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In this article, we  discuss the way students’ aesthetic experiences can shape 
the learning of mathematics at higher school levels. We  designed a learning 
environment based on three main design principles: (1) Mathematics as Artistic, 
where mathematics is used for open artistic creation; (2) Aesthetically rich 
mathematical experiences, that enable students to appreciate mathematical 
beauty and aesthetic experiences of wondering, imagining, conjecturing, 
testing, discovering, making connections, problem posing and solving; (3) 
Constructionism, where mathematical sense making is interwoven with 
constructing a personally meaningful digital artefact. Two students of the 11th 
grade participated in a case study, where they used expressive digital resources for 
representing, manipulating and exploring periodic functions in order to create an 
animated artefact based on a piece of music. The collected data fed the formation 
of a theoretical model for analysing students’ aesthetically driven mathematical 
meaning making, in an attempt to structure existing theoretical concepts around 
mathematical aesthetics in education. A part of the analysis of students’ aesthetic 
experiences based on this model is presented and further reflectively discussed 
with respect to the prospect of an aesthetically oriented curriculum reform.
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1 Introduction

In this paper we join our three voices to point to the profound role of aesthetics in the 
development and appreciation of mathematical knowledge and our concern in the lack of 
cultivation in school settings, where this role has been paradoxically marginalised (Papert, 1980; 
Dreyfus and Eisenberg, 1986; Sinclair, 2018b). Recently, researchers have highlighted the 
importance of (re)considering the aesthetic aspects of school mathematics, based on the 
affordances of digital technologies and future societal needs (De Freitas and Sinclair, 2014; Bu 
and Hohenwarter, 2015; Nemirovsky, 2018; Sinclair, 2018a). They argued that the expressive, 
experimental and multisensory nature of new technologies has allowed students to experience 
mathematical aesthetics in a novel and accessible way, by integrating the factors of subjectivity 
and personal sensibility within the traditional elitist perception of mathematics as a discipline 
(De Freitas and Sinclair, 2014). In parallel, a growing number of studies recommend the 
integration of arts within school mathematics as a fruitful means for cultivating aesthetic, 
sensory, bodily and human-scale experiences that are closer to students’ personal interests 
(Gerofsky, 2013; Gadanidis et al., 2016; Moerman, 2016; Portaankorva-Koivisto and Havinga, 
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2019; da Silva, 2020; Jasien and Horn, 2022). Nonetheless, there is a 
dearth of research on the aesthetic considerations related to 
mathematics learning with or without technology, particularly in 
relation to teaching practises (Sinclair, 2018a).

After presenting the theoretical ideas behind its design, 
we propose a model for analysis, named CrEAM, i.e., acting on (A), 
evaluating (E) and mathematizing (M) the artistic creation (animated 
artefact) in the context of re-defining aesthetic criteria (Cr). Our 
CrEAM model was founded on a synthesis of existing theoretical 
constructs and structured under an abductive analysis of the results of 
the current study. Students were invited to create figural models by 
means of programming and their animation by means of dynamically 
manipulating variable procedure values (Kynigos, 2007; Kynigos and 
Karavakou, 2022). We draw on the CrEAM model to analyse the role 
of aesthetic experiences in the meaning-making process of two 
participating students of the 11th grade. Finally, we reflect on the way 
aesthetic considerations could shape educational reform in relation to 
the selection of mathematical content and the learning processes. This 
study is part of a broader design-based research project that 
investigates how aesthetic experiences can shape students’ 
mathematical meaning making; what kind of mathematical content 
can be  selected as aesthetically fruitful; and how technological 
resources can be  exploited to nurture this kind of aesthetic 
engagement. In this article, we address the research question ‘How do 
students’ aesthetic experiences shape their meaning making around 
the notion of periodic functions within a constructionist, aesthetically 
rich learning environment of open artistic creation?’

2 Theoretical framing

In this section, we outline our theoretical framework which was 
shaped as a bricolage (Cobb, 2007) of distinct theoretical constructs 
around aesthetics and mathematics learning. These involve aesthetic 
experience and practise in mathematics and mathematics education, 
integration of mathematics and arts, aesthetically rich environments, 
and constructionism as a theory of design and a theory of learning. 
The theoretical framing of the study is situated within epistemological 
perspectives and the literature.

2.1 Aesthetic experiences in mathematics

The issue of aesthetics has triggered a long-standing 
epistemological discussion around the nature of mathematical 
practises, akin to discussions on aesthetics from different 
disciplines (Dreyfus and Eisenberg, 1986; Sinclair, 2001; Parrish, 
2009). Many mathematicians and researchers argue that 
mathematical activity centrally involves affect, feeling, pleasure 
and the sense of beauty (Poincaré, 1956; Papert, 1978; Brown 
et al., 1989; Goldenberg, 1989). These considerations place the 
attention to the way aesthetic experiences shape mathematical 
practises of problem posing, developing conjecture for solutions/
proofs and evaluating results. The generation of mathematical 
knowledge is guided by the mathematician’s own aesthetic criteria, 
which exceeds the objectiveness of pure logical deduction, making 
it a human, profoundly personalised matter. However, not all 

theorists that recognise the significance of aesthetic in 
mathematical practises share the same views. For example, 
Poincaré (1956), Dreyfus and Eisenberg (1986), Krutetskii (1976) 
and Silver and Metzger (1989) claimed that only a small minority 
of people would be able to appreciate mathematical beauty, feel 
mathematical pleasure and, thus, have access to mathematical 
aesthetic experiences. They theorised aesthetics as an innate 
ability to identify formal qualities, such as economy, simplicity, 
originality, elegance, profundity or clarity in mathematical objects 
(e.g., in concepts, theorems, proofs) and to appreciate inner 
mathematical elements, such as symmetry, infinity, harmony and 
regularity. According to this traditional perspective, aesthetic 
criteria are objective in nature and possess a status of intellectual 
autonomy outside the human world.

On the contrary, more recently, researchers have sought to enlarge 
the meaning of aesthetic, to involve not only acts of judgement (of 
beauty, interest, etc.) but also—returning to its etymological roots—
the idea of knowing through the senses (Sinclair, 2004; Gadanidis 
et al., 2016; Sinclair, 2018a; Beckmann, 2022). In other words, the 
aesthetic is both axiological (concerning values) and epistemological. 
This epistemological aspect of the aesthetic relies on assumptions of 
embodied cognition in which the senses—seeing, touching, hearing, 
moving, etc.—are central components of knowing. That these sensory 
mathematical experiences are then open to value judgements—does 
the diagram look symmetrical?; does the periodic function sound 
sad?—shows that the epistemological and the axiological are 
intertwined. Following de Freitas and Sinclair (2014), who in turn 
draw on Rancière (2004), we posit that the aesthetic functions in 
mathematics—much like in the arts—through a paradoxical mix of 
autonomy and dependence. For example, the painter creates an 
artwork depending on their own sensory engagement, but, once hung 
on the wall, the artwork becomes autonomous, its meanings are no 
longer dependent on the painter’s brushstrokes or intentions. A 
similar phenomenon occurs in mathematics; mathematicians notice 
patterns, make calculations, see new objects—all of these are 
dependent on their sensory engagement—but once the pattern is 
generalized or the theorem is published, it gains autonomy, no longer 
dependent on their involvement. The mathematician lives with this 
paradox of ‘it depends on me’ and ‘it is independent of me’. As Tan and 
Sinclair (2023) argue, in the case of engaging preservice teachers in 
mathematical proofs, this mixing of autonomy and dependence can 
be  challenging, with most students veering in one direction or 
the other.

2.2 Toward aesthetically rich educational 
reform

One of the main challenges faced by researchers who envision the 
aesthetic turn of mathematics education is the level of dissenting from 
dominant school practises within a behaviourist-rooted curricular 
system (Maaß and Artigue, 2013; Hoyles, 2016). Gadanidis et  al. 
(2016) introduced such a model of educational reform in view of 
integrating mathematical aesthetic experiences in school mathematics 
through design principles. They suggest that aesthetic elements, such 
as surprise, insight and vicarious emotional engagement, can be added 
on educational practise. They included the design principle of 
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‘covering the curriculum’ to make it applicable to today’s mathematics 
classroom, which is resistant to any radical change. Even though this 
model is insightful for bringing aesthetic elements closer to practise, 
it has limitations in cultivating mathematical aesthetic experiences as 
an integral part of mathematics education.

