuation related to the violations against the assumption related to 
coefficient alpha has been reported to vary from 1% (Raykov, 1997) to 
11% (Green and Yang, 2009). However, it is commonly accepted that 
if the assumptions for the coefficient alpha are met, the items are 
(essentially) tau-equivalent, the phenomenon is unidimensional, and 
the measurement errors related to test items do not correlate. Alpha 
would give unattenuated estimates (see Novick and Lewis, 1967; 
Raykov and Marcoulides, 2017; see the discussion also in, e.g., Green 
and Yang, 2009, 2015; Davenport et  al., 2015, 2016; Trizano-
Hermosilla and Alvarado, 2016; McNeish, 2017). However, there is an 
ongoing debate among scholars about whether we could continue to 
use coefficient alpha as one of the lower boundaries of reliability or not 
at all (see a positive view in, e.g., Bentler, 2009; Falk and Savalei, 2011; 
Raykov et al., 2015; Metsämuuronen, 2017; Raykov and Marcoulides, 
2017; and a negative view in, e.g., Sijtsma, 2009; Yang and Green, 2011; 
Dunn et  al., 2013; Trizano-Hermosilla and Alvarado, 2016; 
McNeish, 2017).

Notably, the underestimation in the estimates of reliability is only 
partly related to attenuation, as discussed above. Metsämuuronen 
(2016) shows algebraically that the radical deflation in the estimates 
of reliability is directly related to technical or mechanical errors in the 
estimates of correlation by item-score correlation (Rit). This issue 
affects not only coefficient alpha but also other reliability coefficients 
such as theta, omega, and rho, which also incorporate item-score 
correlation in some form (see Metsämuuronen, 2022b,c,d). 
Metsämuuronen (2022b,d) identifies several other estimators of 

reliability with the same challenge. The role of Rit in the deflation is 
discussed later.

Deflation in reliability has a direct effect on the traditional 
standard error of measurement (S.E.m) related to the test score (see 
Metsämuuronen, 2023). The standard error is a concept used in 
quantifying the average amount of random measurement error in a 
score variable generated by a compilation of multiple test items; the 
technicalities are discussed in Section 1.3. Notably, in large-scale 
testing settings such as Program of International Student Assessment 
(PISA) and Trends in International Mathematics and Science Study 
(TIMSS), the focus is mainly on the standard errors across different 
parts of the ability scale, referred to as conditional standard errors, 
rather than the average S.E.m. (see, e.g., Schult and Sparfeldt, 2016; 
Foy and LaRoche, 2019). In this note, however, the traditional S.E.m. 
is discussed because it has a direct relationship with the traditional 
estimate of reliability (REL), that is, S E m RELE X. . . = = −σ σ 1  (e.g., 
Gulliksen, 1950), based on the classical test theory definition 
of reliability:

 REL T X E X= = −σ σ σ σ2 2 2 2
1/ /  (1)

where σT
2, σ X

2 , and σE
2  refer to the variances of the observed score 

variable (X), unobserved true score (T), and error element (E) related 
to the profound idea in measurement modeling: X = T + E.

Because of the simplicity of the definition of reliability in 
Equation (1), the technical reason for the observed radical deflation 
in the estimates of reliability can be traced to two sources: either the 
population variance (σ X

2 ) is deflated, or the error variance (σE
2 ) is 

inflated—or both may happen at the same time. Metsämuuronen 
(2022h) specifically studies the magnitude and limits of the deflation 
in the population variance. The deflation in the population variance is 
an obvious reason for the deflation in the estimates by coefficients 
alpha and theta and related coefficients from the extended family (see 
the discussion in, e.g., Metsämuuronen, 2016, 2022b,d). The reason is 
obvious because the element σ X

2
 embedded in the reliability formulae 

embeds the item–score correlation (Rit = ρiX ; σ σ ρX
i

k
i iX

2

1

2

= ×










=
∑ ; see 

also Equation 8), and Rit is known to give radical underestimates 
when the scales of two variables differ. This is always the case with an 
item and a score. This is deepened and illustrated in Section 1.2.

In the more advanced estimators of reliability, such as coefficients 
omega and rho, the reason for the deflation is partly the overestimated 
error variance observed in the form of 1 2−( )λi in the formulae (see 
later Equation 4), where λi  refers to factor loading. Notably, factor 
loadings are essentially correlations between an item and a factor score 
(e.g., Cramer and Howitt, 2004; Yang, 2010). The consequences and 
magnitude of the deflation in reliability are discussed in the empirical 
part of this article.

1.2 Deflation in estimates of correlation 
due to inflation in error variance

Due to being the oldest estimator of association still in use—with 
over a century of research on and with the product–moment 
coefficient of correlation (PMC)—most of its weaknesses are well-
known. General challenges are extensively covered in standard 
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textbooks (e.g., Salkind, 2010; Tabachnick and Fidell, 2021). Two 
specific challenges strictly related to the topic of the article are 
discussed here.

First, scholars have extensively discussed a particular challenge 
of the product–moment coefficient of correlation (PMC) under the 
topic of “restriction of range” or “range restriction” (RR) for over a 
century, starting from the works of Pearson (1903) and Spearman 
(1904) onward. More recent discussions are summarized by Sackett 
and Yang (2000), Sackett et al. (2007), Meade (2010),  Walk and 
Rupp (2010) and Metsämuuronen (2022d). This phenomenon refers 
to situations where only a portion of the range of values of a variable 
is realized in the sample, leading to inaccurate correlation estimates 
by PMC. These estimates are attenuated, meaning they are lower 
than the true correlation (see various patterns of RR in Sackett and 
Yang, 2000). Pearson (1903) and Spearman (1904) proposed initial 
solutions to correct this attenuation, and numerous solutions have 
been suggested since then (see typologies in Mendoza and 
Mumford, 1987; Sackett et al., 2007). This characteristic of PMC has 
been investigated and addressed, particularly within meta-analytic 
studies (see, e.g., Schmidt and Hunter, 2003, 2015; Schmidt 
et al., 2008).

The other challenge the PMC poses, closely related to the 
inflation in error variance, is its inaccurate estimation in item 
analysis settings. This is considered the primary reason for the 
deflation of reliability because PMC is embedded in the most 
widely used reliability estimators (see compiled in Metsämuuronen, 
2022d). Through simulations, Metsämuuronen (2021a, 2022a); also 
partly observed in simulations by Martin (1973, 1978) and Olsson 
(1980) has identified seven cumulative and partly interrelated 
conditions where deflation in estimates by PMC is anticipated.

Based on these simulations, the item–score correlation (Rit) tends 
to consistently and systematically underestimate the true association 
between an item and a score variable under the following conditions:

 1 The deflation approximates 100% the greater the extremity of 
the item difficulty is.

 2 Scale discrepancy: The greater the discrepancy between the 
item’s scale and the score.

 3 Fewer item categories: The fewer categories present in the item.
 4 Fewer score categories: The fewer categories present in the score.
 5 Number of items: The smaller the number of items comprising 

the score. This is closely linked to the number of categories in 
the score’s scale.

 6 Non-uniform tied cases: The greater the presence of 
non-uniformly distributed tied cases in the score. This a 
consequence of having a small number of items.

 7 Distribution: If the distribution of the latent variable (and 
score) deviates from a uniform distribution.

Consequently, if the test contains items with extreme difficulty 
levels, a small number of items, and items with a narrow scale, 
resulting in a score with a narrow scale, we  anticipate obtaining 
significantly deflated item-total correlations. This leads to markedly 
inflated measurement errors, substantially deflated reliability 
estimates, and inflated standard errors. The extent of this inflation is 
illustrated in Section 1.4 with a numerical example.

The phenomenon of technical or mechanical deflation in the 
estimates of correlation can be easily illustrated with two identical 
(latent) variables that have an obvious perfect correlation ρθθ  = 1. If 
one of these identical variables is dichotomized (item) and the other 
polytomized into several categories (score), Rit cannot reach the 
perfect (latent) correlation. This is unlike other measures, such as 
polychoric correlation (RPC; Pearson, 1900, 1913), Goodman–
Kruskal gamma (G; Goodman and Kruskal, 1954), dimension-
corrected G (G2; Metsämuuronen, 2021a), and attenuation-
corrected Rit and eta (RAC and EAC; Metsämuuronen, 2022e,g) (see 
simulations in Metsämuuronen, 2021a, 2022a). Some estimators, 
such as r-bireg and r-polyreg correlation (RREG; Livingston and 
Dorans, 2004; Moses, 2017), Somers delta directed so that “score 
dependent” (D; Somers, 1962), and dimension-corrected D (D2; 
Metsämuuronen, 2020b, 2021a) come close to a deflation-
free outcome.

As an example of the radical technical deflation in PMC, let us 
take the vector of n = 1,000 cases from a normally distributed 
population and double it. Of these identical variables, one (item g) is 
divided into a binary form [df(g) = 1] by using a cut-off of p = 0.90; that 
is, 90% of the hypothetical test-takers give the correct answer, and the 
other (score X) is divided into seven categories [df(X) = 6] with an 
average difficulty level of [p(X) = 0.50]; this could be a latent reflection 
of a short subtest (e.g., “geometry”) amid a longer test (“mathematical 
achievement”). The difference between the latent correlation (ρθθ  = 1) 
and the observed correlation (ρiX  = ρi¸  = Rit) indicates the magnitude 
of technical deflation in the estimates, even without attenuation, 
which may add some additional deflation to the outcome. Figure 1 
illustrates the magnitudes of the technical deflation in selected 
estimators of association.

