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Mathematics education research has long focused on students’ conceptual 
understanding, including highlighting conceptions viewed as problematic 
and looking for ways to develop more desirable conceptions. Nevertheless, 
limited research has examined how mathematicians characterize 
understanding of concepts and definitions or promote activities beneficial 
for students. Based on interviews with 13 mathematicians, we  present 
thematic characterizations of what it means to understand a concept 
and definition, highlight activities mathematicians believe assist students’ 
learning, and examine their reasons for promoting these activities. 
Results include mathematically grounded descriptions of what it means 
to understand a concept but general descriptions of approaching and 
supporting learning. Implications include a need for attending to intended 
meanings for “understanding” in context and how this impacts appropriate 
activities for developing understanding, as well as a careful examination of 
the extant research literature’s claims about seemingly unified notions of 
conceptual understanding.
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1 Introduction

Definitions are considered foundational across science (c.f., Butt and Royle, 1980; 
Gillespie and Giardino, 1998; Zukswert et al., 2019), mathematics (Edwards and Ward, 
2008), and social science (c.f., DiRenzo, 1966) for clear and precise communication. Butt 
and Royle (1980, p.  29) described the possible danger to scientific progress if future 
generations “inherit a language that is clouded with ambiguity and vagueness,” while 
Gillespie and Giardino (1998, p. 427) claimed “without precision and consistency, the 
information may not be understandable to others, or it may be misleading.” Because of the 
importance of definitions for communication in STEM disciplines, there have been 
numerous studies that are reasonably characterized as exploring student challenges with 
definitions in the sciences and mathematics. For example, Park and Choi (2013) explored 
student difficulties with chemistry concepts that involved mathematical representations, 
describing South Korean students’ challenges with manipulating the definitions and the 
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ideas. Mathematicians and mathematics educators agree that being able 
to state and use definitions is essential for mathematical thinking, 
conjecturing, and proving (Edwards and Ward, 2008; Alcock and Inglis, 
2009; Alcock and Weber, 2010). A definition often provides the 
structure of the proof or the assumptions to work with (Selden and 
Selden, 2009; Weber, 2010). Developing conceptual understanding is 
also an important goal in advanced undergraduate coursework (Weber, 
2001; Weber and Alcock, 2004; Fukawa-Connelly and Newton, 2014). 
For example, Weber (2013) noted that a body of early research suggested 
students also fail to learn the “intuitive notions” that mathematics 
educators believed desirable for students to learn (e.g., Leron et al., 1995; 
Weber, 2001; Weber and Alcock, 2004). Since then, there have been 
explorations of students’ difficulties with mathematical definitions, such 
as a study of South African students’ difficulties with definitions in set 
theory of Shaker and Berger (2016), which focused on both 
misunderstanding definitions and the inability to successfully use them 
in proofs. Haj-Yahya (2022) explored how Arabic high-school students 
in Israel understood the characteristics of mathematical definitions and 
claimed that a misunderstanding led to an inability to interpret 
theorems and unpack their logical structure. Noto et al. (2019) carried 
out a similar study with preservice teachers in Indonesia, although in 
the context of geometry, with similar findings. Moreover, there have 
been numerous attempts to improve student understanding of 
definitions in science (c.f., Zukswert et  al., 2019) and mathematics 
(Zazkis and Leikin, 2008; Larsen, 2013) and to improve students’ ability 
to use mathematical definitions in proof-writing (c.f., Jordan, 2019; 
Kempen and Biehler, 2019; Valenta and Enge, 2022). Yet, for all of the 
mathematics-educator-developed interventions to improve student 
understanding of definitions, we were unable to find any exploration of 
what mathematicians mean by student understanding of definitions and 
concepts. That is, we appear to be attempting to solve a problem for 
instructors without fully understanding the task–to build tools in 
support of student understanding, we  need to know what 
mathematicians desire for and from their students.

Weber (2001, p.  691) argued that “competent performance in 
abstract algebra might require conceptual understanding beyond being 
able to interpret the definition of concepts.” That is, while definitions 
specify the concept, mathematics education literature has consistently 
treated conceptual understanding as different from understanding the 
definition, and both appear to be important for success in proof-based 
mathematics. While there is a lack of research on what mathematicians 
believe it means for students to understand a definition and concept, 
mathematics educators have developed a number of theoretical tools to 
explore these ideas. Perhaps the most used in exploring student 
understanding of definitions in undergraduate mathematics are the 
constructs of concept definition and concept image of Tall and Vinner 
(1981). Tall and Vinner distinguished between the statement of a 
definition, the concept definition, and the other ways of thinking that are 
useful or brought to mind when the concept is considered, the concept 
image. Numerous researchers have noted that examples of a concept 
should form an important part of the concept image. Watson and Mason 
(2005) argued that it was critical the students should be able to construct 
their own examples. Fukawa-Connelly and Newton (2014) used this as 
a tool to analyze the teaching of a group-theory course (which, in the US 
context, is a fourth-year university course). They explored the examples 
the professor gave of a group and how the collection of examples 
provided certain opportunities to learn the concept but might not have 
illustrated all aspects of the definition. Vinner and Dreyfus (1989), 

among thousands of others, have used the ideas to analyze student 
thinking, where they explored ways of understanding the concept of 
function that high school and university students held. They found 
significant differences between the definition of function and the concept 
images that students held. Moreover, these ideas have widespread use 
and intuitive appeal; for example, they resonate with Thurston (1994) 
claims about what it means to understand a concept.

Nevertheless, we are unaware of a body of research that attempts to 
capture teaching mathematicians’ meanings for student understanding 
of mathematical concepts and definitions or even whether those are 
meaningfully distinct. Thus, this study explores mathematicians’ 
thinking about what it means for students to understand mathematical 
definitions and concepts, the ways that they claim to promote this 
understanding, and their thinking about the work that students should 
do outside of class to develop understanding. We draw on the notions 
of concept definition and concept image in doing so.

To lay the groundwork for this study, we first highlight prior work 
on conceptual understanding and instruction in proof-based 
mathematics courses. In particular, instructors often model their own 
mathematical activity (Fukawa-Connelly, 2012; Fukawa-Connelly et al., 
2017; Pinto, 2019), typically by providing running commentary of their 
thinking as they teach (Artemeva and Fox, 2011). This running 
commentary frequently consists of formal statements (reading what is 
written on the board) and informal ways of thinking, both of the content 
and meta-commentary on how they do mathematics. Fukawa-Connelly 
et al. (2017) provided corroboration of these basic claims and noted that 
examples and informal ways of understanding content were common 
parts of the presentation of advanced mathematics courses, including 
explanation of concepts and examples. Pinto (2019) and Fukawa-
Connelly (2012) both describe the modeling of mathematical practices 
as common parts of lecture. That is, mathematicians typically present a 
formal definition of a concept, a number of examples, as well as 
providing informal ways of thinking about the concept (e.g., they 
provide a formal concept definition as well as ideas that might become 
part of a student’s concept image during their lectures). Viirman (2015) 
explored the lecturing practices of university mathematics faculty 
teaching calculus and linear algebra and argued that the participants 
used multiple representations of concepts as a means of conveying 
multiple ways of thinking about any particular concept (e.g., provided 
multiple aspects of a possible concept image). All of these might 
be understood as exploring how mathematicians present definitions as 
well as additional ideas related to mathematical concepts. There has 
been significant research exploring how mathematicians think about 
teaching, especially about the presentation of theorems, and explorations 
of how mathematics is presented in lecture (see Melhuish et al. (2022) 
for a recent review). Yet these studies have only seldom explored what 
the mathematicians want their students to learn from these presentations 
of definitions and other mathematics, and have typically done so in the 
context of a single definition.