Instead of trying to ‘aestheticise’ the existing curricular structure, 
by looking into which and how mathematical concepts from the 
curriculum can be infused into aesthetically rich learning activities, 
the focus can be reversed. The selection of mathematical content can 
be reconsidered under the lens of its aesthetic potential. This leads to 
the following question: what kinds of mathematics are more fertile for 
aesthetic experiences? And, what type of learning processes would 
support an aesthetically rich environment? Fruitful answers to this 
question can only emerge from combining theories and design-based 
research empirical data for shedding light on students’ 
aesthetic experiences.

Starting from Sinclair (2001, 2004)’s definition of an 
aesthetically rich learning environment, design principles involve 
providing opportunities for wondering, exploring, imagining, 
noticing, feeling, making decisions and experiencing mathematical 
beauty. Sinclair distinguished two main aspects equally important 
for the formation of such environments: the aspects of perception 
and of action. On the one hand, students are provided with 
opportunities to express their own sensibilities (which may 
be different from normative mathematical ones) and subjective 
opinions, based on their sensory perception. On the other hand, 
effort should be made to provoke students’ interest, in terms of 
communicating, discovering, making things and expressing 
themselves artistically.

Sinclair (2004) also theorised the role of aesthetic experiences 
in shaping mathematical inquiry within an aesthetically rich 
learning environment, in three distinct ways; through (1) a 
generative, (2) a motivational and (3) an evaluative role. The 
generative role involves the guiding process of gaining insight 
connected to both problem posing and problem solving. It is 
physically driven by feelings of wonder and curiosity that give rise 
to ideas on the formation of a particular problem or on the way to 
proceed with its solution. The motivational role refers to the 
development of personal interests that attract learners to engage in 
mathematics in particular ways. Having the freedom to select 
mathematical concepts, problems and strategies based on inner 
motivational mechanisms can lead students to develop a personal 
taste and agenda on mathematical inquiry. It is connected to 
emotions of interest and desire. The evaluative role concerns the 
learners’ engagement in the process of deciding whether a specific 
result of mathematical inquiry is good or beautiful enough, 
following a socially shared or a personal set of criteria. It is 
connected to emotions of surprise, amusement, anger, confusion 
and disappointment. An aesthetically rich educational design 
should cultivate all three roles of aesthetic experience in the 
learning and doing of mathematics in the classroom.

Finally, regarding Rancière (2004)’s description of how the 
aesthetic functions, an aesthetically rich educational design should 
strive to allow for both autonomy and dependence (De Freitas and 
Sinclair, 2014). This means that students should be free to experience 
mathematics in sensorially diverse ways, while also having the 
opportunity to interact and connect with the symbolic, automated and 
generalisable mathematics.

2.3 Artistic as mathematics vs. mathematics 
as artistic

Some researchers considered different forms of arts, such as 
painting, architecture, music, visual arts, theatre, poetry, literature and 
dance, as possible bridges for infusing the aesthetic in school 
mathematics (Gerofsky, 2013; Moerman, 2016; Portaankorva-Koivisto 
and Havinga, 2019; Jasien and Horn, 2022). This integration might 
provide a transdisciplinary space for students to see and establish links 
of their mathematical meanings to specific contexts of application, to 
their personal taste and sensibilities and engage in creative problem-
solving (Liao, 2016). This combination of arts and mathematics in 
education can be  carried out in many ways, following different 
epistemologies. We use Betts and McNaughton (2005)’s distinction 
between Artistic as Mathematics and Mathematics as Artistic. In the 
former perspective, educational design places the aesthetic connected 
to the arts (artistic aesthetic) in the forefront, following the typical 
alliance between art and aesthetics. It is mainly based on artworks 
generated by artists who, intentionally or not, incorporated 
mathematical concepts in them, as well as artistic elements 
encountered in the nature. Examples include exploring the golden 
ratio in architecture (Beckmann, 2022), visual arts (Jarvis, 2007) and 
nature (Manuel et  al., 2011); learning about the symmetries and 
perspective properties of paintings (Jensen and Gymnasium, 
2008; Beckmann, 2022); recognising pattern and proportion within 
musical scales (Johnson and Edelson, 2003; Geist et al., 2012; An et al., 
2013); investigation of symmetry in dance (Helsa and Hartono, 2011; 
An et al., 2019); and more. Artistic as Mathematics plays an important 
role in contextualizing and representing abstract mathematical ideas. 
However, there are many limitations to this approach, regarding the 
stimulation of mathematical aesthetic experiences. For example, 
Sinclair (2004) is concerned that by locating the aesthetic within the 
art, its role within mathematics becomes obscured. Accordingly, 
counting on students’ interest to the arts as the basis for engaging 
them in mathematics might imply that mathematics itself is 
‘aesthetically sterile’ (Sinclair, 2004, p. 94).

On the other hand, Mathematics as Artistic implies that 
mathematics itself can be  experienced for artistic creation and 
appreciation. Instead of the artistic aesthetic being treated as a 
motivational extension of the mathematical engagement, this view 
frames a joint, intertwining exploitation of aesthetic aspects of both 
disciplines. To support this type of art-mathematics combination in 
educational practise, the focus is less on their similarities and more 
on their complementarity. Aesthetic experiences that emerge from 
this context combine: (a) the subjective, affective, emotional, 
intuitive aspect of the arts, which is closely connected to the 
powerful sensory effect of perceiving or creating an artwork, along 
with (b) the aspect of shaping taste in mathematics, appreciating 
both intellectual and sensory (e.g., visual) mathematical beauty, 
making sense of concepts, experiencing surprise and insight of 
discovery. Some researchers have considered this approach in 
designing educational resources and exploring students’ 
mathematical engagement, especially in primary level, by using 
physical manipulatives. For example, Lehrer et al. (1999) explored 
students of second grade meaning making on symmetry while they 
were engaged in creating and investigating quilt patterns; Eberle 
(2014) studied the role of mathematical aesthetics in promoting 
mathematical learning of students of age 8–10 through the creation 
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and evaluation of tessellations with different geometric shapes; 
Vogelstein et al. (2019) explored 8th grade students’ meanings on 
symmetry and geometric transformations while they were 
reenacting and creating their own dance performances using a 
geometrical shaped sheet; Jasien and Horn (2022) looked into 
children’s mathematical aesthetic practises and meaning making 
while participating in interactive exhibitions providing 
manipulatives, such as cubes, geometrically shaped puzzle pieces 
and coloured eggs for open creation of artworks, e.g., aesthetically 
pleasing patterns or tiling. All the prementioned studies reported 
positive effects of aesthetic experiences on students’ meaning 
making. However, research on Mathematics as Artistic in secondary 
and especially upper secondary levels remains understudied.

2.4 Constructionist ideas in educational 
design and learning

One primary epistemological step for making an aesthetically 
rich educational reform is based on readdressing educational time 
and space. Quoting Ricardo Nemirovsky’s phrase taken from 
discussions in CERME 13, we need to “slow mathematics down” 
(CERME13, WG29, in July 2023). Students should be provided 
with an adequate amount of time to experience aesthetic aspects 
in their own pace and should be free to learn how to manage time 
for themselves (Papert, 1999). They should also be free to shape 
their own taste in mathematics (Kynigos and Diamantidis, 2021) 
and form their personal mathematical identity. At the same time, 
adding a variety of different representations and contexts of the 
same mathematical concept, can expand the space of mathematical 
engagement and would deepen their aesthetic experience and 
their meaning making (Turkle and Papert, 1990; Papert, 1993; 
Latsi and Kynigos, 2021). A substantial reform should also take 
into account current societal needs and new representational 
infrastructures that prioritise the aesthetic experience over the 
acquisition of specific mathematical content. Given the limitations 
of physical manipulatives and the human body itself in exploring, 
expanding and expressing abstract mathematical concepts, 
we  turn to the affordances of digital resources. Exploiting the 
highly visual, dynamic and experimental nature of computer-
based environments could provide a broader space for 
experiencing mathematical aesthetics. Constructionism provides 
both a design principle and a learning process that would support 
students’ involvement in an aesthetically rich learning 
environment (Harel and Papert, 1991; Kynigos, 2015). Within a 
constructionist approach, the design of computational spaces aims 
at providing opportunities for exploration and personally 
meaningful construction activity, within which mathematical 
meaning is shaped and shared (Papert, 1980; Kynigos, 2007, 2015).
Students working in such environments “learn to transfer habits 
of exploration from their personal lives to the formal domain of 
scientific construction” (Papert, 1980, p.  177). This kind of 
bridging of personal identity and mathematical engagement is one 
possible way to infuse the subjective-dependent dimension of 
mathematical aesthetic experience along with meaningful creation 
of artefacts and artistic engagement.