Notably, the estimates by such known estimators of item-score 
association based on the mechanics of PMC as Henrysson’s item–rest 
correlation Rir (Henrysson, 1963), Spearman’s rank-order correlation 
RRank (Spearman, 1904), Rit, and eta cannot detect the obvious perfect 
latent correlation, and the magnitude of deflation is notable (> 
0.47 units of correlation).1 Moreover, Kendall’s tau-b (Kendall, 1948) 
gives a deflated estimate because the values are always lower than 
those by PMC (see the reasons in, e.g., Metsämuuronen, 2021b). Such 
estimators as RPC, G, G2, RA, C, and EAC are found deflation-free in this 
kind of comparison. However, they may have some other challenges 
in fully reaching the true association (see Metsämuuronen, 2022a). 
RREG is almost deflation-free, and, in D and D2, the magnitude of 
deflation may be nominal, depending on the number of tied pairs in 
the items and score as well as the widths of the scales in item and 
score (see Metsämuuronen, 2021a). Hence, based on an analysis of 
11 sources of deflation, Metsämuuronen (2022a) lifts coefficients RPC, 
RREG, G, D, G2, D2, RAC, and EAC as superior options for Rit to be used 
in estimators of reliability to reach deflation-corrected estimates of 
reliability. Some of these estimators are used as benchmarks in the 
numerical example and empirical section to assess the magnitude of 
the inflation in error variance and standard errors.

1 Notably, although coefficient eta uses different information in comparison 

with Rit, in the binary case, their formulae are identical (see Wherry and Taylor, 

1946; see also Metsämuuronen, 2022g).
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1.3 Briefly on the basic concepts related to 
inflation in error variance

Section 1.4 gives a practical, hypothetical example of the 
phenomenon of inflation. Some concepts are needed to understand the 
notation in that section. However, the conceptual discussion is minimal 
in this section (see in detail in Supplementary Appendix 1).

Let us assume a congeneric measurement model with one 
latent variable (θ):

 x w ei i= +iθ  (2)

where xi denotes the observed values of an item gi and wi denotes a 
weight factor that links θ with xi (e.g., Metsämuuronen, 2022a,c,d). This 
congeneric measurement model is generalized from the traditional 
model (e.g., McDonald, 1999; Cheng et al., 2012). In the traditional 
model, the weight factor wi is usually assumed to be a factor loading (λi),  
and the factor score variable is assumed to reflect the most accurately the 
latent variable. In the general model, the weight factor wi is a coefficient 
of association in some form, also including principal component and 
factor loadings. The unobservable θ may manifest as a varying type of 
relevantly formed compilation of items such as a raw score (θX), 
standardized raw score (θXSDT), principal component score (θPC), factor 
score (θFA), theta2 score formed by the item response theory (IRT) or 

2 It may cause some confusion that the tradition within IRT and Rasch 

modeling uses “theta” as a general name for the observed score variable. While 

logically consistent, it creates a tension between the notation used within the 

article, where “theta” refers to the latent variable rather than the observed 

variable. To resolve this tension, “theta” is written with a subscript when referring 

to the manifestation of the latent variable (e.g., θX or θIRT), while the latent 

variable itself is denoted by the Greek letter θ.

Rasch modeling (θIRT), or various non-linear combinations of the items 
(θNon-Linear).

If we assume that errors in the individual items do not correlate 
with each other, the error variance related to the compilation of the 
items is as follows:

 
VAR e w k w

i

k
i E

i

k
i

i

k
i

= = =
∑ ∑ ∑








 = = −( ) = −

1

2

1

2

1

2
1σ .

 
(3)

In practical terms, the traditional measurement model takes the 
factor loading as the weight factor, and this leads to the following error 
variance related to the score variable:

 
σ λ λE

i

k
i

i

k
ik2

1

2

1

2
1= −( ) = −

= =
∑ ∑ .

 
(4)

Notably, the traditional model assumes that the weight factor wi, i.e., 
factor loading being a correlation coefficient, always gives accurate 
estimates. This assumption is too optimistic, as observed above, and the 
deflation in the estimate may be remarkable. However, if we select the 
correlation w wisely so that the magnitude of the mechanical error is as 
small as possible, that is, if we use some of the deflation-free or deflation-
corrected estimators of correlation (wi DC_ ), the outcome is deflation-
free or near. The magnitude of the error component related to  
deflation may be  near zero. This leads us to a deflation-corrected 
measurement model and, consequently, to deflation-corrected error 
variance as follows:

 
σE DC

i

k

i DC
i

k

i DCw k w
_ _ _

.
2

1

2

1

2
1= −( ) = −

= =
∑ ∑

 
(5)

In practical terms, if using RPC, G, and D as the deflation-corrected 
estimators of association between an item i and the (undefined) latent 
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FIGURE 1

Magnitude of deflation in the selected estimators of association. 
Rir, Henrysson item–rest correlation (= PMC); Tau-b, Kendall tau-b; RRank, Spearman rank-order correlation (= PMC); Rit, Item-total correlation (= PMC); eta, 
Coefficient eta (X dependent) (= PMC in the binary case); D, Somers delta (X dependent); D2, Dimension-corrected D; RReg, r-bireg correlation; RPC, 
Polychoric correlation; G, Goodman-Kruskal gamma; G2, Dimension-corrected G; RAC, Attenuation-corrected Rit; EAC, Attenuation-corrected eta.
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variable θ, a theoretical deflation-corrected error variance based on 
RPC is as follows (Metsämuuronen, 2023):

 
σE DC R

i

k

PCi
i

k

PCiPC
R k R

_ _ θ θ θ
2

1

2

1

2
1= −( ) = −

= =
∑ ∑

 
(6)

and, based on G, it is as follows:
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(7)

and based on D, it is as follows:
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(8)

These estimators are used later in the hypothetical example 
and in the empirical section—except that instead of G and D, G2 
and D2 are used in Equations (7) and (8) because they suit better 
polytomous settings; their computing is discussed later. Of these 
better-behaving estimators of association, RPC refers to a 
theoretical association in that it refers to theoretical (latent) items 
and scores that a researcher is not privy to (see the critique in 
Chalmers, 2017). G and D and the derivatives G2 and D2 refer to 
observed items and scores with a practical interpretation: the 
estimates strictly indicate the proportion of the test takers that 
are logically (ascending) ordered after they are ordered by the 
score variable; p G= × +0 5 0 5. .  and p D= × +0 5 0 5. .  (see 
Metsämuuronen, 2022i based on Metsämuuronen, 2021b). Of G 
and D, the estimates by D are more conservative in comparison 
with G because G omits the tied pairs in the computing 
proportions while D uses them (see Metsämuuronen, 2021b). In 
polytomous settings, the magnitude of the estimates by G2 tends 
to follow close to those by RPC and the estimates by D2 close to 
those by RREG (Metsämuuronen, 2022i).

1.4 A hypothetical numerical example of 
the inflation in estimates of error variance

Assume a hypothetical dataset, as in Table 1 with k = 5 items and 
incremental difficulty levels in items (p = 0.083–0.917) and n = 12 test 
takers. This could be  a short subtest of “Sets” amid a larger 
mathematics achievement test given to a small group of students. 
Relevant indicators related to the traditional and deflation-corrected 
error variances are collected in Table 1. Four score variables are used: 
a raw score (θX), a standardized raw score (θXSTD), a factor score (θFA), 
and a theta score formed by the one-parameter logistic item response 
theory (1PL IRT) modeling or, factually, Rasch modeling (θIRT). The 
ML estimate is not optimal for the score variables because of the 
small sample size. However, it serves as an example of the 
computing process.

As an indicator of reliability, the coefficient omega total (ρω; later, 
just omega) based on the works of Heise and Bohrnstedt (1970) and 

McDonald (1970, 1999) also known as McDonald’s omega, is used. 
Omegas can be expressed as follows:
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(9)

In the example of the possible outperforming estimators of 
correlation, RPC, G, and D and related deflation-corrected estimates of 
error variance are used as benchmarks for traditional factor loadings. 
Using G and D is justified because the items are binary (Metsämuuronen, 
2020a,b, 2021a). From the viewpoint of the benchmarking estimators 
(Equations 6–8), using the raw score, standardized raw score, and 1PL 
model in IRT modeling leads to identical results because the order of the 
test takers does not change in the standardization and 
logistic transformation.

From the viewpoint of reliability estimates, the estimate by the 
traditional coefficient omega (Equation 8) is notably deflated as being 
ˆωρ  = 1 485 1 485 3 600

2 2
. / . .( ) ( ) +( ) = 0.380. It appears that the factor 

score is not the best reflection of the true ability in the case. Namely, 
the related deflation-corrected estimate is based on the form of omega, 
and using RPC gives a deflated estimate of _èˆωρ PC FAR  = 

1 544 1 544 2 550
2 2

. / . .( ) ( ) +( ) = 0.483. In the hypothetical example, the 
estimates related to the raw score (and IRT score) appear more credible 
in comparison with the factor score, because items g1, g4, and g5 can 
deterministically distinguish test takers from each other when tied 
cases are not considered (RPC ≈ G = 1). The estimates are quite close 
when the tied cases are considered (D = 0.889–0.909). Factor analysis 
can detect this phenomenon only in g5 (λg FA5¸

 = 0.999) but fails notably 
in g1 (λg FA1¸

 = 0.091) and g4 (λg FA4¸
 = 0.522). Hence, we  obtain the 

deflation in reliability by omega and inflation in the error variance.
If the raw score, standardized raw score, or IRT score are used 

as a justified reflection of the latent ability, the estimates of 
reliability would be  notably higher by using 
RPC as the weight factor, _ _ _ˆ ˆ ˆω ω ωρ ρ ρ= =

PC PC STD PCR X R X R IRT  = 

4 089 4 089 1 389
2 2

. / . .( ) ( ) +( ) = 0.923, mildly higher if G was used 

( _ _ _ˆ ˆ ˆω ω ωρ ρ ρ= =
STDGX GX GIRT

 
= 0.932), and mildly lower if D

 
was used ( _ _ _ˆ ˆ ˆω ω ωρ ρ ρ= =

STDDX DX DIRT  = 0.869).

When comparing the standardized score variables in the 
hypothetical example, the deflation in the estimate by the 
traditional omega is 56% [=(0.869–0.380)/0.869 × 100] if the 
conservative D is taken as the benchmarking weight factor and 
59% if RPC or G are taken as the benchmarks. The inflation in the 
traditional error variance based on the factor loadings is 30–41% 
when the factor score is considered and up to 76–182%, 
depending on the weight factor when the standardized raw score 
is considered. The magnitude of both deflation and inflation is 
notable and worth further investigation.