Reading across literature on students’ understandings of 
definitions and concepts and on collegiate mathematics instruction, 
we see a need to explore three broad questions:

 1. What are (some) ways that mathematicians characterize what 
it means for a learner to understand a definition of a concept? 
That is, what, if any, are ways that mathematicians distinguish 
between understanding a definition of a mathematical term vs. 
understanding a mathematical concept?
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 2. What are activities that mathematicians want students to take 
outside of lecture in order to develop these types 
of understandings?

 3. Why do mathematicians believe the desired activities support 
students in developing the desired understandings?

We entered the study assuming that mathematicians would 
distinguish between knowing the statement of a definition and 
understanding a definition. However, we tried not to make assumptions 
about their meanings for understanding the definition. In particular, 
we  did not assume that they held mental models for student 
understanding similar to those described in the mathematics education 
literature. Rather, our goal was to examine their characterizations in 
order to compare them with those of the mathematics education 
literature as well as frame practical discussions between mathematicians 
and mathematics educators about students’ understandings and 
activities to support developing students’ understandings.

2 Theory and literature

2.1 Theoretical perspectives

2.1.1 Theory of reflective practice
We adopt the theory of reflective practice of Schön (1983) as our 

epistemological perspective. Schön characterizes professionals’ 
knowledge as something demonstrated and considered through 
action, even if that knowledge cannot always be fully articulated. In so 
doing, he rejects the positivist premise that all knowledge must be an 
application of theory; rather, he  suggests that practitioners have 
knowledge of what works in their practice that may not yet be aligned 
to a general theory. In particular, he distinguishes among participants’ 
knowing-in-action, reflecting-in-action, and reflecting-in-practice. 
Knowing-in-action refers to spontaneous actions that do not need to 
be  thought about before being done. Reflecting-in-action (or 
reflection-in-action) refers to a professional’s consideration of their 
own actions, potentially while engaged in that action, such as 
reexamining an activity that went well to determine the aspects that 
went well. “Thinking on your feet” and “learning by doing” are 
emblematic of such reflection-in-action (Schön, 1983, p. 54). Of note, 
Schön claims, “Because professionalism is still mainly identified with 
technical expertise, reflection-in-action is not generally accepted–
even by those who do it–as a legitimate form of professional knowing” 
(Schön, 1983, p. 69). Thus, this component of the theory is especially 
applicable to our work and highlights that professionals 
(mathematicians) have knowledge specific to teaching mathematics 
in addition to their content expertise, even if they do not view 
themselves as having such specialized knowledge. Reflecting-in-
practice refers to practitioners’ analysis of their own understanding, 
and might be viewed as the activity in which they engaged via the 
interviews themselves. Thus, grounded in the theory of reflective 
practice of Schön (1983), we adopt the stance that mathematicians 
have valuable applied knowledge of teaching.

While much of Schön’s work emphasizes the reflectiveness and 
worth of practitioners’ ways of knowing and acting, he also permits a 
role for outside observers like researchers. In particular, researchers 
might be viewed as theorizing about practitioners’ ways of knowing in 
a way that moves knowing-in-action to knowledge-in-action (i.e., 

translating an activity or process into an object or body of knowledge 
that can be described and analyzed). This is done by articulating a 
theorized mechanism or understanding that can be  tested. 
We incorporate this lens by observing that the aspects of practice to 
which mathematicians attend are important to document, even 
though we, as researchers, then seek to complement mathematicians’ 
noticings with language to permit theory building. However, we do 
not find it productive to distinguish between (unwarranted) beliefs, 
justified or warranted beliefs, and knowledge in this context because 
in faculty’s decision-making they operate the same way: shaping 
intended outcomes and instruction. Because we asked participants to 
explain what it means for students to “understand a concept” and 
“understand a definition of that concept,” participants’ responses 
largely (though not always) treated concepts as topics that might 
be addressed in a course, whether a fixed but unspecified topic or a 
specified topic like compact sets. Thus, we use the term concept in a 
topic sense in this paper.

2.1.2 Concept image and concept definition
We also utilize the theoretical framing of concept definition and 

concept image of Tall and Vinner (1981). Tall and Vinner distinguished 
between the statement of a definition, the concept definition, and the 
other ways of thinking that are useful or brought to mind when the 
concept is considered, the concept image. For instance, the concept of 
function could include a formal definition accepted by the 
mathematical community [e.g., A function from set S to set T is a 
subset F of S × T such that for each element s in S, there is exactly one 
element t in T such that (s, t) is in F.], as well as associated concepts 
like graphs of functions, particular examples of functions, and ways of 
using functions.

The concept image and concept definition constructs were 
developed first as theoretical categories, perhaps grounded in intuitive 
notions, and then used by mathematics educators as analytical tools. 
Tall and Vinner wrote:

We shall use the term concept image to describe the total cognitive 
structure that is associated with the concept, which includes all 
the mental pictures and associated properties and processes. It is 
built up over the years through experiences of all kinds, changing 
as the individual meets new stimuli and matures (p. 152).

They further described the portion of the concept image that was 
brought to mind in any given mathematical situation as the evoked 
concept image. They also distinguished between the definition 
provided in the lecture or text, calling it the formal concept definition, 
while a definition that someone develops using their own language is 
a personal concept definition. While this theoretical perspective has 
been used extensively to analyze student understanding in 
undergraduate mathematics education research, we here apply it to 
examine whether mathematicians’ characterizations of understanding 
in fact align with this common framing of the research community.

2.2 Literature

We also draw on extensive literature characterizing 
mathematicians’ practices for their own understanding and in 
the classroom.
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2.2.1 Mathematicians’ practices for their own 
understanding

The first strand of literature we  draw on is the notion of 
mathematicians as enquirers (c.f., Burton, 2004). In that vein, 
Parameswaran (2010) explored ways that mathematicians attempt to 
learn a new concept or definition via interviews of five mathematicians 
and surveys of 12 (including those who were interviewed). The 
findings included four broad processes: studying examples, using the 
new definition to prove theorems, exploring equivalent definitions, 
and encountering and resolving cognitive conflicts. Parameswaran’s 
participants appeared to engage in both mechanical manipulations 
and reasoning focused on properties of objects as a means of 
developing understanding of a new definition. Wilkerson-Jerde and 
Wilensky (2011) explored processes that mathematicians use to 
develop understanding of an unfamiliar proof and claimed that they 
refer to definitions, reason with examples, and engage in self-
questioning, typically using combinations of these processes 
simultaneously. Burton (2004) similarly described examples as key 
tools that mathematicians use to develop understanding of new ideas. 
This literature, on how mathematicians seek to understand, suggests 
that they value informal ways of thinking about concepts, examples, 
and alternative forms of definitions and statements (all of these might 
be understood as aspects of the concept image).

2.2.2 Observations of classroom practices 
regarding definitions

The second strand of literature we  draw on is that of 
mathematicians presenting content. While there is significant 
literature exploring classroom presentations of proof (c.f., Melhuish 
et al., 2022), there is relatively little documentation about classroom 
teaching practices regarding definitions. The study of Pinto (2019) 
explored how two mathematicians presented “the same” lesson about 
the formal definition of derivative in a real analysis course. Both 
introduced the formal definition, stated a theorem, and showed 
several examples and some applications but did so differently. Pinto 
argued that one, Yoav, carefully stated the meaning of each term in the 
definition while the other, Amit, used informal, metaphorical, 
language. Pinto argued that Yoav and Amit modeled different ways 
that students should develop understanding of definitions when they 
encounter them. Moreover, their rationales were also quite different, 
with Yoav claiming that being able to state the definition of terms was 
important while Amit claimed that mathematicians learn new 
definitions by “playing” with them and instantiating them visually and 
via metaphor. Pinto argued that both were modeling ways of coming 
to understand definitions that they found valuable.