3 Methods and materials

Taking all the above statements as design values, we created 
an aesthetically rich, constructionist, Mathematics as Artistic 
learning environment for analysing students’ aesthetically driven 
mathematical meaning making. In this section, we discuss the 
methods and materials of the study in terms of mathematical 
content, digital resources, task design and data collection and 
analysis. We explain how we used the CrEAM model to address 
and understand students’ thinking processes taking a perspective 
where aesthetics and mathematics are fused in their 
constructionist activities. We formed the model not only by means 
of synthesising theoretical aspects from the previous section but 
also as a result of applying a first coding analysis of the 
current data.

3.1 The case of periodicity

Periodicity was at the centre of the mathematical content 
embedded in the designed task. Rather than looking to fit content 
to existing curricular structures we searched for a conceptual field 
which we believed to be fruitful for constructionist activity of the 
kind we were hoping to observe (Vergnaud, 2009; Wilensky and 
Papert, 2010). In most curricula, periodicity veers toward the 
outreach of the respective borders, as in most countries it does not 
receive much attention. However, we  particularly valued it as a 
broad, complex, interdisciplinary concept, linking mathematics to 
different scientific disciplines and contexts of application, as well as 
to artistic domains, such as music (Flannick et al., 2005; Quinn 
et al., 2019), visual art (Puc and Škrekovski, 2011; Farris, 2013), 
poetry (Grosholz and Glaz, 2019) and more. We also appreciated 
that it is connected to the concepts of pattern, symmetry, fit and 
rhythm, each of which, as supported by the literature, entail rich 
aesthetic potential. At the same time, it is linked to more advanced 
mathematical concepts and a wide variety of representations and 
applications (Gerofsky et al., 2009). For these reasons, we assumed 
periodicity to be  aesthetically and mathematically fruitful. 
We selected digital expressive media which afforded construction 
of periodic functional relations and the inclusion of the parameter 
of time thus providing a dynamic context of implementation, which 
can be associated with music and dance. In this context, our design 
involved digital tools for the artistic creation of periodically 
animated ‘dancing figures’ tuned to the rhythm and matched with 
the style of a specific song.

3.2 Task design and digital resources

The task designed for this study was an open activity for creating 
an animated figural artefact based on a piece of music (also known as 
music visuals). Students were given a list of specific songs of different 
styles, which, according to the first author, were rich in rhythmical 
diversity and complexity and had a strong affective aspect. Two digital 
resources were used, affording different type of mathematical 
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engagement and providing different types of mathematical 
representations MaLT21 and GeoGebra.2

According to Sinclair (2001)’s reflection on Papert (1980)’s 
Mindstorms, Turtle Geometry was ‘an example of an environment 
that resonates with a child’s existing sense of aesthetics, one that allows 
her to use her body-and ego-knowledge to draw, explore and make 
mathematics’ (p. 25). MaLT2 was used as a medium for expressing and 
exploring mathematical and artistic ideas (Kynigos, 1995). It integrates 
a UCB-inspired Logo procedural language with Turtle Geometry in 
3D and dynamic manipulation of variable values through sliders 
(Grizioti and Kynigos, 2021; Kynigos and Karavakou, 2022). Thus, it 
provides the affordance of animating figural models created by means 
of mathematical formalism embedded in a programming language. 
This important feature supports the framing of periodic functions and 
the integration of the notion of time, which can support connections 
to dance. For these reasons, MaLT2 was used for the creation of the 
animated artefact and for hosting a Mathematics as Artistic, 
aesthetically rich, constructionist learning environment. MaLT2 users 
can construct figural models through programming for the movement 
of an avatar that leaves a coloured trace behind. These figural models 
can be animated by (a) defining a procedure (e.g., ‘TO shape:t’) whose 
variable (:t) is included as input in a logo command (e.g., ‘left:t’ or 
‘right 2*:t’ or ‘forward 30*sin(:t)’) or in a sub-procedure (e.g., square:t), 
which once defined works as being a command; and then (b) by 
dragging a slider that controls the values of the corresponding variable 

1 Link to MaLT2 website: http://etl.ppp.uoa.gr/malt2/.

2 Link to GeoGebra website: https://www.geogebra.org/calculator.

and the figural transformations of the avatar’s trace shown in the 3D 
scene (Figure 1).3 By constantly pressing the keyboard’s right arrow 
for moving its slider, a parameter can conventionally represent time, 
embedding the concept of motion in time.

Two GeoGebra files were additionally designed and used as 
graphing calculators for plotting (i) trigonometric functions of the 
form a∙sin(b∙t) and a∙cos(b∙t) (Figure 2A) and (ii) approximations of 
Fourier series of the form a1 ∙ sin(t) + b1 ∙ cos(t) + a2 ∙ sin(2 ∙ t) + b2 ∙ 
cos(2 ∙ t) + a3 ∙ sin(3 ∙ t) + b3 ∙ cos(3 ∙ t) + a4 ∙ sin(4 ∙ t) + b4 ∙ cos(4 ∙ t) 
where parameter values ai, bi could be manipulated through sliders 
(Figure 2B).

3.3 Data collection

In this paper, a case study is presented, which is part of a wider 
design-based research project, comprising iterative cycles of designing, 
testing and analysing for the creation of empirically based theories and 
frameworks for action (Cobb et al., 2003). The empirical data consisted 
of: (a) screen and voice recordings from one laptop, shared by the two 
participants (capturing both input and output sound); (b) their written 
notes; and (c) their body gestures and expressions noted down by the 
attending researcher (first author). Abductive thematic analysis 

3 Figures that include a QR code, like this one, are connected to a short video 

that better captures the described (in text) situation represented in the Figure. 

The reader can either click on the link provided in the caption, or scan the QR 

code using a QR code scanner application.

FIGURE 1

The digital environment of MaLT2; In this screenshot, an example of the procedure ‘shape’ is given. It is written and defined in the Editor (upper right 
window). It has one input variable (:t) and consists of three logo commands (forward 3*:t; right 90; forward: t). The procedure is executed with the 
input value of 40. The avatar has created two successive perpendicular segments of length 120 and 40, respectively (main window). The slider of the 
variable: t has been activated. The video shows how moving of the slider animates the constructed figure https://drive.google.com/
file/d/1EkGmTqZE6S1uDngFB0DNVE-J9dPEUrqV/view?usp=sharing.
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(Thompson, 2022) was implemented in two distinct levels, that 
informed the formation of the theoretical model CrEAM, as described 
in the following section.

3.4 CrEAM: a model for analysing 
aesthetically driven mathematical meaning 
making

Integrating different theoretical concepts and design principles 
entails the need for a broad, compound lens of analysis that could 
capture the respective complexity of the results. For that reason, 
we developed a model for analysing students’ mathematical meaning 
making through aesthetic experiences, or ‘aesthetically driven 
mathematical meaning making’, situated in an aesthetically rich, 
constructionist, Mathematics as Artistic environment. In this model, 
which was named after its components as ‘CrEAM’, students’ meaning 
making is interwoven with their aesthetic experiences while using the 
digital tools. The creation of CrEAM resulted from synthesising and 
structuring theoretical concepts mentioned in the ‘Theoretical 
Framing’, along with an abductive thematic analysis of results from the 
current study. In an attempt to describe students’ aesthetic experience 
as a relation between sensory ways of knowing and meaning making, 
this model provides a phasing trajectory as a ‘conceptual map’ that 
connects the ‘sensing’ facet of aesthetics (upper half of the model in 
Figure  1) to the ‘making sense’ one (lower half of the model in 
Figure 1).