More in-depth analysis is discussed in Section 5, where a set of 
1,440 real-life tests with various characteristics is used to explore the 
boundaries of the inflation in error variance.
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TABLE 1 A hypothetic dataset related to inflation in the estimated error variance.

Items Scores

Test taker g1 g2 g3 g4 g5 θX θXSTD θFA θIRT

1 1 0 0 0 0 1 −1.567 −0.28873 −1.976

2 0 1 0 0 0 1 −1.567 −0.28865 −1.976

3 1 1 0 0 0 2 −0.522 −0.28834 −0.642

4 1 0 1 0 0 2 −0.522 −0.28937 −0.642

5 1 1 0 0 0 2 −0.522 −0.28834 −0.642

6 1 1 0 0 0 2 −0.522 −0.28834 −0.642

7 1 0 1 1 0 3 0.522 −0.28778 0.642

8 1 1 1 0 0 3 0.522 −0.28897 0.642

9 1 1 1 0 0 3 0.522 −0.28897 0.642

10 1 1 1 0 0 3 0.522 −0.28897 0.642

11 1 1 0 1 1 4 1.567 3.17384 1.976

12 1 1 1 1 0 4 1.567 3.17384 1.976

p 0.917 0.750 0.500 0.250 0.083

B (IRT) −2.482 −1.238 0 1.238 2.482

Score FA SUM Omega

λi FAθ 0.091 0.174 −0.301 0.522 0.999 1.485 0.380

1
2− λi FAθ

0.992 0.970 0.909 0.728 0.002 3.600

RPCi FAθ −0.302 0.339 −0.493 1 1 1.544 0.483

1
2− RPCi FAθ

0.909 0.885 0.757 0 0 2.550

Gi FAθ 0.091 0.259 −0.444 1 1 1.906 0.571

1
2−Gi FAθ

0.992 0.933 0.803 0 0 2.728

Di FAθ 0.091 0.174 −0.444 1 1 1.821 0.545

1
2− Di FAθ

0.992 0.970 0.802 0 0 2.764

Score X = Score XSTD = Score IRT

RPCi Xθ 1 0.449 0.640 1 1 4.089 0.923

1
2− RPCi Xθ

0 0.798 0.591 0 0 1.389

Gi Xθ
1 0.500 0.688 1 1 4.188 0.932

1
2−Gi Xθ

0 0.750 0.527 0 0 1.277

Di Xθ
0.909 0.370 0.611 0.889 0.909 3.688 0.869

1
2− Di Xθ

0.174 0.863 0.627 0.210 0.174 2.047

(Continued)
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1.5 Summary of the discussion by far

From earlier studies, it is known that the traditional estimates of 
reliability tend to be deflated. The deflation may be radical (up to 0.40–
0.70 units of reliability), and the reason for this deflation is the poor 
behavior of the product–moment coefficient of correlation in the case 
that the widths of the scales of the variables are far from each other. This 
is always the case in measurement modeling settings, and it is often 
exacerbated in achievement testing, where we are willing to use both very 
easy, medium, and very demanding tasks to cover the full range of ability 
scales in one test. In these types of tests, the standard errors related to the 
score are radically inflated; in some extremely easy or difficult tests, the 
standard errors have been reported to be more than 10 times higher than 
they should be.

Because the relationship between reliability and error variance and the 
standard error of the score can be easily observed from the formulae, the 
technical reasons for the observed radical deflation in the estimates of 
reliability can be traced to three sources: either the population variance (σ X

2

) is deflated, or the error variance (σE
2) is inflated—or both may happen at 

the same time. This article focuses on error variance, which is strictly 
embedded in widely used reliability estimators such as omega and maximal 
reliability (see Supplementary Appendix 1). In some empirical settings, it 
has been noted that the estimates of reliability may be deflated by 0.40–
0.70 units, and this can be directly connected to mechanical errors in the 
estimation of correlation, which needs to be separated from attenuation 
related to violations against the measurement model. From this viewpoint, 
it appears that the phenomenon of radical inflation in error variance and 
measurement error caused by technical error during the estimation process 
is discussed sparsely in literature, if at all, considering its possible 
consequences (see, however, discussion in Metsämuuronen, 2023 related 
to achievement testing, and Metsämuuronen, 2022b,f, related to inflation 
in conditional standard errors). Hence, it seems justified to further discuss 

the reasons, mechanisms, and consequences of the deflation observed in 
the estimates of reliability and the inflation in error variance.

2 Research questions

This note examines the magnitude and consequences of inflation in 
error variance estimates. The conceptual matters and reasons behind 
them are discussed in Section 1.3. The inflation in the error variance begs 
three key questions: (1) What is the magnitude of the inflation in the 
estimated error variance and the related standard errors in real-life testing 
settings? (2) How can the magnitude of inflation be predicted? and (3) 
How do deflation-corrected estimators of error variance and standard 
errors compare to traditional ones in real-life datasets? These questions 
are studied and discussed in the empirical section (Section 4) using a 
simulation dataset based on real-life settings.

3 Methods

3.1 Dataset

A dataset of 4,023 nationally representative test-takers of a 
mathematics test with 30 binary items (FINEEC, 2018) is used as the 
“population.” From the original dataset, 10 samples with finite sample 
sizes of n = 25, 50, 100, and 200 test-takers were drawn. These samples 
imitate different real-life sample sizes, ranging from tests for a large 
student group (n = 200) to classroom settings (n = 25). In each of the 
10 × 4 datasets, 36 tests were produced by varying the number of items 
in the tests, the difficulty levels of the items, and the length of the 
scales of the score [df(X) = number of categories in the score scale – 1] 
and the item [df(g) = number of categories in the item scale  –  1]. 

TABLE 1 (Continued)

Items Scores

Test taker g1 g2 g3 g4 g5 θX θXSTD θFA θIRT

Inflation in 1
2− λθi FA

when the factor score is considered

SUM Deflation %1

dRPCi FAθ
0.083 0.085 0.153 0.728 0.002 1.050 41.2

dGi FAθ
0.000 0.037 0.107 0.728 0.002 0.873 32.0

dDi FAθ
0.000 0.000 0.107 0.728 0.002 0.836 30.3

Inflation 1 2− λθi FA

 when the (standardized) raw score is considered
SUM Deflation %1

dRPCi Xθ
0.992 0.171 0.319 0.728 0.002 2.211 159.2

dGi Xθ
0.992 0.220 0.383 0.728 0.002 2.324 182.0

dDi Xθ
0.818 0.107 0.283 0.518 −0.172 1.553 75.9

1
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Polytomous items were produced as a combination of binary items. In 
the final dataset, both the tests with the original items and the tests 
with fewer items but wider scales are mixed. Datasets comprising the 
traditional and deflation-corrected estimates of reliability, the 
estimates of error variance and standard errors and estimated 
population variances, and related derivatives and background 
information of the 1,440 tests are available at doi: 10.13140/
RG.2.2.25390.79687  in CSV format and at doi: 10.13140/
RG.2.2.33779.40481 in IBM SPSS format.

3.2 Estimators of association

Because we are using both binary and polytomous items, instead 
of G and D, their dimension-corrected modifications (G2 and D2) are 
used. It is known that when the number of categories in the item 
exceeds 3 (D) or 4 (G), G and D tend to underestimate the item-score 
association (see, e.g., Metsämuuronen, 2020a,b, 2021a). Hence, 
Metsämuuronen (2021a) suggests modifications specific to the 
measurement modeling settings as follows: 
G G abs G A2 1 1= × + − ( )( )×( ) and D D abs D A2 1 1= × + − ( )( )×( ), 
where G and D are the observed values of G and D and 

A
df g

= −
( )









1

1
3

. With binary items, df(g) = 1, and A = 0, and, hence, 

G2 = G and D2 = D. Moreover, when G = D = 1, G2 = G, and D2 = D.

For the note, the estimates by G2 and D2 were computed manually 
from the values of G and D being standard outputs of a statistical 
software package (in the case of IBM SPSS; see syntaxes with some 
generally known packages in Supplementary Appendix 2).

3.3 Variables and statistics

In assessing the magnitude of the inflation in the estimates of 
error variance, a simple statistic is used: the difference between the 
traditional estimate and the deflation-corrected estimates. The 

traditional estimates are denoted 
_

2ˆ
FAEd

λ
σ or “VAR(E)_LFA” as an 

abbreviation of “error variance based on factor loadings as the linking 
factor and the factor score variable as the manifestation of the latent 
score estimated by using the maximum likelihood extraction method.” 
Correspondingly, the deflation-corrected estimators are denoted 

_
2ˆ

PCE R Xσ , 
2_

2ˆE G Xσ , 
2_

2ˆE D Xσ or “VAR(E)_RPCX,” “VAR(E)_G2X,” 
and “VAR(E)_D2X,” respectively as abbreviations of “error variance 
based on RPC/G2/D2 as the linking factor and the raw score as the 
manifestation of the latent score.” The “written” version is seen, 
specifically in Figures to come. While traditional estimates are based 
on factor score variables, the latter estimates are based on raw scores. 
We may also note that the result would be equal if the standardized 
raw scores or IRT scores were used because the estimates of the item–
score association by the deflation-corrected estimators of correlation 
are equal with the raw scores, standardized scores, and IRT scores 
because the order of the test takers does not change in 
these transformations.