Some other studies have explored classroom presentations of 
mathematical content that also included the presentation of definitions 
in proof-based courses. Artemeva and Fox (2011), Fukawa-Connelly 
et al. (2017), Fukawa-Connelly and Newton (2014), and Paoletti et al. 
(2018) all described definition presentation and suggest broad 
commonalities in presentation. Broadly, the construct of “chalk talk” 
includes presenting mathematical content along with narration of 
more informal ways of thinking and meta-mathematical claims 
(Artemeva and Fox, 2011). The study of Fukawa-Connelly et al. (2017) 
of 11 proof-based lecturers suggested that these informal ways of 
thinking are common and include both examples (typically written) 
and informal and metaphorical ways of understanding content 
(typically said aloud and not written). Some participants included 

informal ways of thinking about concepts for which they provided 
formal definitions, typically stated aloud, sometimes with diagrams or 
other drawings on the board. This meta-mathematical narration 
included mathematical processes such as “why is this a sensible name 
for a variable” and heuristics for accomplishing mathematical tasks. 
These can be understood as attempts to convey practices and ways of 
thinking that are mathematically productive. When the goal is to 
“avoid confusion” or “make sensible choices” there is no 
mathematically necessary reason for a particular choice (e.g., all 
variables could be named x, all with different subscripts). Fukawa-
Connelly and Newton (2014) also described the installation of a 
definition, but then focused on the exemplification that followed. They 
noted that immediately following the statement of the definition, the 
instructor gave both examples and a non-example (that was then 
modified into an example). Finally, Paoletti et  al. (2018) listed 
numerous examples of questioning, one of which focused on the 
installation of a definition in an abstract algebra class and included 
meta-mathematical aspects in which the instructor’s questions were 
focused on “what’s new here?” in moving from the definition of a 
sub-ring to an ideal and how the definition of ideal is different from 
that of sub-ring. These explorations typically focus on what Tall and 
Vinner (1981) would call the concept image. We also highlight Pinto’s 
(2019) investigation into two Teaching Assistants’ presentations of a 
definition in a calculus class. One was focused on the meaning of 
terms and symbols, carefully explaining each. The second gave a 
presentation that used graphs and intuitive and informal explanations 
of the concept. Thus, we  might understand mathematicians as 
presenting both formal and informal ways of understanding a 
particular concept, or a formal concept definition and multiple aspects 
of a concept image.

2.2.3 Interview studies on mathematicians’ 
beliefs, goals, norms, and values

The third strand of literature we draw upon focuses on interviews 
with mathematicians about their teaching in advanced mathematics 
(e.g., Nardi, 2007; Biza et al., 2014) although typically with a focus on 
the teaching of proof (e.g., Alcock, 2010; Hemmi, 2010; Weber, 2012; 
Lai and Weber, 2014; Cook and Fukawa-Connelly, 2015; Lew et al., 
2016; Woods and Weber, 2020). Generally, these interview studies 
present the participants’ goals for instruction and claims about their 
pedagogical actions and analyze the relationship between them. The 
interviewed mathematicians in these studies tended to believe that 
understanding advanced mathematics involves acquiring informal 
understandings of the content, citing the importance of exemplifying 
(e.g., Alcock, 2010) and having visual or kinesthetic representations 
of important mathematical ideas (Weber, 2004; Lew et al., 2016). As 
one such example, Iannone and Nardi (2005) conducted focus groups 
with 20 faculty members from United Kingdom universities in which 
they explored questions of pedagogy, and Nardi (2007) drew on these 
interviews in creating a “composite mathematician” in conversation 
with a mathematics educator. We characterize the findings from both 
as that the mathematicians were generally of the belief that students 
learn best with interaction and that students learn best when moving 
from the concrete to abstract in terms of representations. These beliefs 
generally align with the claimed practice of mathematicians (c.f., Katz 
et al., 2018) while there is also evidence that mathematicians think 
about the examples that are “most iconic” for a given definition, and 
that they would expect students to be  able to call on (Cook and 
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Fukawa-Connelly, 2015). However, mathematicians also recognize 
that not all values upheld by definitions and espoused by 
mathematicians are portrayed to students–whereas clarity in and for 
communication is emphasized through instruction with definitions, 
freedom of choice in the use and creation of definitions is not typically 
emphasized in instruction (Rupnow and Randazzo, 2023).

Fundamentally, mathematicians engage in their daily instructional 
practice based on their experience as learners and teachers–they are 
teaching a specific audience in a specific subject and consider what 
they consider to be  “normal” classroom activity for the course in 
designing their lessons. For example, there is a “convergence” around 
the “right” number of homework problems to assign in a proof-based 
class (c.f., Rupnow et al., 2021), that balances the desire to promote 
student understanding with their willingness and ability to complete 
the work. Similarly, the genre of chalk-talk is remarkably similar 
across cultures and countries, and within the United States lectures are 
generally very similar in terms of structure, pacing, and the types of 
content and pedagogical practices engaged (c.f., Artemeva and Fox, 
2011; Fukawa-Connelly et al., 2017; Johnson et al., 2018). That is, 
while there are differences, there is also a cultural convergence in 
which there are significant similarities in practice. We  further 
problematize the notion of cultural expectations in exploring what 
mathematicians intend by “what it means to understand a definition” 
and explore behaviors they would expect students to engage in as a 
means to develop that type of understanding. We suggest that these 
behaviors are a form of “folk wisdom” passed down via practice and 
observation of mentors and other scholars [c.f., claims of Johnson 
et  al. (2018) about sources of insight for mathematicians in their 
teaching]. Moreover, these sets of behaviors and practices are believed 
to be effective based on the “accumulated wisdom of past practice” 
rather than studies of their efficacy.

3 Methods

The goals of this study were to investigate mathematicians’ 
thinking about what it means for a student to understand 
mathematical concepts and productive means for students to acquire 
that type of understanding. Thus, we drew on reflective interviews in 
which the participants were asked to describe their thinking in the 
abstract and to instantiate it in their teaching experience. Our goal is 
to (1) present accounts of what mathematicians believe it means to 
understand a concept; (2) present accounts of what mathematicians 
believe are beneficial activities for students to develop desirable 
understandings; and (3) present accounts of why mathematicians 
believe these activities are beneficial. When mathematicians made 
claims about a behavior being beneficial for students, we assumed they 
had beliefs that support their claim, even if implicit. As much as 
possible, we asked them to explain why they believed the behaviors 
were beneficial, but often we were left to infer beneficialness based on 
their claims about what it means to understand a concept or definition.

3.1 Participants

We recruited 13 participants from four different masters or 
doctoral universities across the United States. All of the participants 
had recently taught a class that included students writing proofs but 

had a description that included learning specific mathematical 
subjects. Course content included abstract algebra, linear algebra, real 
analysis, stochastic processes, optimization, and topology. We did not 
ask the participants their gender identity or years of experience and 
use gender-neutral pseudonyms for our participants throughout.

3.2 Data collection

One participant was interviewed in-person and one via phone by 
the first author; the remaining 11 participants were interviewed via 
Zoom by the second author. Interviews ranged from approximately 
25 min to more than 60 min. All of the interviews were recorded, and 
we  then generated transcripts (first via AI transcription, then 
human correction).

We followed a semi-scripted interview format (Fylan, 2005) in 
which we asked participants general questions about their beliefs, 
goals, and practices about the teaching and learning of definitions and 
concepts and then asked them to instantiate with examples from 
recent courses. In cases where they described non-proof-based 
courses, we attempted to redirect their instantiation. Similarly, if they 
did not instantiate, we  prompted them to do so. Our questions 
explored what they believe it means for a student to understand a 
concept, how that is related to understanding a definition of that 
concept, actions they believe students should take to develop the 
desired understandings, and what they do to promote students 
engaging in those actions. We did not provide participants with a 
definition of “concept.” We also specifically asked whether students 
need to know the statement of the definition presented in class and 
asked for a justification for the response. We followed up with requests 
for more information as appropriate.