The model is mainly based on Sinclair (2004)’s definition of three 
roles of aesthetics in mathematical inquiry (1. the motivational, 2. the 
evaluative and 3. the generative) and on the interplay between 
dependency (which we  refer to as sensing) and autonomy (where 
sensing plugs into some aspect of mathematical autonomy, and which 
we call making sense). We are therefore using the notion of making 
sense in an axio-epistemological sense, and not just as a cognitive or 
psychological process. It is also inspired by the way more recent 

studies use these roles in analysing students’ aesthetic experiences and 
practises (Eberle, 2014; Jasien and Horn, 2022). The roles were 
embedded within the model and further conceptualised as guiding 
students to transition among (a) phases of using their senses to 
imagine, construct, manipulate and evaluate digital artefact 
representing mathematical ideas and (b) phases of making sense of 
these ideas in order to control and improve their choices (description 
of arrows in Figure 3). The diagram of the model (Figure 3) illustrates 
the transition among four distinct phases of aesthetic experience in 
students’ mathematical activity: (1) (re)defining aesthetic Criteria 
(Cr); (2) Acting on an artefact (A); (3) Evaluating the results (E); and 
(4) Mathematizing of the findings (M). The aim of CrEAM was to 
capture the dynamic nature of the continuous, multidimensional 
aesthetic experience that a student can go through when engaging in 
an aesthetically rich, constructionist learning environment. Contrary 
to the model of Gadanidis et al. (2016), aesthetic and mathematical 
elements in CrEAM are interwoven, rather than dissociated.

The model can be briefly described as follows:

 1. Defining aesthetic criteria (Cr): Constantly revisiting and 
reconsidering aesthetic criteria is a natural human process, 
that, in this context, depends on the development of personal 
taste and agenda in arts and mathematics, as well as on cultural 
influences and emotional states. In contrast to the traditional 
perspective on mathematical aesthetic, which is connected to 
the objectivity of mathematical beauty defined by 
predetermined qualities, mathematical aesthetic criteria in this 
learning context are mainly subjective, as they are connected 
to making or appreciating arts. They involve personal filters for 
the appreciation and evaluation of mathematical beauty either 
applied within an artistically based, sensory context, or 
connected to sense making of mathematical ideas. When 
someone creates an artefact using mathematical notions as 
tools, these filters are defined either subconsciously or 
intentionally. Students’ aesthetic criteria can be traced through 

FIGURE 2

Two GeoGebra files for plotting periodic functions (A) The function a b t⋅ ⋅( )sin  or a b t⋅ ⋅( )cos  is plotted, with values of a and b controlled by two 
sliders. (B) The function a t b t a t b t a t b1 1 2 2 3 32 2 3⋅ ( ) + ⋅ ( ) + ⋅ ⋅( ) + ⋅ ⋅( ) + ⋅ ⋅( ) +sin cos sin cos sin ⋅⋅ ⋅( ) + ⋅ ⋅( ) + ⋅ ⋅( )cos sin cos3 4 44 4t a t b t  is plotted with values 
of ai and bi controlled by eight sliders.
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the aesthetic goals that they set and communicate, connected 
to problem posing or strategy selection, during their 
mathematical-artistic engagement. Setting up goals, or 
reconsidering and extending the previous ones, is the starting 
point of each round of mathematical exploration and can 
be  repeated many times throughout the creative process, 
depending on its compliance with students’ interests. This 
phase is connected to emotions of interest and desire. Both 
sensing and making sense can delineate aesthetic criteria. The 
aesthetic experience of defining or redefining (in case that 
circular transition among cases has led to reconsidering or 
enriching) them motivates students to act (A) in a particular 
way, either intuitively or reflectively.

 2. Acting on an artefact (A): Within a constructionist 
environment, where the computer works as a ‘window to 
mathematical meaning making’ (Noss and Hoyles, 1996), 
aesthetic choices can be  easily detected through students’ 
actions within a digital resource. This type of action connects 
a mathematical notion to the senses, since students manipulate 
its representation(s) using their hands, body, eyes, ears, 
feelings, depending on the representational registers and 
features of the digital resource. For this reason, (A) lies in the 
sensing facet of the model. During this acting phase, students 
can experience the aesthetics connected to artistic engagement, 
by entering a state of intense attention and high vigilance, with 
a strong focus on the creation of the desired object. When 
acting is not supported by sense making, which means that no 
phase of mathematising on the mathematical concept in use 
has been preceded, this phase is defined as ‘re-acting’. (A) 
automatically leads to (E) through playing an evaluative role, 
which is completely connected to the sensing facet.

 3. Evaluating the results (E): After acting on the digital resource, 
instant feedback is usually provided automatically. The results 

of the computer-generated response on their actions are 
connected to immediate sensory perception, e.g., visual or 
acoustic, and consequently lead to aesthetic judgement. This 
phase of the aesthetic experience involves students using their 
own so-far-defined aesthetic criteria in order to decide whether 
the generated result is beautiful, helpful or successful enough. 
The artistic context guarantees the degradation of objectivity, 
in the sense that mathematical beauty is situated within this 
context of application and reflected by student’s own 
sensibilities, e.g., their sense of fit or rhythm. It has an intense 
affective dimension, positive or negative, depending on 
elements like the unexpectedness and the desire. It is connected 
to emotions of amusement, surprise, anger, confusion and 
disappointment. Based on the progress and depth of their 
engagement, this phase can lead to any one of the other three: 
(a) it can instantly motivate the student to re-act (A) within the 
digital resource, remaining in the sensing context; or (b) guide 
them to reflectively evaluate and reconsider their aesthetic 
criteria (Cr); or (c) play a generative role and lead to the 
Mathematising (M) phase for gaining insight on the results. 
This phase can also lead to events of contradiction, once the 
sensory feedback is different to the expected outcome.

 4. Mathematising the results (M): Even though the cycle of the 
CrEAM diagram can ‘close’ without the inclusion of the fourth 
phase (and thus be seen as CrEA), remaining in the sensing 
context, mathematization is essential for satisfying students’ 
natural aesthetic urge for explaining and making sense of the 
results. This phase is physically driven by feelings of wonder 
and curiosity [though, crucially, students might bask in wonder 
for some time, before wanting explanation, which relates back 
to Nemirovsky’s injunction—and see Sinclair and Watson 
(2001)]. Given that the perceived results originate from abstract 
mathematical notions expressed within a sensory context, there 

FIGURE 3

The diagram of the CrEAM model on aesthetically driven mathematical meaning making.
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is a mediating level that needs to be  bridged in order for 
students to control the core of the artistic outcome according 
to their criteria. This process can be traced through students 
giving mathematical names and communicating meaning to 
the interpretation of the results. Consequently, the 
mathematization (M) can give rise to ideas toward two different 
directions: (a) by playing a motivational role for acting (A) with 
the digital tools by persisting in finding a solution to the 
initially set goal or (b) by playing a reflective-evaluative role 
(this time involving the mathematical meanings rather than the 
perceived outcome) for redefining the aesthetic criteria (Cr) 
and taste in mathematics and extend or change the initial goal.

3.5 Participants and implementation 
elements

Two students of the 11th grade from Greece, who will be referred 
to as S1 (gender: male) and S2 (gender: female) participated in the 
study. The overall activity lasted for 9 h, divided into 2 days in an 
out-of-school atypical setting. Even though the activity was designed 
for 6 hours, it was the students’ own choice to spend more time to 
complete the creation of their artefact. They both had some recent 
experience in periodic functions at school mathematics, as they had 
just completed the chapter of trigonometric functions. However, this 
was not an intentional research choice. They participated voluntarily 
and characterised themselves as ‘being good at mathematics’ and 
‘wanting to try something new’. They had also some previous 
experience with MaLT2 and GeoGebra from participating in a 
different study 3 years before the current implementation. For this 
study, the digital resources and the artistic context along with the 
group of two students composed a culturally rich community of 
practise that determined the politics of this learning environment.

4 Matching movement to sound

In this section, we present a part of the results based on the CrEAM 
model. They are divided into three thematic categories, named after 
students’ own words, while stating their aesthetic criteria emerging 
from listening to a part of the song. Each category corresponds to 
different mathematical ideas connected to sensing or making sense in 
order to reach the aesthetic goals. Students had already participated in 
a two-hour introductory activity, where they explored how to use 
programming and tools in MaLT2 in order to (i) create parametric 
procedures of different figures (e.g., square, triangle, hexagon); (ii) use 
the slider of each parameter in a steady way to animate the figure (by 
constantly pressing the keyboard’s right arrow); (iii) use different kind 
of functions as input values of different logo commands; e.g. ‘forward 
sin(:t)’ or ‘square sin(:t) + cos(2*:t)’, which raised a discussion on kinds 
of movements. The results of this introductory phase will not 
be presented here. At the beginning of the main activity, students chose 
a song to make the animation for, after listening to a given list of songs4.

4 They ended up choosing the song ‘victim’ from the album named ‘OCCULT’ 

by Macroblank (https://macroblank.bandcamp.com/album/occult).