A difference (“d”) between the sample estimates of the traditional 
estimate of error variance and the deflation-corrected estimate reflects 
the magnitude of inflation. This difference is noted as follows: 

_
2ˆ

PCE R Xdσ  or “dVAR(E)_RPCX” refers to inflation in _
2ˆ

FAE λσ when 

_
2ˆ

PCE R Xσ  is used as the benchmark. Similarly, “dVAR(E)_G2X” or 

“dVAR(E)_D2X” refers to the inflation in the case G2 or D2 have been 
used as the deflation-corrected estimator of weight factor wi. 
Technically,

 

_ _ _

2 2

1 1

2 2

1

2 2 2

1

ˆ ˆ ˆ
PC STD FA PC

FA XSTD

XSTD FA

E R X E E R X
k k

i PCi
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PCi i
i i
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d

k
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λ

λ
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θ θ
= =

   
− − −      

   

= −

=

= −

∑ ∑

∑ ∑
 

(10)

Then, if the magnitude of _
2ˆ

PC STDE R Xσ  is positive, the traditional 
estimated error variance of the score is overestimated. In some cases, 
this is expressed as percentages, which are notated using “dp” such as 

in _
2ˆ

PC STDE R Xdpσ . The percentages are computed so that the deflation-
corrected estimate is the base; the percentage indicates the deflation 
in the traditional estimate, assuming that the deflation-corrected 
estimate represents the true value.

However, using the percentages is not necessarily wise to connect 
to the phenomenon because the magnitude of the error variance 
appears to vary radically depending on the number of items in the 
compilation. With two or three items, the magnitude of the error 

variances could be 0.2 and 0.6, leading to _
2ˆ

PC STDE R Xdpσ = 200; that 
is, the error variance seems to be inflated by 200%. If the difference is 
notably greater, such as 20 or 30, inflation would be only 50%.

3.4 Methods in analysis

The magnitude of the inflation is illustrated by using visual tools. 
The explaining factors are studied using standard linear regression 
modeling, and linear and non-linear graphical modeling is used with 
two variables. Decision tree analysis (DTA; IBM, 2017), a data mining 
tool with the CHAID algorithm (Chi-square Automatic Interaction 
Detector; Kass, 1980), explores the variables and groups the categories. 
In DTA, the outcome is a non-linear hierarchical model based on 
maximizing the F-test (or χ2) statistics; all possible combinations of 
the explaining factors are computed, and the statistically best 
combination is selected. This tool is used when the number of items 
in the compilation explaining the error variance is of interest. A 
paired-sample t-test is used to compare mean differences in standard 
errors, and Cohen’s d (Cohen, 1988) is used to indicate effect size.

4 Results

4.1 The magnitude of the error variance in 
real-life settings

Four lifts are made regarding the magnitude of the error variance in 
real-life settings. First, with the smallest sample size in the simulation (n 
= 25), it was not possible to produce all the factor models. While it was 
possible to produce 360 estimates of error variance related to the 
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deflation-corrected correlation estimators, the factor solution was found 
only in 314 out of 360 tests. This loss of 12.5% in the group of the smallest 
sample size is systematic in that the error variances were missing with 
binary items and tests with more than 24 items; that is, in the settings 
where the inflation was the greatest (see Figure 2). Hence, in Figure 2, 
only estimates with sample sizes of n ≥ 50 (n = 1,080 tests out of 1,440) can 
be observed. Later, all possible estimates are used, that is, n = 1,394 for the 
traditional estimates and n = 1,440 for the deflation-corrected estimates. 
In the pairwise comparisons, only 1,394 pairs are available.

Second, the dataset used in the simulation did not include tests with 
16–19 items or tests longer than 30 items. Technicalities in forming the 
dataset used in simulation led to practicalities such as the test with 20–30 
items being based on binary items and the test with 2–15 items being 
polytomous items (Figure 2). Notably, some categories of k in Figure 2 
are combined, as suggested by DTA with the CHAID algorithm; using 
these groups, the difference between the categories is the most statistically 
significant [for the traditional estimates, F(13, 1,066) = 14,768.58, 
p < 0.001]. In Figure 2, n refers to the number of tests; n = 60 indicates that 
the dataset consists of 60 tests compiled of 28–30 items.

Third, the magnitude of the error variance increases systematically 
with the number of items comprising the test (k). This is known from 
Eqs. (3) to (5), and it [i.e., the phenomenon in Eqs 3−5],  is 
understandable because the error variance of the test is a cumulative 
sum of error variances of the single items. While the traditional error 
variance (“VAR(E)_LFA”) is approximately 0.5–2.2 units with tests 
with few items (k = 2–5), with 20–30 binary items, it is 15.9–23.4 units. 
The number of items in the compilation explains almost all error 
variance variability; using the linear regression model, R2 > 0.99 for the 

traditional error variance, and if using the deflation-corrected 
estimators of association, R2 > 0.98 (Figure 3).

Fourth, all the estimators of deflation-corrected error variance 
give estimates that are systematically smaller in magnitude than 
traditional estimates. While, in the given dataset, the traditional 
estimates related to the factor score variable and factor loadings tend 
to range from 0.5 to 23.4 units, depending on the number of items in 
the compilation, the deflation-corrected estimates related to the raw 
score range from 0.2 to 17.8 units. It may be possible that the lower 
magnitude of the error variance related to the deflation-corrected 
estimates could be partly explained by the difference in the score 
variable; after all, the score variables differ between the estimators. 
However, traditionally, factor score variable has been taken as one of 
the “optimal linear combinations” discussed over years by, 
chronologically, e.g., Thompson (1940), Guttman (1941), Stouffer 
(1950), Lord (1958), and Bentler (1968) and later, for example, Li 
et al. (1996) and Li (1997); the “optimal” combination should be, 
logically, better than the raw score and, hence, it should include less 
error in comparison with the raw score. However, the studies with 
deflation-corrected estimators of reliability have shown that the 
reason for the deflation is mainly in estimates of the association 
between the item and score variable (see the discussion above) rather 
than in the difference between the score variables (see 
Metsämuuronen, 2022b of the effects of different sources of 
underestimation of reliability).

4.2 The magnitude of the inflation of the 
error variance in the real-life datasets

As shown in Figures 2 and 3, the inflation in the error variance 
tends to become greater the more items there are in the compilation. 
Figures 4A,B and 5 further exploit the same finding: Figures 4A,B use 
factual estimates, and Figure 5 uses the means of error variance in the 
compiled groups of the number of items in the compilation suggested 
by DTA. Three major points are highlighted.
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FIGURE 2

Magnitude of the error variance by the number of items in the 
compilation (sample sizes n  =  50, 100, and 200) in groups suggested 
by DTA. 
VAR(E)_LFA  = error variance based on factor loading (L) as the linking 
factor and a one-factor factor score variable (FA) estimated by using 
maximum likelihood estimation as the manifestation of the latent 
score. VAR(E)_RPCX, VAR(E)_G2X, and VAR(E)_D2X  =  error variance 
based on RPC/G2/D2 as the linking factor and the raw score (X) as the 
manifestation of the latent score.
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Models of the magnitude of the error variance by the number of items in 
the compilation (all tests). 
 VAR(E)_LFA = the traditional error variance based on factor loading (L) as 
the weight factor and factor score variable (FA) from a one-factor 
solution estimated by using maximum likelihood estimation as the 
manifestation of the latent ability. VAR(E)_RPCX, Deflation-corrected 
error variance based on RPC as the weight factor and the raw score (X) as 
the manifestation of the latent ability.
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First, the models of the magnitude of the inflation may 
be different for binary items and polytomous items. This is illustrated 
in Figure 4A with RPC: the magnitude of the slope parameter with 
binary items is 0.209, and with the polytomous items, it is 0.155. In 
the dataset used in the simulation, the polytomous items were 
dependent on the binary items; after all, the polytomous items were 
formed as combinations of binary items. Systematic studies with 
independent polytomous and binary items would be  valuable in 
confirming this phenomenon.

Second, in the simulation dataset, a linear model of 
inflation = 0.2 × k – 0.3 explains well the magnitude of inflation when 
the benchmarking estimator is based on RPC and inflation = 0.2 × k – 
0.2 when G2 is the benchmark; that is, the estimates tend to 
be somewhat higher when using G2 than RPC (Figure 4B). The model 
for the conservative estimates by D2 have a smaller magnitudes in the 
slope parameter and constant (inflation = 0.17 × k – 0.25). In all cases, 
the explaining power for a linear model is high (R2 = 0.94–0.97), 

although the models with a second power give slightly better 
explaining powers (R2 = 0.96–0.98) (Figure 4B).

Third, not only is the error variance cumulative by the number 
of items (see Figures 4A,B), but the inflation in the error variance is 
also cumulative by the number of items. With 2–4 items, the error 
variance ranges from 0.3 to 0.5 regardless of the benchmarking 
deflation-corrected estimator, while with 30 binary items, the 
inflation in the error variance ranges 4.7–5.4 units depending on the 
benchmarking estimator (Figure 5). The technical reason for the 
phenomenon is that they tend to give estimates with a higher 
magnitude than PMC because of the better behavior of the deflation-
corrected estimators of association. This is understood by the 
common characteristics of the deflation-corrected estimators of 
correlation, which give higher estimates than the traditional 
deflation-prone estimators. Because the error variance is cumulative, 
the more items we have in the compilation, the more cumulative 
error we obtain.
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FIGURE 4

(A) Magnitude of the inflation in the error variance based on RPC (linear and non-linear models); all tests (left) and separated by the type of the 
tests (right). dVAR(E)_RPCX  = VAR(E)_RPCX  −  VAR(E)_LFA, i.e., the difference (d) between the error variance based on the deflation-corrected and 
traditional estimates of error variance, that is, error variance based on RPC as the weight factor and raw sum (X) as the manifestation of the latent 
ability and error variance based on the factor loading (L) as the weight factor and factor score variable (FA) from a one-factor solution as the 
manifestation of the latent ability. (B) The magnitude of the inflation in the error variance based on G2 and D2 (linear and non-linear models); all 
tests. dVAR(E)_G2X  = VAR(E)_G2X  −  VAR(E)_LFA, i.e., the difference (d) between the error variance based on the deflation-corrected and traditional 
estimates of error variance, that is, error variance based on G2 as the weight factor and raw sum (X) as the manifestation of the latent ability and 
error variance based on the factor loading (L) as the weight factor and factor score variable (FA) from a one-factor solution as the manifestation of 
the latent ability. Similarly, dVAR(E)_D2X  = VAR(E)_D2X  −  VAR(E)_LFA based on D2 as the weight factor.
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4.3 Note on the factors explaining the 
inflation in error variance

The magnitude of inflation was studied with linear regression 
analysis by using five factors related to the tests: the sample size 
(n), the test difficulty assessed by the average item difficulty ( p), 
the number of items (k), the number of categories in the score 
[df(g)], and the score [df(X)]. However, because the number of 
items alone explains 96.4–97.5% of the variability in inflation by 
the quadratic model (R2 = 0.964–0.975), the other factors cannot 
add much information to the model. Factually, in all conjoint 
models, different combinations of other elements increase the 
explaining power statistically significantly, but the final 
explaining power of the more complicated linear model after 
Wherry’s adjustment is lower (RAdj

2  = 0.952–0.974) than in the 
models with only one explaining factor without a need for the 
adjustment. Hence, these models are not included in this note. 
However, Table 2 condenses an example of the impact of different 
factors in a conjoint linear model where RPC is used as a deflation-
corrected estimator of association. By using RPC in the correction, 
a number of items alone explain 97.7% (by quadratic model) or 
96.8% (by linear model) of the variability in inflation. The whole 
linear model explains 97.4%. Notably, the relationship is not 
linear (see Figure 5).