These questions, which especially focus on participants’ actions 
and actions they desire students to take, are fully grounded in the 
theory of reflective practice of Schön (1983). In particular, participants 
were encouraged to reflect on their actions and were not required to 
be  able to fully articulate why they do those things, though any 
reflections on why those actions were important were encouraged. 
This data collection then supports the theorizing of the researchers.

3.3 Data analysis

For claims about understanding of concepts and supports for 
understanding, we drew on reflexive thematic analysis (Braun et al., 
2019). Thematic analysis has been used in the mathematics education 
literature to describe a number of different types of qualitative analysis 
focused on researchers generating themes (patterns) from data based 
on repeated, systematic analysis (coding data). Furthermore, the 
research team is acknowledged as bringing prior knowledge and 
experiences to the analysis as opposed to being a “blank slate.” 
Reflexive thematic analysis is a particular type of thematic analysis in 
which themes result from the analytic work of the researchers and are 
not domain summaries predetermined before analysis. Moreover, the 
researchers are positioned as storytellers who interpret the data in 
light of their own positionalities.

This methodology permitted building on prior research on 
understanding as we  coded. Specifically, Pinto (2019) and 
Parameswaran (2010) suggested that mathematicians might hold 
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multiple interpretations for what understanding a definition means; 
thus, we began with initial codes for understanding that drew on 
their work. These included important markers of understanding, 
such as being able to state the definition for a concept and the 
definitions of all terms used in that concept’s definition, being able 
to formulate equivalent definitions by drawing on conceptual 
understanding, and using the new concept in theorems and proofs. 
Because of the importance ascribed to examples in mathematics 
education literature, we  further coded any claims that the 
mathematicians made about examples, including non-examples, as 
indicating understanding of the concept. We then came to consensus 
on the markers of understanding present in each paragraph of text, 
though we ultimately report our participants’ characterizations by 
person (i.e., our unit of analysis for coding was the paragraph/
uninterrupted response to a prompt, but our reporting unit of 
analysis is the participant).

While the literature suggested potential definitions of knowing 
and understanding, in keeping with Schön, we view one contribution 
of this study as the theoretical claims about how mathematicians 
characterize what it means to know and understand a concept in 
proof-based mathematics. Hence we argue that using the bottom-up 
defining process that results in the descriptions below is the 
appropriate approach to the development of our themes. Nevertheless, 
we  observed that our participants’ responses largely aligned with 
emphases on the definition itself (concept definition) and related 
important notions for understanding a concept (concept image). To 
that end, we  re-examined our data. This led us to group 
characterizations of understanding into categories aligned with the 
concept image and concept definition and also to group beneficial 
activities into categories. Thus, throughout the process, we employed 
multiple rounds of coding (Anfara et  al., 2002) and used our 
consensus-building coding comparisons to build confidence in the 
validity and reliability of our results.

4 Results

We respond to the research questions by exploring how 
participants characterize understanding a concept with respect to the 
definition specifically and with respect to other facets. These results 
are presented in two categories about understanding that synthesize 
the participants’ claims. We then characterize three types of activity 
that participants viewed as likely to support students’ learning. Finally, 
we examine mathematicians’ rationales for why these activities and 
supports would be  valuable. We  view participants’ responses as 
examples of prompted reflecting-in-practice.

4.1 Characterizing understanding

Understanding a concept includes being able to state a definition, 
but it goes beyond that. The mathematicians used language similar to 
notions of concept definition and concept image of Tall and Vinner 
(1981). Participants differentiated between definitions and concepts, 
such as River’s claim:

“And the formal definition [of a convex function] is kind of just 
like, this function satisfies this inequality, from from an 

algebraic standpoint, and then, you  know, we’ll probably 
acknowledge that this seems somewhat abstract and… draw 
the picture, which is basically like, ‘Oh, well, if I take any chord 
with this graph, that chord is going to be above the graph.’ And 
hopefully, kind of pinned down that, that kind of idea that, that 
probably shouldn’t take more than five or 10 minutes, and then 
we’ll kind of get into probably a few different kinds of convexity 
tests beyond just that concept. So, you know, we can say, ‘Oh, 
well, if it’s smooth, then we can take the tangent line, that’s 
going to be below the curve’, and then maybe work out a kind 
of sketch of why that’s true.”

We interpreted River as suggesting that the formal definition is 
a collection of words that specifies a set of conditions that, in this 
case, a convex function, must fulfill. River notes that the definition 
“seems somewhat abstract” and then suggests that drawing pictures 
and additional tests for convexity help students develop 
understanding of the concept. That is, a mathematical definition 
might capture one particular sense of an idea, but the concept 
typically includes multiple ways of thinking about that same idea. 
Similarly, Winter claimed:

“When I say definition, I would like it to mean very specific. And 
if it’s a math class, it should be very specific and no ambiguity. No 
self contradiction going on whatsoever. And, if I  define a 
terminology, it should exist, like it shouldn’t be an empty set… but 
when I say concept in mind, it’s a concept in my class, it’s just a 
word that is more ambiguous like I will write a huge circle and… 
Yeah. So, it will be… it can be  more ambiguous and more… 
heuristic?”

We interpreted Winter as claiming that the definition is a rigorous 
statement. Winter’s claims that a definition should be “very specific” 
and allow “no ambiguity” are consistent with mathematical norms 
(e.g., Rupnow and Randazzo, 2023). In contrast, Winter noted that a 
concept is “more ambiguous and more… heuristic,” which 
we interpreted as meaning a concept encompasses the definition but 
also includes more, and that it may not be possible to specify the limits 
of a concept. Winter’s claim is also sensible in relation to mathematical 
norms–a definition has precise terminology and does not allow 
ambiguity, while more freedom of choice is permitted in creating a 
concept (Rupnow and Randazzo, 2023). In the sections that follow, 
we further characterize how our participants characterized knowing 
a definition, in alignment with possessing a concept definition, and 
how they characterized understanding a concept, in alignment with 
characterizing a student’s concept image.

4.1.1 Understanding a concept means possessing 
a valid concept definition

All of the participants indicated that they believed knowing a 
statement of the definition was an important component of 
understanding a concept, which might be  viewed as centering 
students’ possession of a concept definition. There were two ways the 
participants described “knowing” a definition. One way focused on 
being able to recite a memorized version of a definition (i.e., 
memorizing a formal concept definition). The other focused on being 
able to recreate a viable definition (i.e., creating a viable personal 
concept definition).
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4.1.1.1 Concept definitions can be memorized word for 
word

Eight of the 13 participants made at least one claim we interpreted 
as indicating that being able to state the definition of a concept as 
presented in class (i.e., word for word) is a marker of understanding 
the concept. Noel, who taught abstract algebra, claimed:

“I kind of think of that memory stuff as like a zero measure of 
success. Math is hard, and sometimes the best you can realistically 
be expected to do is state a definition from memory. And if that’s 
where you’re at, then that’s where you’re at. Go with it. You don’t 
want to put that down, but you want to view it as a starting point 
toward a better understanding.”

We interpreted Noel’s claim as indicating that being able to state 
the definition from memory is a form, albeit minimal, 
of understanding.

Xylon claimed that proficiency with proof and the development 
of subsequent material requires being able to state definitions for 
foundational concepts, though being able to state specialized 
definitions would be less important:

“I think that for the foundational concepts you encounter, it’s 
absolutely important. Yeah, if a student doesn’t know what a group 
is, and keeps having to go back to the book and consult to figure 
out what a group is, I think it’s just going to slow them down… 
I have observed that, you know, students have that kind of stuff 
under their fingers. It doesn’t interrupt their thought patterns to 
have to go back. And, you know, on the other hand, I mean, there’s 
some fairly esoteric definitions, like a non-separable field 
extension or something like that, where if you gotta run back and 
and see what that means, that’s okay. So I guess I don’t have one 
fixed answer for your question.”

We note that Xylon is differentiating between “foundational” and 
“esoteric” concepts as a means of thinking about which definitions 
students should be able to state.