4.1 Matching the motion to the rhythm

The students started by defining the aesthetic criteria (Cr) for the 
creation of the first part of dancing animation. The first goal explicitly 
set up was to create a dancing move that matches the rhythm of the 
song. After listening to the first part of the song (00:00–00:23) three 
times, they begun to make fluctuating movements with their hands in 
order to express the motion they had in mind.

S1: I think it is more like that. (S1 moved his hands periodically 

approaching and distancing in a slightly different rhythm.) A bit 

slower so that we match the motion to the rhythm.

Researcher: Your moving hands looked very much alike. Can you imagine a 

way to make the animation moving like that?

S2: We need to use one of the functions that did that.

S1: Yes, sine! Sine and cosine did this motion, when we put them in a 

command.

Students expressed their ideas for the desired rhythm and recalled 
that the trigonometric functions of sine and cosine in MaLT2 can 
produce a similar motion, thereby making an initial coordination of 
dependency (hearing a rhythm) and automation (the mathematical 
description of rhythm). This idea motivated them to act (A) on the 
coding part of MaLT2. They used the function ‘sin(:t)’ as input value 
of the command ‘square’ in the ‘dance’ procedure (Figure 4A). They 
tested the graphic outcome of their code, but disappointingly realised 
that it was not close to their expectation.

S1: Oh no, disaster. (Both laughing.) Why does not it move? We put sine, it 

was supposed to go like this, up and down.

S2: I think it does that, see? It is not that bad!

S1: Oh, yes. There is a slightly noticeable motion. Maybe we should change 

the limits? Change them to 0 and the upper to 500.

The evaluative role of the aesthetics led them experience a 
contradiction between the expected and the sensory outcome. They 
were negatively surprised and evaluated the visual result (E). This 
motivated them to try re-acting to the artefact (A) by expanding the 
range of values of the slider corresponding to the input variable t; from 
25–100 to 0–500. Then in an additional (E) – (A) transition, S2 
changed the upper value again from 500 to 1,000. The result, however, 
was evaluated with further disappointment and a bit of anger (E). The 
latter aesthetic experience played a generative role and led them to 
mathematize the results (M).

S1: Ok it does not have to do with the input values. It has to do with the 

function.

S2: Yes. Sin(t) keeps repeating the same pattern. It does not matter how big it 

gets; the same tiny animation will be created.

S1: What should we do? (…) Oh! It makes sense! Sine does not get output 

values bigger than 1. So this only goes forward 1 and-1 at most.

S2 You are right. (…) We need this number in the front to multiply. Let us 

make it 100?
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Students made sense of the constructed square being so small, and 
the animation barely noticeable, by mathematizing the results (M)—
the fact that the sine function repeats the same pattern, no matter how 
the input value changes, speaks to its autonomy, which the students 
respect, but which does not prevent them from thinking that it can 
be modified to suit their target rhythm. Here, the initial contradiction 
was overcome, through interacting with each other and the computer. 
They recalled the property of limit output values of sine and applied 
them in this context. They further thought of a different mathematical 
solution that motivated them to act (A) on the code of the artefact. 
They changed the function from ‘sin(:t)’ to ‘100sin(:t)’ and moved the 
slider of the variable t from 0 to 1,000, while listening to the song 
(Figure 4B). Then S2 used her aesthetic criteria to evaluate the results 
(E), while connecting the visual to the acoustic and expressed 
some displeasure.

S2: It gets too large! The square must be smaller to match the music, because at 

first it sounds very calm. We need to make it smaller.

S1: Hmm. Ok, I see. Should we make the number in front smaller? 50?

Students mathematized the situation in order to better match the 
motion of the square to the song. S2 redefined the aesthetic criteria 
(Cr) for its completion by connecting her feeling of calmness to the 
length of the square. Then they turned to MaLT2 in order to test their 
new conjecture (A). S2 changed the command ‘square 100*sin(:t)’ to 
‘square 50*sin(:t)’, moved the slider from 0 to 250, while listening to 
the song (Figure 5A). S2 silently made an expression of discomfort (E) 
and immediately reacted on the code by changing the command from 
‘square 50*sin(:t)’ to ‘square 30*sin(:t)’ and retested it by moving the 
sliders from 0 to 499. This led them to further mathematise (M) the 
output values of sine.

S2: I wanted the square to be even smaller. It’s much better now. Do not 

you think?

S1: Yes, 30 works fine. The highest value it can be is 30 times 1, so 30. The 

length is ok, but I still feel it is out of rhythm.

S2: How do you mean?

S1: It is too slow. It is completely out of the main rhythm. It goes tan-tan-tan-

tantan.

S2: To me it looks fine. Every time it does this druuun and repeats itself, the 

square gets the smallest and then it restarts and gets bigger again. I think it 

is synchronised.

S1: Ok, I see that but I had something else in mind. To me it’s too slow. Do 

you want to try to make it quicker? Just to see?

S2: Yes, fine.

S1 convinced S2 to redefine the aesthetic goal (Cr) of the 
animation, according to his different idea on musical rhythm. He then 
turned to the GeoGebra file where the parametric function 
‘f(t) = α∙sin(β∙t)’ was plotted for the values α = 20 and β = 1. He changed 
the parameter α from 20 to 30 by dragging its corresponding slider 
and then moved the slider of the parameter β slowly from 1 to 10 and 
back again, from 10 to 1 (Figure 5B).

S1: So this number inside may work. It makes the graph thicker, when it gets 

bigger.

S2: So we can change the number inside! To affect the density.

S1: Yes, this may work.

S2: Let us try 30sin(2 t)?

After S1 acted (A) on the GeoGebra tools to explore the different 
graphs of parametric function of sine, by manipulating the values of 
the parameters, they noticed that the parameter β affects its density 
and intuitively evaluated (E) the usefulness of this result. S1 turned to 
MaLT2 to re-act (A) on the code of the artefact and changed the 
command from ‘square 30*sin(:t)’ to ‘square 30*sin(2*:t)’. Then they 
observed the animated result, while moving the slider of the variable 
t from 0 to 708 (Figure 6A). After sensing the visual result, S1 evaluated 
(E) and seemed excited:

S1: Yes, it is much quicker! This is the way to fix it! But we are not there yet.

S2: What do you mean?

FIGURE 4

Acting on matching the motion to the rhythm in MaLT2. (A) Part 1: Trying the command “square sin(:t)” with t values from 0 to 673. The video shows 
the constructed animation https://drive.google.com/file/d/1JXgYBM2dezL0HgzSLySuQDMoq33A_4gl/view. (B) Part 2: Trying the command “square 
100*sin(:t)” with t values from 0 to 945. The video shows the constructed animation with this part of the song playing along https://drive.google.com/
file/d/18UckJ_OVapy_pJIED7ouHCjFjITO7XWW/view?usp=sharing.
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S1: I mean it is not completely matching the rhythm. I think it needs to be a bit 

quicker. We can increase this number in order to make it quicker, (…) to 

reduce its period.

S1 mathematised (M) the role of the parameter β in the function 
α∙sin(β ⋅ t) and consequently used it to find the perfect matching, by 
going through cycles of acting on the artefact (A) and evaluating the 
animated result (E) while listening to the song. He  changed the 
command from ‘square 30*sin(2*:t)’ to ‘square 30*sin(4*:t)’; then to 
‘square 30*sin(3*:t)’; then to ‘square 30*sin(5*:t)’; and finally back to 
‘square 30*sin(3*:t)’ (Figure 6B).

S1: I think I found it. This is the perfect match, as I imagined. What do 

you think?

S2: Well, it is not completely synchronized as before, in my eyes. But, I think 

I like it more than sin(x). The more I listen to the song, the more it gives me 

a weird feeling of mystery and anxiety. I do not know how to say it. And this 

is why I think it is very suitable for them not to be completely synchronized. 

Does it make sense?

S2 was inspired to redefine her aesthetic criteria (Cr) after 
observing and evaluating the animated result along with listening to 
the song. Her thoughts fueled the beginning of a different CrEAM 
transitioning, by playing a motivational role for continuing with the 
construction of their animation.

4.2 Gradually raising the tension

After matching the motion of the animation to the rhythm of the 
first part of the song, the students continued by setting up the next 
goal of their creation. The following part of their discussion reveals 
the definition of their aesthetic criteria on the imagined 
animation (Cr).

S1: I agree, it gives a sense of intensity. We could add more shapes to  

capture it.

S2: Maybe with different colours, appearing around the centre of  

the screen.