4.4 Inflation in the standard errors

As discussed above, inflation in the error variance is strictly 
linked to the deflation of reliability. Another direct consequence 
is that the estimated standard errors are inflated. The more the 
item–score correlations are deflated, the more the  

reliability estimates are deflated, and, consequently, because of 
Equation (1), the more the standard errors are inflated (see the 
discussion in Metsämuuronen, 2023). The relation between the 
inflated error variance and inflated standard errors is somewhat 
more complicated than the inflation in error variance itself.

Taking the form of coefficient omega (Equation 9) as an 
example, the deflation in reliability depends not only on the inflated 

error variance 
i

k

i FA
=
∑ −( )
1

2
1 λ θ  but also on the other component related 

to 
“true variance”

 i

k
i FA

=
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1

2

λ θ , which is deflated when the traditional 

factor loadings are considered; these two elements are 
intertwined. If

 

using the basic formula for the S.E.m. (based on 
Equation 1) with deflation-corrected estimators of correlation in 
estimation (e.g., 
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and

 i
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iRPC

=
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1

2

θ ) and related 
deflation-corrected 

estimators of reliability (DCER; 
Metsämuuronen, 2022c,d,e), we  obtain deflation-corrected 
standard errors (S.E.m._DC).

The inflation in the standard errors is studied by using the 
coefficient omega as an example of an estimator of reliability. The 
traditional omega is used to estimate the reliability of a factor score, 
which is a standardized variable with σ X

2  = 1, and, hence, the 
traditional estimator of S.E.m using omega is S E m. . . = −( )1 ρω . The 
corresponding DCERs, “OmegaRPC,” “OmegaG2,” and “OmegaD2,” use 
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Magnitude of the inflation in the error variance by the number of items (n refers to the number of tests). 
dVAR(E)_RPCX  =  VAR(E)_RPCX  −  VAR(E)_LFA, dVAR(E)_G2X  =  VAR(E)_G2X  −  VAR(E)_LFA, and dVAR(E)_D2X  =  VAR(E)_D2X  −  VAR(E)_LFA, i.e., the 
difference (d) between the error variance based on the deflation-corrected and traditional estimates of error variance, that is, error variance based on 
RPC/G2/D2 as the weight factor and raw sum (X) as the manifestation of the latent ability and error variance based on the factor loading (L) as the weight 
factor and factor score variable (FA) from a one-factor solution as the manifestation of the latent ability.
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the form of Equation (6) as the base and RPC, G2, and D2 as the weight 
factors (see, e.g., Metsämuuronen, 2022d). However, the score variable 
in the datasets used in the simulation was originally the raw score. To 
compare estimated standard errors, without losing generalizability, 
we can assume that the raw scores were standardized; a correlation 
between an item and a raw score is identical to the correlation between 
an unstandardized item and a standardized raw score. Then, the 
deflation-corrected standard errors based on RPC are computed as 
follows: S E m DC RPC RPC XSTD

. . ._ _ _= −( )1 ρω θ , which is 
abbreviated in the figures to come as “SEM_RPC_STD,” referring to 
“standard error based on the formula of omega and using RPC as the 
weight factor and standardized raw score (STD) as the manifestation 
of the latent ability.”

Similarly, the deflation-corrected standard errors based on G2 are 
computed as follows: S E m DC G G XSTD

. . ._ _ _2 1
2

= −( )ρω θ . It is 
abbreviated as “SEM_G2_STD.”

The deflation-corrected standard errors based on D2 are computed 
as follows: S E m DC D D XSTD

. . ._ _ _2 1
2

= −( )ρω θ . It is abbreviated as 
“SEM_G2_STD.” The notations ρω _RPC XSTDθ (“OmegaRPCSTD”), 
ρω _G XSTD2θ (“OmegaG2STD”), and ρω _D XSTD2θ (“OmegaD2STD”) 

indicate that the base of the estimator of reliability is omega 
(Equation 9), the weight factor wi is operationalized as RPC, G2, or D2, 
and the latent score variable is manifested as the standardized raw 
score (θXSTD). Hence, the standard errors related to the factor score 
variables and the standard errors of standardized raw scores are 
compared. Understandably, the outcome is not exact, but it gives us a 
rough idea of the magnitude of the inflation in standard errors.

In the datasets used in the simulation, the average S.E.m by using 
the traditional omega is 0.38 standard units, while the deflation-
corrected standard errors using the deflation-corrected estimators of 
association with the formula of omega vary by 0.26–0.28, depending 
on the weight factor. Hence, on average, the traditional standard errors 
are inflated by 35–48% (Figure  6). The difference is statistically 
significant (paired-samples t-test, t = 112.39–128.40; p < 0.001) and 
remarkable or “huge” (Cohen’s d = 3.20–3.40; see Sawilowsky, 2009). 
The modest inflation in comparison with the datasets by 
Metsämuuronen (2022b,f) is caused by the fact that the dataset used 
does not contain many items with extreme difficulty levels, and, hence, 
the deflation in the estimates of reliability is modest: ρω = 0.85 by using 
the traditional omega vs. ρω_wiθ = 0.92–0.93 by using DCERs, that is, 
7–8%. Notably, in the extremely easy dataset discussed by 
Metsämuuronen (2022b) (originally in Metsämuuronen and Ukkola, 
2019), the deflation in the estimates by omega was 53–57% (ρω = 0.42 

by omega vs. ρω_wiθ = 0.87–0.97 by DCERs). In a real-life setting by 
Metsämuuronen (2022f), the deflation in reliability with easy items 
was 68–69% (ρω = 0.29 by omega vs. 0.86–0.90 by DCERs using 
G and D).

Even though the error variance by Equations (4, 6–8) is directly 
related to the number of items in the compilation, the magnitude of 
the standard error by Equation (1) is not systematically related to the 
number of items in the compilation, although it tends to become 
smaller the wider the scales of the item and score (Figure  7). In 
Figure  7, the abbreviations “SEM L_FA,” “SEM RPC_STD,” “SEM 
G2_STD,” and “SEM D2_STD” refer to standard errors (SEM) 
estimated either by the traditional way by using coefficient omega with 
factor loadings (L_FA) or by using the formula of omega with 
deflation-corrected estimators of association (RPC/G2/D2) and 
standardized raw scores (STD). Formally, the DCERs are ρω _RPC XSTDθ , 
ρω _G XSTD2θ , and ρω _D XSTD2θ , where the base of the estimator of 

reliability is omega (Equation 9), the weight factor wi is operationalized 
as RPC, G2, or D2, and the latent score variable is manifested as the 
standardized raw score (θXSTD).

4.5 Note on the standard errors and 
“standard errors”

We have presented two approaches to computing the average 
standard error. On the one hand, we have the traditional S.E.m. based 
on the definition of reliability of the score (Equation 1), that is,

 σ σE X REL= −( )2
1  (11)

This implies and determines that the standard error cannot 
exceed the magnitude of the standard deviation (σ X ) related to 
the score because REL ≤ 1. With a standardized score with σ X

2 = 
1, according to Equation (11), the variance of the score can 
be divided into reliable variance (reliability, REL) and unreliable 
variance (σE

2 ), which together do not exceed the value 1, that is, 
REL +σE

2  = 1.3

3 Sincere thanks to PhD Christian Geiser from QuantFish LLC for reminding 

me of this in a private discussion concerning the matter.

TABLE 2 Conjoint model of relevant factors explaining the inflation on error variance; dependent variable: dVAR(E)_RPCX.

Unstandardized 
coefficients

Standardized 
coefficients

Model B Std. Error Beta t Sig.