4.1.1.2 Concept definitions can be re-created
In contrast, 10 of the participants (five overlapping with the 

“word for word” group above) valued being able to extract a 
logically equivalent definition from their concept image (Tall and 
Vinner, 1981). Taylor made specific claims about the importance 
of definitions in mathematics, contextualized in analysis, 
explaining:

“It got me to start trying to make clearer to people that this is a 
difference, that if you haven’t seen a proof course before, then the 
fact that we define a function to be continuous at seven if blah, 
blah, bah, bah, bah, that’s there isn’t anything else behind the 
curtain. There’s no curtain. It’s all, it’s all upfront. That’s what 
we mean. We don’t mean anything else. We’ve chosen to declare 
anything that satisfies that to be continuous.”

We note that Taylor emphasizes that mathematical definitions are 
stipulated, meaning these definitions create concepts (Edwards and 
Ward, 2004, 2008), though not all people are aware of this aspect of 
mathematical definitions. At the same time, Taylor does not believe 

that it is useful to memorize definitions; instead, Taylor believes in 
re-creating them:

“I hate word for word. I, I mean, historically, in, in my experience 
of mathematics, teaching, people who insist on word for word. 
I mean, yeah, um, I don’t see that memorization of any form is 
valuable in mathematics. But that’s a very personal thing. And it’s 
based on the fact that my memory is useless. And I, so I phrase 
this to my students as I  am  an advocate of zero memory 
mathematics. But what that means is, I do a lot of mathematical 
re-creation, as I’m going along.”

For Taylor however, even as an advocate of “zero memory 
mathematics,” understanding means knowing what the definition 
says, being able to give a correct definition, and being able to use the 
definition in writing proofs:

“But they’ve got to know what the definition says, they’ve got to 
be  able to tell me a correct definition of what continuity is, 
otherwise, they cannot do anything. And I will tell you, yeah. 
I want them to be able to state things. I just don’t have any interest 
in the form of the statement other than its correctness.”

Taylor has a clear goal for students: that they do not memorize the 
definitions of concepts, but that they are able to state a 
correct definition.

4.1.2 Understanding a concept means having a 
robust concept image

4.1.2.1 Concept images include examples and/or 
non-examples of the concept

All participants highlighted a role for examples in understanding 
a concept. Eight participants claimed that understanding a concept 
involves being able to state examples and/or non-examples of the 
concept. Skylar explained that for a student to demonstrate 
understanding, “I would want a student to be able to give me a bunch 
of examples of things that illustrate the concept. And then also give 
me a bunch of examples of things that…do not fall into that concept 
or definition.” Xylon made a very similar claim, “Well, I guess it varies, 
depending on what the concept is… So I think, you know, to know 
something means…you got to be able to give an example of something, 
and not such a thing.” Both Skylar and Xylon made explicit claims that 
knowing a concept means being able to give both examples and 
non-examples of the concept.

Similarly, five of our participants believed that one should be able 
to generate new examples and understand that multiple objects will 
likely satisfy an abstract definition. Misha believed some 
understanding is demonstrated by being able to determine whether or 
not a particular instance is an example of a concept, but a greater 
understanding requires having access to more than a single 
reference example:

“I would say someone understands a definition if you say, ‘Okay, 
is this one of those?’ And if they can competently answer that, 
then I guess they would understand the definition. But why, right? 
That’s the big thing…If [the integers is] the only example you can 
come up with for a commutative ring, then I’m thinking maybe 
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you  don’t really know very much about commutative rings. 
Because if you can’t come up with another example, then you sort 
of missed the point, right?”

Seven of our participants expected students to not only be able to 
determine example status, but to be able to justify that claim. Quinn 
highlighted how justification requires more thought than simple 
verification of examplehood:

“I mean, when you have a, like, there are abstract concepts, like, 
um, equivalence relation, equivalence relation, it’s something that 
students struggle with. Yeah. And you  try to give as many 
examples, you know, two people are equivalent if they are born in 
the same state.….And I find that it’s useful sometimes to give 
examples and you don’t tell them the answers, you force them to 
actually think about it, because if I give you the answer, I say, okay, 
we’re going to prove that this is an equivalence relation. Now, if 
you’re going to prove that we know it’s true. So let’s just go on, go 
on automatic pilot. … But if we are asked, okay, wake up and think 
about this. Is this reflexive or is this then that, uh, again, I think 
it’s important for them to, again, to have, make a conscious effort 
and think about it.”

By setting up a question where students have to determine which 
tactics to use (here, possibly look for a counterexample or seek to 
prove the statement in general), students need to engage with the task 
more thoughtfully than if told which solution path to take.

4.1.2.2 Concept images include mechanisms for 
determining when to use the concept to solve problems

Eight participants claimed that for students to understand a 
concept means they can identify when to use it in solving problems, 
which we view as a facet of students’ concept image. Some claimed 
that students should be  able to explain when and why to use the 
concept (e.g., to explain how it is helpful). Oakley suggested that 
understanding a concept includes:

“When you want to solve a problem and you immediately know…
Yeah, you don’t have to be given that “use whatever theorem to 
prove.” The minute you see the problem, you know, immediately 
that aha, this, this calls for me to use that theory here.”

For Oakley, understanding a concept requires that students 
quickly recognize whether that concept would be useful to solve a 
problem, such as writing a proof.

Urban gave a different formulation, but one that also indicates 
understanding requires recognizing that one should use the concept 
in solving problems, claiming, “I want them to explain in words, 
you know, how it applies in these situations, and I can use it to solve 
a problem in a novel circumstance, right.” In this case, Urban goes 
beyond the idea of having intuition and instead wants students to 
be  able to explicitly describe how the idea is useful in a 
given problem.

Taylor claimed that to understand a concept means that “people 
will [be] light on their feet, that they have the ability to, sort of, like, 
bring in different things, to make sense of what they are talking 
about.” Taylor then provided instantiation in the context of 
linear algebra:

“Now, because especially in linear algebra, that feels crucial, 
because, you know, well, there’s the ideas of geometry, there’s the 
ideas of solving linear equations, there’s the ideas of linear 
transformations. And they all come together around this core idea 
of a matrix that, that then if you are not willing to acknowledge 
the geometry, or you’re not willing to acknowledge the linear 
equations aspect, it’s all, it’s very difficult to have a real 
understanding of, of what’s going on.”

We interpreted Taylor as claiming that understanding a concept 
requires being able to productively relate and draw on multiple ways 
of thinking about the concept. Taylor’s instantiation described 
matrices in terms of geometry and solutions to systems, and both are 
needed in order to “understand what’s going on” with the concept of 
a matrix.

Taylor also described understanding in terms of metacognition:

“I do feel that one of the skills that is crucial for people to develop 
understanding and is underappreciated as a, as an aspect of 
understanding by students is that they’ve got to know what they 
know and what they don’t know. And, and I tried to describe the 
extent to which I’m constantly checking what I  am  learning 
against what I know. And without a strong collection of things to 
check against. I don’t see how you would develop this light on 
your feet, being able to bring in other things, kind of state that I’m 
aiming for.”

Oakley characterized understanding a definition in terms of ways 
that knowledge could be applied:

“When you  understand the definition… you  understand the 
definition, but, but then you have to really see examples that show 
different perspectives of that definition. And then you. You put it 
in context, like with, uh, with the things that you knew before… 
so then it connects with the things that, so it’s attached, it puts in 
perspective of. That everything that you, you have built so far. So 
that is, I would say. And then when you… want to solve a problem 
and you immediately know, now I have to use I don’t know or 
whatever that’s that, that I would say that you understood, as a 
student, something. Yeah.”

In the above, Oakley focuses on multiple aspects of understanding. 
While Oakley mentions “knowing the definition,” this is only a first 
step in the process of coming to understand a concept. Oakley then 
suggests that examples help a learner understand different aspects or 
perspectives of the concept. Similar to Taylor, Oakley claimed that 
understanding requires connecting the concept to other, related ideas. 
Finally, Oakley claimed that students know when to use the concept 
in solving a problem.