FIGURE 5

Acting on matching the motion to the rhythm in MaLT2 and GeoGebra. (A) Part 3: In MaLT2, trying the command “square 50*sin(:t)” with t values from 
0 to 250 and then consequently the command “square 30*sin(:t)” with t values from 0 to 499. The video shows the constructed animation with this 
part of the song playing along for each try https://drive.google.com/file/d/16ZhY2KdeeJIRGbVcKtzDfgIWFKBxMWAS/view?usp=sharing. (B) Part 4: In 
GeoGebra, moving the slider of the parameter β from 1 to 10 and backwards, from 10 to 1, when α  =  30. In the video, the variations of the plotted graph 
of the function a∙sin(b∙t), while the value of the parameter β was changing are shown https://drive.google.com/file/d/1eSTRxtQjAu_
QGWGucNS5dJCKkPQ-Vvcl/view?usp=sharing.

FIGURE 6

Acting on matching the motion to the rhythm in MaLT2. (A) Part 5: Trying the command “square 30*sin(2*:t)” with t values from 0 to 708. The video 
shows the constructed animation with this part of the song playing along https://drive.google.com/file/d/1j30bjF9zE7J14_mz-Eea3U7HbzxhNU7z/
view?usp=sharing. (B) Part 6: Trying the command “square 30*sin(3*:t)” with t values from 0 to 765. The video shows the constructed animation with 
this part of the song playing along https://drive.google.com/file/d/179g8QbviiO_hP-IG8yTuf6XIx0zjDNOx/view?usp=sharing.
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S1: Yes, nice. But not at the same time. This is like what we call tension in 

music, you know? It is a kind of repetition of the same tone that slowly 

builds up and gives the feeling of anticipation. It keeps you waiting and it 

gradually raises the tension.

S2: Yes, I get it. The more it repeats, the more intense it is.

S1: Exactly, yes. So, we could add them in steps.

S2: Oh, yes. You hear when it starts repeating. We need to find those points.

The students used their imagination, personal interests, 
knowledge and sensitivities to set another specific goal for their 
animated artefact. S1 brought into the discussion the term ‘tension’ 
from his music background, visualised and expressed one way to 
capture it. S2 acknowledged S1’s thought and extended it, by specifying 
one thing that they had to focus on: “to find those points.” This was 
clarified further through her acting in MaLT2 (A). She moved the 
slider of the variable t and set its value to 0, played the song along and 
slowly moved the slider to the right, while moving her other hand 
rhythmically. She stopped moving the slider by raising her finger from 
the keyboard right after the end of the first rhythmical unit of the 
song, when the value of t was 184 (Figure 7A).

S2: This is the point I mean. From 0 to 184 is the space that matches this first 

rhythm: toun, toun, toun, toun-toun; that repeats itself four times. When 

this part of the song restarts, this is when the other square must appear. 

Note down 184. Do not miss it!

S2 gave the meaning of moment in time to the previously 
mentioned concept of ‘point’ and corresponded it to a specific value 
of the variable t (=184) from the slider. Thus, based on the song and 
the motion of the slider, she evaluated (E) that this was an important 
value for better matching the appearance of the second square. She 
further made sense of it mathematically (M) as being an important 
unit of values, approaching the concept of period. S1, however, had a 
slightly different opinion during his evaluation (E), as he noticed a 
time difference between the end of the song unit and the moment S2 
stopped moving the slider. Then he re-acted (A) in MaLT2 by moving 
the slider of t slightly to the left, from 184 to 180.

S1: I think it was a bit earlier. Maybe 180 instead? (…) Yes, this is great how it 

stops! Look! At t = 180, the square disappears, since sin(180) = 0? Right?

S2: Yes, sin(180) is zero, this is why it disappears. Its sides are equal to 0.

S1: Ok, so, think about it. When it starts growing again after this point, 

another square will simultaneously appear and grow at the same rhythm. 

Isn’t it cool?

S2: Yes, I like it.

S1: And for the next square; it can also appear when the others start re-

appearing. So we need a value of t that zeros the sine. And we have got a 

lot of them!

S1 evaluated (E) the slider’s value of 180 as visually being more 
suitable for adding the second square. Then he mathematised (M) the 
result in order to make sense of that specific number as input value of 
the sine function corresponding to zero output value. This generative 
role of aesthetics led them to further mathematise the multiple 

possible values of t that would zero the sine function, based on its 
periodic nature. As they slightly redefined the aesthetic criteria (Cr) 
of their desired creation based on the ‘important’ value for the 
appearance of the second square, S1 turned to MaLT2 and acted (A) 
on the code. After three acting (A), evaluating (E) and re-acting (A) 
cycles, accompanied by some technical support given by the 
researcher, they ended up to the final code. They used the command 
‘if: t > 180’ before adding the second animated square ‘square 
30*sin(3*,t)’ at the point (10, 10, 0) of the 3D cartesian space ‘penup 
setpos [10 10 0] pendown’ (Figure 7B) and tested the animated result 
through moving the slider.

S1: Wow! It’s great!

S2: Yes, indeed, well done! 180 was a great idea!

S1: And I think the third one can appear at 360, right? That was the correct 

point.

S2: Try it again, come on.

S1 was motivated by S2 to re-act (A) on the animation by 
repeating moving the slider from 0 to 381 and back to 360, while 
listening to the song.

S1: Yes, I think 360 is when the third repetition of the song begins. It is perfect 

because it is also a value that zeros sine.

S2: Yes, 180 and 360. It makes sense. And every other 180. Try 360 plus 180 

just to see.

S1 moved the slider to 540 (A) and evaluated (E) S2’s conjecture 
as being correct. They mathematised (M) the periodicity of sine and 
used it in the code (A) in order to select the right values for the third 
and the fourth square of the animation. While making the code for the 
third square to appear, by adding the commands ‘if: t > 360 [penup 
setpos[10–10 0] pendown blue square 30*sin(3*:t)]’, S2 further 
mathematised (M) the period of sine for adding the fourth square 
without having to test it empirically:

S2: Before testing it, why do not we add the fourth, too? Since there are four 

clear repetitions of this part of the song. And they are the same, 

you know? So the same interval, which means plus 180. The fourth square 

should appear at t = 540.

S1: Yes, we want all the multiples of 180. Something happens at every multiple.

This generative role of the aesthetics guided them to make 
sense of the relationship between sine input and output values. 
This motivated them to further act (A) on the code for also 
including the animation of the fourth square appearing at the 
right moment-value of t. S1 wrote: ‘if: t > 540 [penup setpos[−10 
10 0] pendown green square 30*sin(3*:t)]’ and then tried the 
animated result (Figure 7C).

S2: This is the perfect timing!

S1: Yes, I agree. It’s so good! It gives this sense of tension that we were talking 

before.
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S2: Yes, it slowly adds some tensity! We made it!

The students were excited from the evaluation (E) of the animated 
outcome of their code and the reflection that they achieved their initial 
aesthetic goal. They used their mathematised meanings on the period 
of sine throughout their whole engagement in acting (A) on the 
artefact, for easily controlling the time of adding something new, 
since, according to S1 ‘Something happens at every multiple’. At some 
point, they revisited their meanings on periodicity, when they changed 
the starting point of the animation to be at t = 60, rather than t = 0. This 
issue guided them to another set of CrEAM transitioning cycles,5 
where they mathematised that the period of the function 30∙sin(3∙t) is 
60, since every 60 t-values the square animation ‘repeats itself ’.

4.3 Capturing the anxiety

Another example of multiple CrEAM transitioning cycles was 
initiated by the students’ aesthetic response on a subsequent part of 

5 These cycles of CrEAM on expanding meanings on periodicity will not 

be described in this paper, because of length limitations.

the song (00:48–01:31). They listened to this part for four times and 
discussed the emerging emotions and ideas:

S2: At this point (00:48) it becomes calm again. And then slowly grows some 

tension.

S1: Yes, but the sound is much richer than before.

R: How does this make you feel?

S1: I think, in some way, it gives me the feeling of stress. It has a growing 

tension, even more than before.

R: What about you?

S2: Yes, I agree. The more the time passes, the more anxiety I feel. (…) The 

rhythm is not so clear. Maybe this is why we get this sense. I’m just 

thinking out loud.

R: How do you imagine the animation?

S1: The motion can also be like this, a bit unstructured. I imagine something 

like this. (S1 made a messy movement with his hands.)

S2: (Laughing) Ok we could do that by using the fuzzy functions. From 

GeoGebra.