Constant −0.793 0.094 −8.471 < 0,001

Number of cases in the sample (n) 0.001 0 0.042 6.573 < 0,001

Test difficulty (mean of item difficulty) 0.635 0.141 0.02 4.513 < 0,001

Number of items (k) 0.216 0.001 1.083 148.834 < 0,001

(Average) number of categories in the item minus 1 (df(g)) 0.057 0.003 0.122 16.851 < 0,001

Number of categories in the score minus 1 (df(X)) −0.027 0.003 −0.063 −9.356 < 0,001

R R2 R2
Adj Std. Error of the Estimate

0.987 0.974 0.974 0.264
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General tendencies of the traditional and deflation-corrected standard errors. 
SEM omega_L_FA traditional, Traditional standard errors based on the estimates of reliability by coefficient omega using factor loadings (L) as weight 
factors in estimation. SEM omega_RPC_STD deflation-corrected, Deflation-corrected standard errors based on the estimates of reliability by 
coefficient omega using RPC between items and the standardized raw score as weight factors in estimation; SEM omega_G2_STD deflation-corrected, 
Deflation-corrected standard errors based on the estimates of reliability by coefficient omega using G2 between items and the standardized raw score 
as weight factors in estimation; SEM omega_D2_STD deflation-corrected, Deflation-corrected standard errors based on the estimates of reliability by 
coefficient omega using D2 between items and the standardized raw score as weight factors in estimation.
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Selected factors explaining the inflation in standard errors. 
SEM L_FA, Traditional standard errors (SEM) estimated using coefficient omega with factor loadings (L_FA). SEM RPC_STD, SEM G2_STD, SEM D2_STD, 
Deflation-corrected standard errors (SEM) estimated using the formula of omega with deflation-corrected estimators of association (RPC/G2/D2) and 
standardized raw scores (STD).
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On the other hand, we can compute the “standard errors” based 
on the measurement model related to factor models by using 
Equation (3), that is,

 
σE

i

k
ik w= −

=
∑
1

2

 
(12)

Even if this statistic is based on standardized score variables, 
it does not produce “standard errors” in the same metric as does 
the traditional formula (Equation 1), and the outcomes may 
differ radically from each other (see Figure 7). For example, with 
100 items of wi = 0.4  in each, the latter form leads to σE = 7.7 
regardless of the reliability. The standard errors by Equation (11) 
and the “standard errors” by Equation (12) do not speak of the 
same thing.

5 Conclusion and limitations

5.1 Conclusion in a nutshell

The starting point of this note was the deflation in the reliability 
estimates. The term error variance related to the general one-factor 

measurement model (σE
i

k
i

i

k
ik w w2

1

2

1

2
1= − = −( )

= =
∑ ∑ ) is embedded in 

classical reliability estimators such as coefficient omega and rho 
(maximal reliability). The traditional measurement model 
assumes that the weight factor wi does not include technical or 
mechanical error. However, previous studies related to deflation 
in correlation estimates indicate that this is not true. If factor 
loadings are used as the weight coefficient wi as they are with the 
traditional omega and rho, the error variance is always 
overestimated because factor loading is essentially a product–
moment coefficient of correlation between the item and the 
score, and PMC is one of those estimators of correlation that are 
especially prone to deflation. Deflation-corrected estimators are 
obtained when, instead of PMC, some alternative, a better-
behaving correlation estimator, such as polychoric correlation, 
Goodman–Kruskal gamma, or Somers delta, is used in 
the estimation.

Under the assumption of the one-factor measurement model, 
the error variance tends to be overestimated as the number of 
items on the test increases. This can also be derived from the 
error variance formula. Moreover, the inflation in the traditional 
error variance tends to grow by the number of items in relation 
to deflation-corrected estimators of error variance. The technical 
reason for the phenomenon is that, because of the better behavior 
of the deflation-corrected estimators of association, they tend to 
give estimates with a higher magnitude than PMC. The common 
characteristic of the deflation-corrected correlation estimators is 
that they give higher estimates than the traditional deflation-
prone estimators. Because the error variance is cumulative, the 
more items we  have in the compilation, the more cumulative 
error we obtain.

An obvious consequence of the inflated error variance is that the 
standard errors of the measurement are also inflated when the 
traditional reliability estimators are used. If the deflation-corrected 
reliability estimators are used, the consequent deflation-corrected 
standard errors may be notably lower. In the dataset used in the 
empirical section, the inflation was 35–48%, depending on the 
benchmarking coefficient of association. However, the deflation may 
be radically greater in magnitude if the difficulty levels of the items 
were extreme. This is typical in the tests within educational settings 
with achievement testing because, usually, the tests include both easy, 
medium, and difficult items.

5.2 Known limitations and suggestions for 
further studies

An obvious limitation in the empirical section is that the treatment 
was based on one real-world dataset with certain limitations: the latent 
reliability was not controlled, only small sample sizes were used, tests 
with more than 30 and less than 10 categories in the score were 
missing, and no tests with extreme difficulty levels or very short tests 
were included in the dataset used in the simulation. Systematic studies 
of the phenomenon would enrich our understanding of the nature of 
inflation in terms of error variance and standard error.

The theoretical basis for the deflation-corrected standard errors is 
somewhat underdeveloped. The estimators discussed in this article are 
mainly short-cuts where the poorly behaved Rit is replaced by better-
behaving coefficients. However, these deflation-corrected estimators 
are theoretical because no such factor analysis routine currently exists 
that would yield some of the deflation-corrected estimators of 
association between an item and a score instead of the traditional 
product–moment coefficient of correlation (PMC). Of the alternative 
estimators of association, using RPC and RREG leads to theoretical 
standard errors because the outcome of deflation-corrected reliability 
by using RPC or RREG instead of the traditional estimator would lead us 
to infer something from the theoretical score that researchers do not 
have access to (see Chalmers, 2017; Metsämuuronen, 2022d). The 
other alternatives suggested by Metsämuuronen (2022a), G, G2, D, D2, 
RAC, and EAC, refer to observed scores and items.

This note is restricted to classical estimators of reliability. 
Consequently, we do not know much about how applicable the results 
would be with estimators of reliability within generalizability theory, 
confirmatory factor analysis (CFA), structural equation modeling 
(SEM), or IRT and Rasch modeling (see related discussion and 
literature in Metsämuuronen, 2022d).

Finally, this article aims to explore the reasons for, implications of, 
and factors related to the empirical finding discussed by Metsämuuronen 
(2023) that certain types of test settings, common in educational testing 
settings with widely varying levels of item difficulty, are prone to 
producing standard errors that may be vastly overestimated. The results 
of this note enrich our understanding of the factors associated with this 
phenomenon. Since inflation in the standard error tends to increase 
with the number of items and the traditional tenet in testing settings is 
that reliability increases with the number of items, there may be an 
apparent tension between these tendencies. Since the deflation-
corrected estimates of reliability could be used to assess the magnitude 
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of inflation, it is strongly suggested that the estimates of the DCERs 
be  reported alongside traditional reliability estimates for a more 
comprehensive evaluation.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found below: datasets comprising the traditional and 
deflation-corrected estimates of reliability, the estimates of error variance 
and standard errors and estimated population variances, and related 
derivatives and background information of the 1,440 tests are available at 
http://dx.doi.org/10.13140/RG.2.2.25390.79687 in CSV format and at 
http://dx.doi.org/10.13140/RG.2.2.33779.40481 in IBM SPSS format.

Ethics statement

Ethical approval was not required for the studies involving humans 
because according to the law in Finland, the national achievement test 
results can be used in research purposes by application. The datasets are 
always anonymized. Part of the simulation dataset is based on old dataset. 
The studies were conducted in accordance with the local legislation and 
institutional requirements. Written informed consent for participation 
was not required from the participants or the participants’ legal guardians/
next of kin in accordance with the national legislation and 
institutional requirements.

Author contributions

The author confirms being the sole contributor of this work and 
has approved it for publication.

Conflict of interest

The author declares that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/feduc.2024.1248770/
full#supplementary-material

References
Bentler, P. M. (1968). Alpha-maximized factor analysis (Alphamax): its relation to 

alpha and canonical factor analysis. Psychometrika 33, 335–345. doi: 10.1007/BF02289328

Bentler, P. M. (2009). Alpha, dimension-free, and model-based internal consistency 
reliability. Psychometrika 74, 137–143. doi: 10.1007/s11336-008-9100-1

Chalmers, R. P. (2017). On misconceptions and the limited usefulness of ordinal 
alpha. Educ. Psychol. Meas. 78, 1056–1071. doi: 10.1177/0013164417727036

Cheng, Y., Yuan, K.-H., and Liu, C. (2012). Comparison of reliability measures under factor 
analysis and item response theory. Educ. Psychol. Meas. 72, 52–67. doi: 10.1177/0013164411407315

Cho, E., and Kim, S. (2015). Cronbach’s coefficient alpha: well known but poorly 
understood. Organ. Res. Methods 18, 207–230. doi: 10.1177/1094428114555994

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd Edn. USA: 
Erlbaum.

Cramer, D., and Howitt, D. (2004). The Sage Dictionary of Statistics. A Practical 
Resource for Students. London: SAGE Publications, Inc.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. 
Psychometrika 16, 297–334. doi: 10.1007/BF02310555

Davenport, E. C., Davison, M. L., Liou, P.-Y., and Love, Q. U. (2015). Reliability, 
dimensionality, and internal consistency as defined by Cronbach: distinct albeit related 
concepts. Educ. Meas. Issues Pract. 34, 4–9. doi: 10.1111/emip.12095

Davenport, E. C., Davison, M. L., Liou, P.-Y., and Love, Q. U. (2016). Easier said than 
done: rejoinder on Sijtsma and on Green and Yang. Educ. Meas. Issues Pract. 35, 6–10. 
doi: 10.1111/emip.12106

Dunn, T. J., Baguley, T., and Brunsden, V. (2013). From alpha to omega: a practical 
solution to the pervasive problem of internal consistency estimation. Br. J. Psychol. 105, 
399–412. doi: 10.1111/bjop.12046

Falk, C. F., and Savalei, V. (2011). The relationship between unstandardized and 
standardized alpha, true reliability, and the underlying measurement model. J. Pers. 
Assess. 93, 445–453. doi: 10.1080/00223891.2011.594129

FINEEC (2018). National assessment of learning outcomes in mathematics at grade 
9 in 2002 (Unpublished dataset opened for the re-analysis 18.2.2018). Finnish education 
evaluation centre.

Foy, P., and LaRoche, S. (2019). Estimating standard errors in the TIMSS 2019 results. 
Ch. 14 in TIMSS 2019 Technical Report. eds. M. O. Martin, M. von Davier, & I.V.S. 

Mullis, Available at: https://timssandpirls.bc.edu/timss2019/methods/chapter-14.html 
(Accessed September 4, 2022).