Noel characterized manners of speaking as a form 
of understanding:

“They speak in complete sentences, first of all, and not contrived 
ones at that. They ask about things that are not directly pertinent, 
or that are not exactly verbatim what has already been said. They 
anticipate the next thing that we’re planning to talk about in class. 
But maybe simpler than that, rather than the question of the form, 
‘How do you do it?’ they ask things like, ‘Is the following correct? 
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Is the following specific thing right?’ They offer something in the 
process of asking their question as opposed to just demanding 
something from you.”

Much like Oakley, Noel claimed that students could indicate 
understanding in their question-asking, but provided the additional 
idea that they could do so by including specific ideas rather than 
“demanding something from you.” Noel’s focus for understanding was 
on how students speak and write, and repeated the idea that 
understanding is nuanced:

“So I  think for me, how do I  sort students into those who 
understand and those who don’t? Well, it’s a broad spectrum of 
course and… more than other people I  probably value how 
students speak and write more than I value how they perform on 
tests, particularly tests that sort of just ask for rote calculations… 
Better, I do often put true/false questions on my test. And I think 
those do a much better job of testing understanding than sort of 
calculations that students can do by mimicking an example that 
they looked at the day before the test.”

Here, Noel reiterated the idea that understanding is not a binary 
but rather a spectrum, and that calculations on exams are not a good 
means of gauging student understanding. Similarly, Quinn said that 
“there are levels of understanding” and characterized mechanical 
manipulation as a surface level understanding while knowing how and 
when to use the concept is a deeper level understanding.

4.2 Activities and supports for 
understanding

4.2.1 Do the homework
Ten of our participants explicitly highlighted the importance of 

doing homework to gain understanding. Taylor claimed students 
should do the homework as a means of developing their conceptual 
understanding, explaining, “Do the homework. Just because, I mean, 
you  know, that’s, that’s what the homework is there for. It’s, if it’s 
well written, it’s there to show you around the world of continuity a 
little bit.” Taylor continued by explaining why the homework 
is valuable:

“So it’s practice. Thinking about the ideas…like, practicing free 
throws that anybody can do it. You know, if you  just practice 
enough, I mean, I’m not gonna be an exception… so the problems 
are there, to make you feel at home in that little world of ideas. 
And, … without living there a bit, you’re never going to feel at 
home. That’s an awfully wishy washy way to describe what it is, but 
that, that’s how it feels to me that you’ve got to live.”

Taylor makes two specific claims about the activity of doing 
homework–that students should get a sense of the concept by doing 
it, and that it is a form of practice. Taylor suggests that the homework 
is “to make you feel at home in that little world of ideas” and that to 
feel at home requires “living there a bit.” We equate this with a notion 
of “spending time thinking” about the ideas. Thus, we interpret Taylor 
as suggesting that the homework introduces ways of thinking and 
supports student engagement via time and conceptual effort. At the 

same time, Taylor suggests that in analysis, the problems 
appear formulaic:

“When I look at the problems in [analysis], is that well, the proof 
writes itself, because, you know, everything up to the key idea is 
forced on me. And now I’ve got to get over this one key obstacle, 
and how am I going to do that, and sometimes that’s harder than 
it is at other times… trying to, trying to clarify for students that, 
you know, part of what I’m teaching them is not routine, but 
routine for people for this course. And part of it is that that’s why 
they’re on 78 almost identical problems, where everything is 
routine, there are theorems that have one key idea, and everything 
else around it is okay, so now we’re going to get to this idea but, 
but, but now we don’t ever do that again. Now we don’t ever solve 
that exact problem again.”

Here, Taylor is suggesting what we understand to be a possible 
contradiction to students–that homework is meant to induce thinking 
and support conceptual development but, in analysis, the homework 
appears to be highly routine with “78 almost identical problems,” in 
contrast to the theorems of lecture which have unique 
proof-structures.

Like Taylor, Payton suggested that homework is key to developing 
conceptual understanding, explaining, “I think, I  think that’s very 
useful. Very often, after the lecture, there are a bunch of exercises, 
right? So certainly, I want to ask them to practice the definition to 
recognize the concept, come up, maybe, with other examples, or prove 
your results using the definition.”

Yardley also emphasized the importance of homework. Yardley 
was very clear that understanding meant being able to operationalize 
the definition of a given concept into a proof and provided a template 
(“elaborate scaffold”) with different key parts of an epsilon-delta proof 
for students. Yardley noted that the way to develop this understanding 
is by doing the homework, explaining:

“That’s what the homework’s for. That’s what I mean, I tried to 
provide homework problems that would allow people to piece 
things together, such as providing that elaborate scaffold, yeah. 
Okay, well, I’m going to provide a structure. And then that was 
question one, on the homework in question two, you did not 
provide a scaffold, but then expected them to generalize from or 
like, hoped that they would learn from that scaffold… generalized 
to a slightly different situation. Because if you, if you  look at 
those…you might notice that the scaffolds are actually particular 
to that proof, like to that statement, and so they couldn’t just apply 
it straight away to another statement.”

We viewed this proof-template scaffolding to help students “piece 
things together” as providing an opportunity for students to develop 
a connected understanding of the content and demonstrate those 
connections through successful completion of the homework.

4.2.2 Revisit the notes and definitions
Five of our participants highlighted the importance of reading the 

notes or definitions beyond the context of homework. Noel’s 
explanation of what it means to understand was coupled with an 
idiosyncratic description of the actions students should take as a 
means of developing their understanding:
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“First I would like them to have the discipline to actually read it 
and read it slowly and read it multiple times. …And then I would 
like them to ask… ‘Is this a simple definition or a complicated 
definition?’ ‘Is this definition more simple, or more complicated 
than definitions that I’ve already seen?’ Even, ‘is it more simple or 
more complicated than definitions that I’ve even seen in previous 
classes for example?’ I would like comparisons of that kind to 
be in there with the student’s thought process as much as are the 
particulars of what the definition actually is.”

Noel specified that students should slowly read a definition 
multiple times and then ask themselves comparison questions about 
the relative difficulty or complexity of the definition as well as what 
the definition is about.

Quinn also emphasized the importance of revisiting material, but 
instead suggested that students should return to their notes and 
rewrite them:

“What I tell them to do is to go back home and rewrite their notes. 
Okay. So what we did in class, uh, write it again by yourself … ask 
yourself, do I know this? Or I don’t know it. And you know, they 
will tell you, ‘I kind of know it’ and I say, ‘no, kind of, no, it doesn’t. 
It means you don’t know it.’ So I tell him, write it and mark things 
where there is a gray area. You’re, maybe I went to, over it fast. 
Maybe you  missed it, but make sure you, you  cross it and 
you come back to office hour or before class or after class. And ask 
me what the heck was it about?”

In this response we note that Quinn first claimed that students 
should rewrite their notes. Then, Quinn suggested that students 
should repeatedly ask “do I know this?” and insisted that “kind of ” 
means no, suggesting that only a strong and positive “yes” is sufficient, 
and that students should take additional steps to develop 
understanding to that level. Noel similarly focused on having students 
“actually read it and read it slowly and read it multiple times” to make 
sure students really understood what they were reading.

4.2.3 Expect to struggle while learning
Eight of our participants highlighted the importance of persistence 

or that struggle should be expected while learning. Oakley made a set 
of specific claims about the ways that students should work to develop 
understanding of a new concept, with a focus on the notion of “getting 
stuck” as a critical component of learning:

“I would want them to, to, to go over the definitions, but not read 
them out. I  think that’s the most, I  think that’s the common 
mistake that students make to read the notes and read the 
solutions. You  read that definition, and then you  read this 
statement of the next theorem or lemma or whatever, and then 
you have to sit and try to solve it yourself. And then I tell them, 
okay, if you don’t have time to think, only 10 min, 15 min, and 
then read like one line of the solution. And again, so I think they 
consider this a waste of time. Like if they’re stuck, they say, ‘I didn’t 
do anything’ that was stopped the whole day. But I think those, 
those times that you’re stuck are actually the times that you, 
you  kind of learn really, you  know, you  search in your brain, 
you go back, you know, you’re looking at your notes so that I really 
think that’s the right thing to do.”