This discussion marked the definition of aesthetic criteria (Cr) for 
making an animation that would express their feeling of anxiety. They 
connected this feeling with a messy movement and with the ‘fuzzy 

FIGURE 7

Acting on gradually raising the tension in MaLT2. (A) Part 1: Connecting the period of the song to the period of the animation by moving the 
slider. The video shows the animation along with the corresponding part of the song during their first period, until the point (t = 180) when 
they decided for the second figure to appear https://drive.google.com/file/d/1XuJrSqYp0mwtR5AyFhUbDS9UGdDgWLZ9/view?usp=sharing. 
(B) Part 2: Looking for the right value of t that corresponds to the beginning of the third period. The video shows the animation generated 
by the new code, along with the corresponding part of the song during their two first periods, until the point (t = 360) when they decided to 
make the third figure appear https://drive.google.com/file/d/1knTCKe-lMRu9wCsrc8-6LqMC6zeqcpNX/view?usp=sharing. (C) Part 3: After 
setting 180 as the value of the period of the animation, testing the code including ‘if: t > …’ commands for all three squares to appear at the 
end of each period. The video shows the animation along with the corresponding part of the song during the first four periods (t = 720) 
https://drive.google.com/file/d/13fMnYO3AgOArjmu-fwtkYd0U6KX62EzE/view?usp=sharing.
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functions’, as S2 referred to the sum of trigonometric functions – 
approximations of Fourier series, which were plotted in GeoGebra. 
These elements composed the initial aesthetic goal, which was later 
expanded by connecting four sub-parts of this song to ‘different levels 
of anxiety’. These aesthetic criteria motivated them to start a cycle of 
acting (A) within the digital resources (MaLT2 and GeoGebra), 
evaluating (E) the visual and dynamic outcomes and mathematising 
(M) them to make sense of the unexpected connections between 
representations and finally achieve their goal. Because of the long 
timespan of this CrEAM transitioning process, only a small part is 
presented in this section.

Once the goal was set, the students initially acted (A) in MaLT2 
through trying different combinations of sums of trigonometric 
functions as input to the ‘square’ procedure, to create the ‘first level of 
anxiety’. For example, they successively tried the commands ‘square 
10*sin(:t) + 20*sin(2*:t) + 30*sin(3*:t)’, ‘square 10*cos(:t) + 20*cos 
(2*:t) + 30*cos(3*:t)’ and ‘square 30*sin(:t) + 20*cos(2*:t) + 40*sin(4*:t) + 
20*cos(4*,t)’. This acting (A) – evaluating (E) – reacting (A) cycle was 
not followed by any clear expression of mathematisation (M). 
However, S1 made a general evaluation of the perceived situation, that 
was the turning point of the rest of their engagement:

S1: I’m confused. I do not get how these functions work. I like the complex 

movement but it’s not what I had in mind. It was nice by accident.

S2: Would it help if we could first see their graph?

S1 turned to GeoGebra and changed the parameters ai and bi 
(i = 1,2,3,4) of the function a1sin(t) + b1cos(t) + a2sin(2 t) + b2cos(2 t) +  
a3sin(3 t) + b3cos(3 t) + a4sin(4 t) + b4cos(4 t) (A). While the first 
combinations seemed to be chosen randomly, at some point S1 zeroed 
all the bi parameters and plotted the following four functions: 
23sin(t) + 12sin(2 t) + 15sin(3 t) + 17sin(4 t), 
23sin(t) + 13sin(2 t) + 15sin(3 t), 30sin(t) + 21sin(2 t) + 25sin(3 t) and 
finally 30sin(t) + 21sin(2 t) + 25sin(3 t) + 29sin(4 t). He evaluated the 
visual result of the graphs and mathematised (M) some graphical 
properties of the sine of sum.

S1: I like this graph a lot. It is very symmetrical and complex at the same time. 

As much as it goes up, the same goes down. And did you get it? As many 

parameters as it has, it is the same amount of ups and downs. Here we have 

all four a-s, it has four peaks within each period. And each peak is lower 

than the previous one.

S2: Yes, looks nice. I wonder how it will look on the animation.

The students evaluated (E) the look of the graph in terms of 
symmetry and complexity. S1 mathematised (M) the relation between 
different combinations of trigonometric sums and symmetry of the 
graph. He  noticed that the sums of sines (functions of the form 
a1sin(t) + a2sin(2 t) + a3sin(3 t) + a4sin(4 t)) are symmetric with respect 
to the x-axis. S2 was motivated to try this function on the animation 
in MaLT2 (A) and expressed interest in animating it. Thus, S2 changed 
the already written command to ‘square 30*sin(:t) + 21*sin(2*:t) + 
 25*sin(3*:t) + 29*sin(4*:t)’ and tested the animated outcome 
(Figure 8A).

S2: Wow, it is almost perfect.

S1: I just think that it could be a bit smoother.

After his evaluation of the animation, S1 went to GeoGebra and 
changed (A) the parameter α4 from 29 to 0 and then to 15. He silently 
evaluated (E) the form of the graph with an expression of satisfaction 
and immediately tested the function in MaLT2, by changing the same 
parameter. He also changed the figure from a square to a hexagon, 
because, as he later mentioned, ‘the hexagon matches better because 
it is more complicated and mysterious than the square’. His evaluation 
on the final animation (E) inspired them to redefine their aesthetic 
criteria and goals (Cr):

S1: Ok, here’s an idea. When the sum only consists of sines, it is a bit more 

symmetrical. Right? Compared to the sum of all kinds of sines and cosines. 

So, I’m thinking, how about starting with this black hexagon that matches 

the calmer tone? Just that because the motion is really beautiful. And then, 

as the anxiety raises, make a more asymmetrical and quicker one?

S2: It sounds nice. So we must find a timing where the tone gets more intense.

S1: And find a different, asymmetrical combination. Great, I think it will 

be awesome.

S2 went through two cycles of acting on the artefact (A) while 
listening to the song, evaluating (E) and re-acting (A) in order to find 
the right timing for the second animated figure to appear. She wrote 
down the value 2,220.

S2: This is the exact moment when the higher tone enters I think. At t = 2,220. 

See the position that the black hexagon freezes at 2220. Wouldn’t it be cool 

if another hexagon would appear at exactly the same spot, but facing the 

other way?

S1 relistened to the song and made some sketches of a graph using 
paper and pencil. After three sketches that he immediately tore up, 
he elaborately made the sketch shown in Figure 9A. He then set the 
goal to find a formula that would resemble his sketched graph.

S1: This is how I imagine it. It starts really high and goes down abruptly, many 

times. But not the same distance up and down as before. This kind of 

asymmetry I meant.

S2: Can make a graph like this here?

S1: Yes, I think. But we need to add all the parameters, not just a-s or b-s.

S1 used the mathematised meaning from his previous sense 
making (M) and proposed a specific way for acting in GeoGebra. S2 
started acting (A) on the new goal, according to S1’s guidelines. After 
a sequence of evaluating (E) and re-acting (A), they ended up with the 
graph in Figure  9B, which they evaluated (E) by agreeing that ‘it 
seems crazy’.

They turned to MaLT2 and added the part of the code: ‘if: t > 2,220 
[penup setpos [0 0 0] pendown blue exagono 17*sin(:t) + 18*cos(:t) +  
15*sin(2*:t) + 18*cos(2*:t) + 17*sin(3*:t) + 15*cos(3*:t) + 26*sin(4*:t) +  
30*cos(4*:t)]’. They tested the result by moving the slider of the variable 
t from 1,500 to 3,000 (Figure 8B). They were thrilled by the animated 
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result; aesthetics played both an evaluated and a generative role for 
making sense of the outcome.

S1: This is better than I expected. The moment the blue hexagon pops up, it 

becomes more chaotic and captures this sense of anxiety. Like the one is 

chasing the other!

S2: This is so good, I want to replay it! (…) You know what I do not get though? 

How great it is that at t = 2,220, they are facing at opposite sides. How did 

this happen? Since in GeoGebra, it would start from being at the highest 

point.

S1: (Opened the tab in GeoGebra.) Yes, you are right. Oh, but the input value is 

2,220, not 0. (…) So, we need to find where 2,220 is here (shows x-axis). It 

is not normal numbers, it is in pi-s. We need to convert it.

S2: Oh, right! So it will be below zero at that point.

To make sense of this graphical-dynamic incompatibility, the 
students mathematised the result (starting point of the second 
hexagon when t = 2,220) by making sense of the graph and its x-axis 

units. These cycles of CrEAM transitioning on ‘capturing the anxiety’ 
for this part of the song were completed after some further redefinition 
of aesthetic criteria and goals, that led to their final creation. During 
these last cycles, the aesthetic played strong motivational, evaluative 
and generative roles, connected to deeper mathematisation.