Gadermann, A. M., Guhn, M., and Zumbo, B. D. (2012). Estimating ordinal reliability 
for Likert-type and ordinal item response data: a conceptual, empirical, and practical 
guide. Pract. Assess. Res. Eval. 17, 1–13. doi: 10.7275/n560-j767

Goodman, L. A., and Kruskal, W. H. (1954). Measures of association for  
cross classifications. J. Am. Stat. Assoc. 49, 732–764. doi: 10.1080/01621459. 
1954.10501231

Green, S. B., and Yang, Y. (2009). Commentary on coefficient alpha: a cautionary tale. 
Psychometrika 74, 121–135. doi: 10.1007/s11336-008-9098-4

Green, S. B., and Yang, Y. (2015). Evaluation of dimensionality in the assessment of 
internal consistency reliability: coefficient alpha and omega coefficients. Educ. Meas. 
Issues Pract. 34, 14–20. doi: 10.1111/emip.12100

Gulliksen, H. (1950). Theory of Mental Tests. New York, NY: Lawrence Erlbaum 
Associates Publishers.

Guttman, L. (1941). “The qualifications of a class of attributes: a theory and method 
of scale construction” in The prediction of personal adjustment. Social Science Research 
Council, Bulletin 48. (ed.) P. Horst, 321–345.

Guttman, L. (1945). A basis for analyzing test-retest reliability. Psychometrika 10, 
255–282. doi: 10.1007/BF02288892

Heise, D., and Bohrnstedt, G. (1970). Validity, invalidity, and reliability. Sociol. 
Methodol. 2, 104–129. doi: 10.2307/270785

Henrysson, S. (1963). Correction of item–total correlations in item analysis. 
Psychometrika 28, 211–218. doi: 10.1007/BF02289618

Hoekstra, R., Vugteveen, J., Warrens, M. J., and Kruyen, P. M. (2019). An empirical 
analysis of alleged misunderstandings of coefficient alpha. Int. J. Soc. Res. Methodol. 22, 
351–364. doi: 10.1080/13645579.2018.1547523

IBM (2017). IBM SPSS Decision Trees 25. IBM. Available at: https://www.ibm.com/
docs/en/SSLVMB_25.0.0/pdf/en/IBM_SPSS_Decision_Trees.pdf (Accessed September 
4, 2022).

Jackson, R. W. B., and Ferguson, G. A. (1941). Studies on the reliability of tests. 
Department of Educational Research, University of Toronto.

Kass, G. (1980). An exploratory technique for investigating large quantities of 
categorical data. Appl. Stat. 29, 119–127. doi: 10.2307/2986296

https://doi.org/10.3389/feduc.2024.1248770
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
http://dx.doi.org/10.13140/RG.2.2.25390.79687
http://dx.doi.org/10.13140/RG.2.2.33779.40481
https://www.frontiersin.org/articles/10.3389/feduc.2024.1248770/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feduc.2024.1248770/full#supplementary-material
https://doi.org/10.1007/BF02289328
https://doi.org/10.1007/s11336-008-9100-1
https://doi.org/10.1177/0013164417727036
https://doi.org/10.1177/0013164411407315
https://doi.org/10.1177/1094428114555994
https://doi.org/10.1007/BF02310555
https://doi.org/10.1111/emip.12095
https://doi.org/10.1111/emip.12106
https://doi.org/10.1111/bjop.12046
https://doi.org/10.1080/00223891.2011.594129
https://timssandpirls.bc.edu/timss2019/methods/chapter-14.html
https://doi.org/10.7275/n560-j767
https://doi.org/10.1080/01621459.1954.10501231
https://doi.org/10.1080/01621459.1954.10501231
https://doi.org/10.1007/s11336-008-9098-4
https://doi.org/10.1111/emip.12100
https://doi.org/10.1007/BF02288892
https://doi.org/10.2307/270785
https://doi.org/10.1007/BF02289618
https://doi.org/10.1080/13645579.2018.1547523
https://www.ibm.com/docs/en/SSLVMB_25.0.0/pdf/en/IBM_SPSS_Decision_Trees.pdf
https://www.ibm.com/docs/en/SSLVMB_25.0.0/pdf/en/IBM_SPSS_Decision_Trees.pdf
https://doi.org/10.2307/2986296


Metsämuuronen 10.3389/feduc.2024.1248770

Frontiers in Education 16 frontiersin.org

Kendall, M. G. (1948). Rank Correlation Methods. 1st Edn. New York: Charles Griffin 
& Co Ltd.

Kuder, G. F., and Richardson, M. W. (1937). The theory of the estimation of test 
reliability. Psychometrika 2, 151–160. doi: 10.1007/BF02288391

Li, H. (1997). A unifying expression for the maximal reliability of a linear composite. 
Psychometrika 62, 245–249. doi: 10.1007/BF02295278

Li, H., Rosenthal, R., and Rubin, D. B. (1996). Reliability of measurement in 
psychology: from Spearman-Brown to maximal reliability. Psychol. Methods 1, 98–107. 
doi: 10.1037/1082-989X.1.1.98

Livingston, S. A., and Dorans, N. J. (2004). A graphical approach to item analysis. Research 
Report No. RR-04-10. Educational Testing Service. doi: 10.1002/j.2333-8504.2004.tb01937.x

Lord, F. M. (1958). Some relations between Guttman’s principal component scale 
analysis and other psychometric theory. Psychometrika 23, 291–296. doi: 10.1007/
BF02289779

Martin, W. S. (1973). The effects of scaling on the correlation coefficient: a test of 
validity. J. Mark. Res. 10, 316–318. doi: 10.1177/002224377301000315

Martin, W. S. (1978). Effects of scaling on the correlation coefficient: additional 
considerations. J. Mark. Res. 15, 304–308. doi: 10.1177/002224377801500219

McDonald, R. P. (1970). Theoretical canonical foundations of principal factor analysis, 
canonical factor analysis, and alpha factor analysis. Br. J. Math. Stat. Psychol. 23, 1–21. 
doi: 10.1111/j.2044-8317.1970.tb00432.x

McDonald, R. P. (1999). Test Theory: A Unified Treatment. New York: Lawrence 
Erlbaum Associates.

McNeish, D. (2017). Thanks coefficient alpha, we’ll take it from here. Psychol. Methods 
23, 412–433. doi: 10.1037/met0000144

Meade, A. W. (2010). “Restriction of range” in Encyclopedia of Research Design. ed. 
N. J. Salkind (London: SAGE Publications, Inc.), 1278–1280.

Mendoza, J. L., and Mumford, M. (1987). Corrections for attenuation and range 
restriction on the predictor. J. Educ. Stat. 12, 282–293. doi: 10.3102/10769986012003282

Metsämuuronen, J. (2016). Item–total correlation as the cause for the underestimation 
of the alpha estimate for the reliability of the scale. Glob. J. Res. Analy. 5, 471–477.

Metsämuuronen, J. (2017). Essentials of Research Methods in Human Sciences. New 
Delhi: SAGE Publications, Inc.

Metsämuuronen, J. (2020a). Somers’ D as an alternative for the item–test and item–
rest correlation coefficients in the educational measurement settings. Int. J. Educ. 
Methodol. 6, 207–221. doi: 10.12973/ijem.6.1.207

Metsämuuronen, J. (2020b). Dimension-corrected Somers’ D for the item analysis 
settings. Int. J. Educ. Methodol. 6, 297–317. doi: 10.12973/ijem.6.2.297

Metsämuuronen, J. (2021a). Goodman–Kruskal gamma and dimension-corrected 
gamma in educational measurement settings. Int. J. Educ. Methodol. 7, 95–118. doi: 
10.12973/ijem.7.1.95

Metsämuuronen, J. (2021b). Directional nature of Goodman-Kruskal gamma and 
some consequences. Identity of Goodman-Kruskal gamma and Somers delta, and their 
connection to Jonckheere-Terpstra test statistic. Behaviormetrika 48:283–307. doi: 
10.1007/s41237-021-00138-8

Metsämuuronen, J. (2022a). Effect of various simultaneous sources of mechanical 
error in the estimators of correlation causing deflation in reliability. Seeking the best 
options of correlation for deflation-corrected reliability. Behaviormetrika 49, 91–130. 
doi: 10.1007/s41237-022-00158-y

Metsämuuronen, J. (2022b). How to obtain the most error-free estimate of reliability? 
Eight sources of underestimation of reliability. Pract. Assess. Res. Eval. 27:1–27. doi: 
10.7275/7nkb-j673

Metsämuuronen, J. (2022c). Deflation-corrected estimators of reliability. Front. 
Psychol. 12:748672. doi: 10.3389/fpsyg.2021.748672

Metsämuuronen, J. (2022d). Typology of deflation-corrected estimators of reliability. 
Front. Psychol. 13:891959. doi: 10.3389/fpsyg.2022.891959

Metsämuuronen, J. (2022e). Attenuation-corrected reliability and some other MEC-
corrected estimators of reliability. Appl. Psychol. Meas. 46:720–737. doi: 
10.1177/01466216221108131

Metsämuuronen, J. (2022f). Reliability for a score compiled from multiple booklets 
with equated scores. ResearchGate [Preprint]. doi: 10.13140/RG.2.2.20880.69120/2

Metsämuuronen, J. (2022g). Artificial systematic attenuation in eta squared and 
some related consequences. Attenuation-corrected eta and eta squared, negative values 
of eta, and their relation to Pearson correlation. Behaviormetrika, 50:27–61. doi: 
10.1007/s41237-022-00162-2

Metsämuuronen, J. (2022h). Note on the deflation in population variance in the 
measurement modelling settings. ResearchGate [Preprint]. doi: 10.13140/
RG.2.2.31887.87202

Metsämuuronen, J. (2022i). Rank–polyserial correlation: quest for a “missing” coefficient 
of correlation. Front. Appl. Math. Stat. 8:914932. doi: 10.3389/fams.2022.914932

Metsämuuronen, J. (2023). Seeking the real reliability. Why the traditional estimators 
of reliability usually fail in achievement testing and why the deflation-corrected 
coefficients could be better options. Pract. Assess. Res. Eval. 28:10. doi: 10.7275/pare.1264