Oakley gave a specific sequence of actions that students should 
take, although we  do not know how to interpret the idea that 
students should “go over the definitions, but not read them out.” 
Oakley does suggest that when students encounter a theorem that 
they try to prove it themselves rather than reading the proof; 
we suggest that the idea of “not reading them out” might have been 
foreshadowing the claim about proof. We  note that Oakley 
specifically described the importance of getting stuck, claiming that 
when a person is stuck is “the times you, you  kind of learn,” 
indicating that getting stuck and then reviewing notes serves a 
critical role in the learning process.

Similarly, River claimed doing problems and struggle were 
reflective of their route to developing understanding.

“Projecting for myself served me reasonably well, is he’s just 
like, just don’t even look at it for a day, and then come back, and 
then review the notes, and then start doing problems. And, and 
for senior level classes, doing problems [was] somewhat tricky 
is because there’s, there’s not always like, computational like, 
practice like that available. And then as… if you get stuck on 
something, go back to your notes… I suspect that a big chunk 
kind of come to class, kind of passively take it in and then dive 
straight into the homework. And then then I would hope that 
when they get to something and they get stuck, that then they 
would go back to the notes. And and you  just say, ‘Okay, 
I vaguely remember that…’”

River extends the notion of doing homework to also include 
“getting stuck and going back to your class notes” as a means of further 
development and reinforcement of ideas. We also note that River 
expects that students’ actual practice is to “passively take it in” during 
class, although this is not presented as idealized practice.

Like River and Oakley, Quinn also described the homework as 
critical, but combined this with River’s and Oakley’s notion that work 
and struggle are critical components in the development 
of understanding:

“Here’s the homework, uh, apply it here. I mean, some questions 
in the homework are just mimic what I’ve done in the class. Some 
matters are like, I try to give them some harder question on the 
homework to stretch them so that they can struggle with a 
problem, but I help them if they struggle. I  said, you know, a 
struggle is important in math, but I don’t want infinite struggle, 
like work, focus on it half an hour, an hour.”

Like Taylor, Quinn noted that some questions might just require 
mimicking or completing routine problems, but like Oakley and River, 
focused on the importance of struggle in the learning process.

4.3 Why activities support developing 
understanding

We first note that the participants did not generally specify a 
hypothesized mechanism for how mathematical activities would 
develop any aspects of the desired understandings. Even when asked 
why these activities were helpful, they typically resorted to two types 
of rationales, both exhibited by Skylar:
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“Well, first, I’ll confess that I probably, a lot of my teaching at a 
baseline comes from all of the things that have always been 
done in the math courses that I’ve taken. As you well know, in 
math, we’re rooted in tradition, and we like to do things that 
have worked for us. And, and we, many of us, at least continue 
to do the things the way that that we  were brought up 
doing them.”

Similarly, after stating that students should read the definition 
multiple times, Noel made two claims that help to justify this set of 
actions. First, “you have no idea how the student’s mind works, but 
you do know how your own mind works.” Then, because of this, Noel 
relies on their own learning experience:

“If something has worked for you, then you kind of have to… 
I mean, you can do your best to expose how you genuinely think 
to the student and hope that they’ll find it as useful as you found 
it yourself. I think that’s kind of how I am.”

Noel’s experience as a learner further suggested that “when I’m 
learning stuff, I  have to prepare myself psychologically or even 
emotionally before I can actually have the discipline to sit down and 
read a complicated definition… knowing that it’s complicated helps 
me structure my study habits throughout the day.” This is reflected in 
the repeated reading of the definition that Noel would like students to 
do, noted above.

Finally, we note how Taylor claims to have come to hold beliefs 
about learning:

“I am influenced by the way I learned mathematics as are we all 
I think. But, you know, it was always the problems that taught me 
what’s going on. I  couldn’t learn without, I  mean, weirdly, 
I couldn’t learn without seeing what the, what the professor had 
written… on the board and writing it in my notes, ideally, 
changing all the notation. [I] was such a stickler for notation, 
I  couldn’t bear it if their notation was objectively stupid. But 
you know, but I couldn’t do it without that. But…the time when 
I  was actually learning it was doing the problem sheets that 
we got given.”

In short, Taylor claims to hold these beliefs about teaching, 
learning, and the importance of “thinking about the ideas” due to 
their experience as a mathematics learner. We interpret Taylor’s 
claim that “it was always the problems that taught me what’s going 
on” as a rationale for the claimed importance of homework, 
including the notion of ‘practice’ and time and effort toward a 
task. Fundamentally, we can understand Taylor as projecting onto 
the students the ways of thinking and learning that they 
found valuable.

Finally, Noel recognized that there is a different possible response, 
beyond their own experience, to why these activities are useful for 
students, claiming:

“I could pretend to say, ‘Okay, well, I’ve taught 10,000 students 
over the years and 749 of them genuinely learned a concept when 
I did this, however only 319 genuinely learned the concept when 
I  did that.’ That level of quantification I  hope it strikes 
you as absurd.”

Noel’s claim might be  read as indicating that numerical 
verification would be a more robust way of validating the utility of a 
particular kind of activity, but then Noel describes it as “absurd” to 
think that an instructor might have done this kind of work.

5 Summary and discussion

There are three broad claims that we  advance about our 
participants. First, the participants were thoughtful about what it 
means to understand a concept, and highlighted the importance of 
both the concept definition and concept image in understanding. 
Second, the main activities and supports that participants suggested 
were repetition-focused and included a general desire for students to 
persist through struggle as part of learning. Third, their beliefs in the 
efficacy of these activities were primarily drawn from their experiences 
as learners and users of mathematics.

In this paper, mathematicians characterized understanding a 
concept both in terms of having access to a valid definition (concept 
definition) and in terms of a web of interconnected ideas related to 
the concept (concept image). With respect to the concept definition, 
all of our participants agreed that it was important for students to 
have access to a valid definition, but they varied on whether that 
definition should be memorized (i.e., students should memorize the 
formal concept definition) or re-created by students (i.e., students 
should create a valid personal concept definition). With respect to the 
concept image, participants expected understanding of a concept (the 
concept image) to include examples and non-examples of the concept, 
as well as mechanisms for knowing when to use the concept to solve 
problems. This included notions like being “light on one’s feet” in 
order to apply the best tool to a problem, understanding the scope of 
a concept (i.e., multiple examples), and recognizing what you do and 
do not know. Some expressly positioned understanding as multi-
faceted and expressible in multiple ways, similar to existing 
frameworks taught to pre-service teachers (e.g., Bloom’s taxonomy; 
Krathwohl, 2002). This included positioning mechanical 
manipulation and mimicking at one end of understanding and 
speaking and writing coherently at the other. Generally, we note that 
most of the participants described rich and connected ways of 
thinking about a concept, including using examples to conceptualize 
nuance, and being able to use the concept in writing proofs. The idea 
that mathematicians have nuanced ways of thinking about teaching 
and learning is well represented in the literature [see Melhuish et al. 
(2022) for a review], but the notion that mathematicians have 
different ways of conceptualizing what coherent understanding 
ideally entails for any given concept is new. Moreover, while these 
descriptions of understanding frequently referenced knowing 
examples and being able to productively use the definition in writing 
proofs, almost all of them also included conditions such as “light on 
one’s feet,” “can speak with meaning,” or “connects with things 
you  already know” that have only a very personal definition for 
the mathematician.