5 Discussion

This study, even though limited in scale, allowed us to look deeply 
into the way aesthetic experiences guided both the content and the 
process of these two students’ mathematical meaning making around 
periodic functions. The CrEAM model provided a comprehensive way 
to describe the students’ aesthetically driven mathematical meaning 
making within this example of Mathematics as Artistic, aesthetically 
rich, constructionist learning environment. Their learning was 
captured through their continuous transitions between (a) sensing 
mathematical concepts, for example through viewing the dynamic 
motion generated by a specific periodic function and making its 

FIGURE 8

Acting on capturing the anxiety in MaLT2. (A) Part 1: Trying the command “square 30*sin(:t)  +  21*sin(2*:t)  +  25*sin(3*:t)  +  29*sin(4*:t)” with t values from 
1,500 to 2,950. The video shows the constructed animation along with the corresponding part of the song https://drive.google.com/file/d/19g9YyK_
wOVRUJsmkAUMJJe36U9ppYX9D/view?usp=sharing. (B) Part 2: Trying the command “exagono 
17*sin(:t)  +  18*cos(:t)  +  15*sin(2*:t)  +  18*cos(2*:t)  +  17*sin(3*:t)  +  15*cos(3*:t)  +  26*sin(4*:t)  +  30*cos(4*:t)” with t values from 1,500 to 2,960. The video 
shows the constructed animation along with the corresponding part of the song https://drive.google.com/
file/d/1gt2bZPb2RgMsYgRUgFV8diyEWF4TB4aX/view?usp=sharing.

FIGURE 9

Acting on capturing the anxiety in paper-and-pencil and GeoGebra. (A) S1’s sketch of a periodic function while listening to the corresponding part of 
the song. (B) The final graph in GeoGebra that satisfied them as resembling to the sketched graph.
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connection to the audio-rhythmical and affective part of the song; and 
(b) making sense of these mathematical concepts in order to explain 
an unexpected outcome, or control and improve the creation of the 
animated artefact, according to their aesthetic criteria. We note that 
in this process, the juxtaposing of dependence and autonomy did not 
pose problems for the students.

Based on our analysis, the students tended to follow cyclic paths, 
(1) starting from clarifying their aesthetic criteria (Cr), through which 
specific aesthetic goals were set up, that motivated them to (2) then 
acting on the digital resources (A) to achieve those goals; (3) evaluate 
(E) the aesthetic result by using their senses; and (4) mathematise (M) 
that is making sense of the mathematical content in use. The latter 
phase was vital for satisfying their need to explain the unexpected, as 
well as to reach their goals. In the beginning of each thematic set of 
CrEAM transitions, presented as separate subsections in the previous 
section, the students tended to transition among phases of the sensing 
context. They acted based on aesthetic criteria that were mainly 
governed by aesthetic values closer to their senses and artistic 
sensibilities, such as the synchronisation to the musical rhythm, the 
tension raising and the feeling of anxiety, then they evaluated the 
results based on the sensory feedback gained from the digital resources 
and finally re-acted without mathematising, making a smaller cyclic 
path of CrEA. However, while continuing to engage in the activity, 
they went through more and more phases of mathematising. Each 
phase of mathematising played a reflective-evaluative role in 
reconsidering their aesthetic criteria from a mathematical perspective. 
Thus, their aesthetic values started having a clearer formal 
mathematical flavour, for example by preferring specific type of 
functions over others, based on their properties around period and 
symmetry. In this context, aesthetic judgement and appreciation of 
mathematical beauty was a subjective matter, depending on the way 
the students sensed different situations (i.e., parts of the song) and 
their own views and sensibilities.

Another interesting point emerging from the results was the 
intervention-less way that students engaged in the activity and 
continuously went through all phases of the CrEAM model. The role 
of the researcher was limited to helping the students with technical 
issues emerging in MaLT2. Of course, these students might not 
be typical one, since both were very talkative, were friends outside the 
classroom and ‘really good in mathematics’, as they stated themselves. 
However, it is safe to say that this learning environment, combining 
the specific design aspects, can cultivate long-lasting, agential, 
collaborative and highly communicative mathematical engagement. 
We  do wonder whether the fact of being outside the classroom 
enabled the students to coordinate so smoothly dependence and 
autonomy—after all, the mathematics classroom is often a space in 
which sensory experiences are less welcome or even disconnected 
from mathematical concepts. This speaks to the particular 
distribution of the sensible, to use Rancière’s term, that dominates 
mathematical classrooms and that makes it difficult to students to 
engage the mathematical aesthetic.

Regarding the mathematical content that students focused on for 
their meaning making; even though some main mathematical 
concepts were embedded through the given digital representations 
and task design, students were free to use them in any possible way. 
These two students mathematised properties around the notions of 
variable and function and periodicity and symmetry of periodic 
functions of sine and approximations of Fourier series. These latter 

notions are marginalised in the current mathematics curriculum 
structure, with many properties that students used and made sense of 
being completely absent from the curriculum (in Greece). However, 
they composed a mathematical field fertile for aesthetically driven 
mathematical learning. Providing multiple representations of the same 
concept, such as the symbolic, the graphical (both in two dimensions 
on the Cartesian graph of GeoGebra and in one dimension in MaLT2) 
and their dynamic manipulation, was also definitive for fostering 
connections and sense making. This was evident, since students’ 
transitions between different representations, especially while trying 
to ‘Capture the anxiety’, were connected to deeper mathematisation.

Another aspect of this learning environment that comes in 
conflict with the current curriculum status is the level of a priori 
control of students’ learning outcomes. In this study, the politics of the 
learning environment were free to be  determined by the small 
community of practise. The two students’ mathematisation was driven 
by their joint, interpersonal aesthetic criteria and sensibilities and the 
way they interacted with the computer. If the same task were to 
be given to two different students, it is most likely that they would not 
go through the same path of transitions among CrEAM phases. They 
would probably end up mathematising different properties and facets 
of the concepts in use. This could be either considered as a limitation 
of this approach, or as an opportunity to open the conceptual borders 
of the curriculum and shift focus from content to the learning process.

All three design aspects of the learning environment played an 
important role in boosting students’ movement through different 
CrEAM phases. On the one hand, Mathematics as Artistic provided 
a context that was close to students’ senses, personal interests and 
general aesthetic sensibilities in art and life, integrating the elements 
of subjectivity and freedom of expression into mathematical 
engagement. On the other hand, the combination of aesthetically rich 
and constructionist learning environment, provided opportunities 
for (a) sensing and connecting different representations of 
mathematical concepts; (b) experiencing all types of mathematical 
pleasure; and (c) strengthening the need for deep mathematisation of 
concepts for the construction of the artefact. It supported a 
continuous mathematical involvement based on trial and error 
within the digital resources, that even though sometimes was quite 
time consuming, it was valuable for giving students the feeling of 
ownership and pride for their mathematical meaning making. In our 
view, this learning approach was an example where ‘slowing 
mathematics down’ is pedagogically meaningful. Our next step is to 
adjust the next cycle of the design to be  applicable to a whole 
mathematics classroom. The CrEAM model will be revisited and 
potentially expanded with the new set of data originating from the 
classroom implementation.

We consider this small-scale design-based research as a starting 
point for opening a wider research discussion on aesthetically rich 
educational reform for higher school levels, where mathematics 
formalism is more dominant and mathematics teachers more 
resilient to change. Educational design in this context would 
be radical, in terms of curriculum content, structure and teaching 
practises. Such educational transformation needs to be founded on 
pedagogical, theoretical and epistemological perspectives, as well 
as considerations on the affordances and limitations of aesthetically 
rich learning environments. All these elements need to be studied 
in depth, before considering their implementation in school 
classroom. However, we  recognise that providing the kinds of 
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learning opportunities we  describe in this chapter will involve 
changing the current aesthetic of school mathematics, one that 
downplays the senses, that privileges certain forms of sense-making, 
and that separates concepts from contexts of use. It is in this manner 
that the aesthetic functions political in school mathematics by 
determining what is valued—and as a result, who benefits from 
inclusion into the system of values. We thus see our work not only 
as aiming to make mathematics more palatable or enjoyable, but to 
disrupt some ‘common sense’ beliefs about what counts as 
mathematics and why we are teaching it.
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