Metsämuuronen, J., and Ukkola, A. (2019). Methodological solutions of zero level 
assessment. Publications 18: 2019. Finnish education evaluation Centre. [in Finnish, 
abstract in English] Available at: https://www.karvi.fi/sites/default/files/sites/default/
files/documents/KARVI_1819.pdf

Moses, T. (2017). A review of developments and applications in item analysis in Advancing 
Human Assessment. The Methodological, Psychological and Policy Contributions of ETS. 
(eds.) R. Bennett and M. von Davier (USA: Springer Open), 19–46

Novick, M. R., and Lewis, C. (1967). Coefficient alpha and the reliability of composite 
measurement. Psychometrika 32, 1–13. doi: 10.1007/BF02289400

Olsson, U. (1980). Measuring correlation in ordered two-way contingency tables. J. 
Mark. Res. 17, 391–394. doi: 10.1177/002224378001700315

Pearson, K. (1900). I. Mathematical contributions to the theory of evolution. VII. On 
the correlation of characters not quantitatively measurable. Philos. Trans. R. Soc. A Math. 
Phys. Eng. Sci. 195, 1–47. doi: 10.1098/rsta.1900.0022

Pearson, K. (1903). I. Mathematical contributions to the theory of evolution. XI. On 
the influence of natural selection on the variability and correlation of organs. Philos. 
Trans. R. Soc. A Math. Phys. Eng. Sci. 200, 1–66. doi: 10.1098/rsta.1903.0001

Pearson, K. (1913). On the measurement of the influence of “broad categories” on 
correlation. Biometrika 9, 116–139. doi: 10.1093/biomet/9.1-2.116

Raykov, T. (1997). Scale reliability, Cronbach's coefficient alpha, and violations of 
essential tau-equivalence for fixed congeneric components. Multivar. Behav. Res. 32, 
329–354. doi: 10.1207/s15327906mbr3204_2

Raykov, T., and Marcoulides, G. A. (2017). Thanks coefficient alpha, we still need you! 
Educ. Psychol. Meas. 79, 200–210. doi: 10.1177/0013164417725127

Raykov, T., West, B. T., and Traynor, A. (2015). Evaluation of coefficient alpha for 
multiple component measuring instruments in complex sample designs. Struct. Equ. 
Model. 22, 429–438. doi: 10.1080/10705511.2014.936081

Sackett, P. R., Lievens, F., Berry, C. M., and Landers, R. N. (2007). A cautionary note 
on the effect of range restriction on predictor intercorrelations. J. Appl. Psychol. 92, 
538–544. doi: 10.1037/0021-9010.92.2.538

Sackett, P. R., and Yang, H. (2000). Correction for range restriction: an expanded 
typology. J. Appl. Psychol. 85, 112–118. doi: 10.1037/0021-9010.85.1.112

Salkind, N. J. (Ed.) (2010). Encyclopedia of Research Design. London: SAGE 
Publications, Inc.

Sawilowsky, S. (2009). New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8, 
467–474. doi: 10.22237/jmasm/1257035100

Schmidt, F. L., and Hunter, J. E. (2003). “History, development, evolution, and impact 
of validity generalization and meta-analysis methods, 1975–2001” in Validity 
Generalization: A Critical Review. ed. K. R. Murphy (USA: Erlbaum), 31–66.

Schmidt, F. L., and Hunter, J. E. (2015). Methods of Meta-Analysis: Correcting Error 
and Bias in Research Findings. 3rd Edn: London: SAGE Publications, Inc.

Schmidt, F. L., Shaffer, J. A., and Oh, I.-S. (2008). Increased accuracy for range restriction 
corrections: implications for the role of personality and general mental ability in job and 
training performance. Pers. Psychol. 61, 827–868. doi: 10.1111/j.1744-6570.2008.00132.x

Schult, J., and Sparfeldt, J. R. (2016). Reliability and validity of PIRLS and TIMSS. Eur. 
J. Psychol. Assess. 34, 258–269. doi: 10.1027/1015-5759/a000338

Sijtsma, K. (2009). On the use, the misuse, and the very limited usefulness of 
Cronbach’s alpha. Psychometrika 74, 107–120. doi: 10.1007/s11336-008-9101-0

Somers, R. H. (1962). A new asymmetric measure of association for ordinal variables. 
Am. Sociol. Rev. 27, 799–811. doi: 10.2307/2090408

Spearman, C. (1904). The proof and measurement of association between two things. 
Am. J. Psychol. 15, 72–101. doi: 10.2307/1412159

Stouffer, S. A., Princeton, N. J. (Ed.) (1950). “Measurement and prediction” in Studies 
in Social Psychology in World War II, vol. IV (Princeton, N.J: Princeton university press).

Tabachnick, B. G., and Fidell, L. S. (2021). Using Multivariate Statistics. 6th Edn. India: 
Pearson Education.

Thompson, G. H. (1940). Weighting for battery reliability and prediction. Br. J. Math. 
Stat. Psychol. 30, 357–360. doi: 10.1111/j.2044-8295.1940.tb00968.x

Trizano-Hermosilla, I., and Alvarado, J. M. (2016). Best alternatives to Cronbach's 
alpha reliability in realistic conditions: congeneric and asymmetrical measurements. 
Front. Psychol. 7:769. doi: 10.3389/fpsyg.2016.00769

Walk, M. J., and Rupp, A. A. (2010). “Pearson product-moment correlation coefficient” 
in Encyclopedia of Research Design. ed. N. J. Salkind (London: SAGE Publications, 
Inc.), 1022–1026.

Wherry, R. J., and Taylor, E. K. (1946). The relation of multiserial eta to other measures 
of correlation. Psychometrika 11, 155–161. doi: 10.1007/BF02289296

Yang, H. (2010). “Factor loadings” in Encyclopedia of Research Design. ed. N. J. 
Salkind (London: SAGE Publications, Inc.), 480–483.

Yang, Y., and Green, S. B. (2011). Coefficient alpha: a reliability coefficient for the 21st 
century? J. Psychoeduc. Assess. 29, 377–392. doi: 10.1177/0734282911406668

Zumbo, B. D., Gadermann, A. M., and Zeisser, C. (2007). Ordinal versions of 
coefficients alpha and theta for Likert rating scales. J. Mod. Appl. Stat. Methods 6, 21–29. 
doi: 10.22237/jmasm/1177992180

https://doi.org/10.3389/feduc.2024.1248770
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://doi.org/10.1007/BF02288391
https://doi.org/10.1007/BF02295278
https://doi.org/10.1037/1082-989X.1.1.98
https://doi.org/10.1002/j.2333-8504.2004.tb01937.x
https://doi.org/10.1007/BF02289779
https://doi.org/10.1007/BF02289779
https://doi.org/10.1177/002224377301000315
https://doi.org/10.1177/002224377801500219
https://doi.org/10.1111/j.2044-8317.1970.tb00432.x
https://doi.org/10.1037/met0000144
https://doi.org/10.3102/10769986012003282
https://doi.org/10.12973/ijem.6.1.207
https://doi.org/10.12973/ijem.6.2.297
https://doi.org/10.12973/ijem.7.1.95
https://doi.org/10.1007/s41237-021-00138-8
https://doi.org/10.1007/s41237-022-00158-y
https://doi.org/10.7275/7nkb-j673
https://doi.org/10.3389/fpsyg.2021.748672
https://doi.org/10.3389/fpsyg.2022.891959
https://doi.org/10.1177/01466216221108131
https://doi.org/10.13140/RG.2.2.20880.69120/2
https://doi.org/10.1007/s41237-022-00162-2
https://doi.org/10.13140/RG.2.2.31887.87202
https://doi.org/10.13140/RG.2.2.31887.87202
https://doi.org/10.3389/fams.2022.914932
https://doi.org/10.7275/pare.1264
https://www.karvi.fi/sites/default/files/sites/default/files/documents/KARVI_1819.pdf
https://www.karvi.fi/sites/default/files/sites/default/files/documents/KARVI_1819.pdf
https://doi.org/10.1007/BF02289400
https://doi.org/10.1177/002224378001700315
https://doi.org/10.1098/rsta.1900.0022
https://doi.org/10.1098/rsta.1903.0001
https://doi.org/10.1093/biomet/9.1-2.116
https://doi.org/10.1207/s15327906mbr3204_2
https://doi.org/10.1177/0013164417725127
https://doi.org/10.1080/10705511.2014.936081
https://doi.org/10.1037/0021-9010.92.2.538
https://doi.org/10.1037/0021-9010.85.1.112
https://doi.org/10.22237/jmasm/1257035100
https://doi.org/10.1111/j.1744-6570.2008.00132.x
https://doi.org/10.1027/1015-5759/a000338
https://doi.org/10.1007/s11336-008-9101-0
https://doi.org/10.2307/2090408
https://doi.org/10.2307/1412159
https://doi.org/10.1111/j.2044-8295.1940.tb00968.x
https://doi.org/10.3389/fpsyg.2016.00769
https://doi.org/10.1007/BF02289296
https://doi.org/10.1177/0734282911406668
https://doi.org/10.22237/jmasm/1177992180

	Note on the radical inflation in the estimates of error variance in measurement models
	1 Introduction
	1.1 Deflation in reliability and inflation in error variance as phenomena
	1.2 Deflation in estimates of correlation due to inflation in error variance
	1.3 Briefly on the basic concepts related to inflation in error variance
	1.4 A hypothetical numerical example of the inflation in estimates of error variance
	1.5 Summary of the discussion by far

	2 Research questions
	3 Methods
	3.1 Dataset
	3.2 Estimators of association
	3.3 Variables and statistics
	3.4 Methods in analysis

	4 Results
	4.1 The magnitude of the error variance in real-life settings
	4.2 The magnitude of the inflation of the error variance in the real-life datasets
	4.3 Note on the factors explaining the inflation in error variance
	4.4 Inflation in the standard errors
	4.5 Note on the standard errors and “standard errors”

	5 Conclusion and limitations
	5.1 Conclusion in a nutshell
	5.2 Known limitations and suggestions for further studies

	Data availability statement
	Ethics statement
	Author contributions

	References