Early writing in mathematics education (c.f., Davis and Hersh, 
1981; Dreyfus, 1991) lamented that mathematicians did not have a 
goal of supporting students’ development of conceptual 
understanding. Subsequent exploration, including this study, refutes 
those claims. The participants have a characterization of 
“understanding a concept” and desire that students develop conceptual 
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understanding, but they are each slightly different and include phrases 
that can only have a personal meaning. One aspect of conceptual 
understanding shared across our participants, that students who 
understand a concept can re-create the definition, was often coupled 
with a desire that students do not memorize the definition. This aspect 
is both mirrored in the mathematics education literature (c.f., Vinner, 
1991) and challenging. The research literature is clear that students 
struggle with quantification (c.f., Piatek-Jimenez, 2010), especially 
multiply-quantified statements (c.f., Dawkins and Roh, 2020; Vroom, 
2022), suggesting that the only real way for students to be able to state 
the definition is to memorize it. One implication for mathematics 
education research is that it complicates interpreting results of large-
scale studies of mathematicians’ pedagogical beliefs, such as Johnson 
et al. (2018). Johnson et al. (2018) reported that mathematicians who 
teach abstract algebra wanted to promote conceptual understanding, 
but the researchers treated conceptual understanding as an 
unproblematic and unified concept. The current study suggests that 
significant work is needed to explore exactly what mathematicians 
mean by “conceptual understanding” in the context of specific courses, 
although this study suggests that mathematicians may not be able to 
fully articulate their meanings. This in some ways mirrors the 
development of the teacher beliefs and instructional practice literature, 
wherein researchers eventually called for care in mutually establishing 
meanings of terms like “problem solving” and “cooperative learning” 
between researchers and instructors (e.g., Speer, 2005). Moreover, if 
instructors have different meanings for understanding, as students’ 
progress from class to class, they need to not only learn how to think 
in a new field of mathematics but also how to develop this new way of 
thinking in a manner aligned with the instructor’s way of 
conceptualizing understanding. This suggests the need for instructors 
to reflect on their characterizations of understanding and then make 
these characterizations explicit to students so students have clarity 
about what types of understanding are important to the course and 
the teacher in particular. The act of articulating these characterizations 
for students may also aid instructors in reflecting on their own beliefs 
about understanding so that they can make additional connections 
between the types of understanding they value and the types of 
activities they encourage students to engage in.

Because each participant had a slightly different meaning for 
conceptual understanding, and because they have different 
histories and strengths as learners, they provided different 
activities for developing understanding. These activities included 
reexamining notes while questioning understanding, restating the 
definition with different emphases, and doing the homework. To 
an extent, these activities and approaches might be viewed as good 
advice applicable across most learning contexts. However, while 
lists of activities included doing the homework, prior work 
(Rupnow et  al., 2021) argued that mathematicians crafted 
homework with different learning goals, and different 
mathematicians believed that students would learn different things 
from doing the same problem. Thus, while instructors shared a 
common “activity,” even if the assigned problems were the same, 
the participants would be unlikely to hold the same learning goals 
for the particular homework assignment. When exploring the 
other activities that the participants suggested would be useful in 
developing understanding, we are left with significant questions of 
how the task will help develop conceptual understanding or even 

whether the students could know if they are executing the task 
with fidelity. Moreover, while Wu (1999) argued that students need 
to do work outside of class and do not, and Krupnik et al. (2018) 
and Lew et al. (2016) suggested that students do not necessarily 
understand the types of work and thinking needed, we argue that 
the situation is more complex. Specifically, each instructor’s class 
might emphasize different aspects of understanding and associated 
outside-of-class activities to develop them. This raises questions 
about how faculty convey the nuances of their expectations about 
understanding and outside-of-class work to students as well as 
how the students apprehend those meta-mathematical ideas. This 
variation in instructors’ goals suggests that instructors could 
attempt to help their students better understand their intended 
purpose(s) of assigned exercises and connect them to their 
characterizations of understanding through explicit discussion 
with their students, either during their lectures or when providing 
feedback on student work.

We also note that these activities require general approaches of 
repetition and persistence through struggle and that participants 
appeared to share the belief that work and struggle are critical in 
developing understanding, but they did not provide additional detail 
as to how. At the same time, when reading mathematics education 
literature (c.f., Weber and Fukawa-Connelly, 2023), the field might 
describe activities and intended student “markers” or “outcomes” 
without specifying how the activities work beyond “induce student 
thinking.” That is, in published work, both mathematicians and 
mathematics educators accept the notion of ‘productive struggle’ as a 
reasonable mechanism for developing understanding, and, from a 
theoretical perspective, it is challenging to develop anything more 
specific. From the perspective of a student, how are they to judge 
whether they have struggled enough or in productive ways? To 
address this, mathematicians might reflect on and provide their 
students with concrete examples of instances where they struggled 
with a problem, ultimately found that struggle to be productive in 
some way, and try to articulate reasons that struggle was productive 
so that students may be able to extract properties of the struggle that 
are relevant to their work.

Moreover, because the participants held different intended learning 
goals, there are implications for mathematics educators. Johnson et al. 
(2018) and Melhuish et  al. (2022) both argued that mathematics 
educators should attempt to design, test, and disseminate activities that 
accomplish the goals that teaching mathematicians, hold, but to do so 
implies a reasonably unified meaning for conceptual understanding and 
pedagogical goals. That is, this goal of developing useful and shareable 
interventions for mathematics education research may be unattainable. 
Essentially, some of the mathematics education literature (c.f., Dawkins 
and Weber, 2023) has recently treated mathematicians’ thinking about 
student conceptual understanding as something mathematics educators 
understand and as an area where our work could be helpful. Both of 
these may be unwarranted beliefs of the mathematics education research 
community, and thus, the challenge of doing work that teaching 
mathematicians find useful, as a group, may be impossible. Additional 
research is needed to understand whether general tool development is 
something that can be accomplished.

Finally, the primary rationale for the mathematicians’ activities and 
supports was, essentially, “it was useful for me.” In keeping with Schön 
(1983), we  acknowledge that the answer of ‘my experience’ can 
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be  sufficiently compelling for practitioners, whereas the research 
community may be  driven to find more theory-laden answers. 
Moreover, Noel’s comment about the absurdity of quantifying student 
outcomes from their courses highlights the data collection necessary for 
them to support claims of efficacy may be prohibitive. We also note that 
the authors and others have previously published numerous papers 
showcasing mathematicians’ thoughtful, insightful understandings of 
mathematics and beliefs supporting their teaching (e.g., Woods and 
Weber, 2020; Rupnow, 2023; Rupnow and Randazzo, 2023). We thus 
entered this project with the assumption that mathematicians would 
have richly developed rationales undergirding their beliefs about 
understanding concepts and definitions and approaches to developing 
those understandings. However, our data only supports the first 
assumption–mathematicians provided thoughtful ways of 
characterizing understanding, but their explanations of how one should 
obtain these understandings were quite general (e.g., persist) and/or 
contradictory (e.g., read the definition multiple times, do not read the 
definition), and their views of conceptual understanding were personal 
enough that there does not appear to be  a unified view of what 
conceptual understanding entails. Further research is needed to 
examine the affordances of different types of advice paired with different 
characterizations of understanding; for instance, in what contexts might 
reading the definition multiple times prove advantageous and for what 
types of activity?

Thus, we recommend researchers to carefully examine the local 
relationship between activities a mathematician currently uses to 
support students’ understanding and how those activities impact their 
students’ understandings. Future research might evaluate for whom and 
for developing what types of desired understandings the various 
described practices are useful as well as whether these views change over 
mathematicians’ teaching careers. If some practices are more useful to 
develop certain ways of understanding, being explicit with students 
about these differences might aid them in being purposeful about their 
learning. Moreover, future work might attempt to develop models that 
explain the potentially varied utilities that the practices have.
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