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Editorial on the Research Topic

Learning analytics for supporting individualization: data-informed

adaptation of learning

Introduction

Recent trends toward integrating digital learning environments with face-to-face

classroom approaches and the emergency transition to online learning during the

COVID-19 pandemic have enabled the collection of increasingly large educational data

sets. The data are in various forms (structured, semi-structured, and unstructured) and

hold digital artifacts that provide evidence of how people learn or what they know. These

data provide an opportunity to implement an individualized approach in a broader set

of technologies and instructional domains. For this opportunity to be realized, we must

appropriately automate the analysis of this data and use those analyses to adapt learning

by supporting machine or human decision-making.

Digital learning environments increasingly apply artificial intelligence (AI) techniques,

such as machine learning and learner modeling, to analyze these data and offer opportunities

for understanding complex human learning. Outside of a specific type of adaptive learning

environment, called an intelligent tutoring system (ITS; VanLehn, 2006), the application of

machine learning and learning analytics to student data has not progressed to offer students

individual, self-directed, and adaptive learning. Within intelligent tutoring systems, these

methods have generally supported adapting experiences and activities to foster learning

(VanLehn, 2006). These methods also provide faculty with new ways of assessing student

work. Technologies usually perform adaptation in well-defined instructional domains where

correct answers to a problem can be predefined and where there is no variation in response

correctness (e.g., mathematics, physics, verb conjugations). In such settings, input formats

have been relatively constrained and systems only measured student knowledge on tasks

that had correct answers. The technology then adapted task support or question selection

based on these assessments. This type of adaptivity has led to similar learning gains to those

obtained in classroom settings (VanLehn, 2011) when the system could support student

needs (Beck and Gong, 2013).
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Papers in this special issue reflect the field’s move toward

providing adaptivity and automated assessment. Some papers are

focused on adaptation in more constrained environments, which

has historically been the focus of adaptive educational systems and

computer-adaptive testing (Bulut et al.). Other papers have focused

on more open-ended tasks, including automated essay scoring

(Kumar and Boulanger), student scientific thinking (Cloude et al.),

and student dispositions toward knowledge and their ability to

learn (Tempelaar et al.). The papers in this special issue highlight

various approaches, from spacing mechanisms and scheduling

content to multimodal analytics.

Bulut et al. implemented and evaluated a recommender that

aims to optimize formative testing schedules. Formative tests are

typically administered on a fixed schedule for all students, which

is suboptimal since students learn at different rates. However,

expecting teachers to adapt testing schedules to individual students

is impractical. Finding ways to use data analytics to support

teachers is critical given that they are notoriously overextended.

Bulut et al. attempt to do so by training a test scheduling

recommender using a sizeable data set (N = 745,414). This data

set was obtained from a mathematics assessment system that had

been used to provide formative tests to middle schoolers on a fixed

schedule. The recommender balanced two competing objectives:

reducing the number of tests students take and maximizing

potential score gains between tests. The offline evaluation of

the recommender demonstrated that these objectives could be

achieved. The improved testing schedules could help avoid wasting

students’ time by not asking them to write tests that will not

produce informative outcomes. Thus, this work provides an

example of how data analytics can support both teachers and

students in educational settings.

Like with the previous paper, Kumar and Boulanger consider

assessment. However, they were working with less structured data

(i.e., essays) so applying the types of methods used for computer-

based testing (e.g., item-response theory; Ramesh and Sanampudi,

2021) or those used to create the above recommender is non-

trivial. The challenge of scoring essays follows from the less

structured nature of the task and the more open-ended nature

of essay prompts, which can introduce challenges for human

and computational assessors alike (Chan et al., 2022). Automated

essay scoring (AES) uses computational methods to assess student

writing; it was introduced in the 1960s but has yet to be widely

used to support improvement processes for student writing. More

recent research on AES can be attributed to advances in natural

language processing (NLP) and machine learning approaches such

as deep learning (Ramesh and Sanampudi, 2021). However, these

approaches are usually opaque to both the learner and the teacher,

and they ignore construct validity (Rahimi et al., 2017) so the

people who need to use the output of an AES system cannot

understand how it works or use the scores to help students improve

their writing.

Kumar and Boulanger address the complexity of developing

AES by developing rubrics and assessment items and combining

these with AI techniques. The authors examined the role of

explainable AI (EAI) algorithms in AES when deep learning is used.

This was done to support the later goal of facilitating human trust

in the AI-based system so that people and AI can work together

to produce appropriate outcomes. Kumar and Boulanger did this

work in the context of predicting the quality of the writing style

of Grade-7 essays from the Automated Student Assessment Prize’s

essay data set. The authors also analyzed data on the decision-

making process behind predicting rubric scores in AES, and they

performed a comparative analysis of deep learning prediction

models. Overall, this work shows how understanding AES, at the

rubric level, can shed light on the functionality of the explainable

model and how such knowledge can help improve the accuracy and

utility of AES.

The value of AES research is likely to continue to grow,

as researchers examine what explainable predictive models can

contribute to the decision-making process that drives AES and how

predictive models can be fine-tuned to improve generalizability

and interpretability. Predictive models should be able to provide

teachers and students with personalized, formative, and fine-

grained feedback during the writing process. Future research

needs to address how AES can provide just-in-time formative

feedback to students instead of relying on summative assessment.

As educational systems continue to migrate learning and teaching

online, the field of AES combined with AI techniques can

contribute to how we address online examinations and tackle issues

arising from academic integrity (e.g., cheating). It could also help

inform how teachers can better design assessment regimes relevant

to evaluating learning in online settings.

Leveraging a complex digital learning environment, Cloude

et al. used multimodal learning analytics to quantify scientific

thinking in a game. As is the case for essays, the data contained

considerable noise. In this paper, the challenge of measuring

the intended construct is more pronounced as there has been

less work on using sensor data to infer latent learner processes.

Typically, modeling processes, such as scientific thinking, depend

on behavioral logs alone. Cloude et al. go beyond behavioral

logs by including data from sensors to augment the detection

of scientific reasoning among 138 university students. This work

provides insight into how scientific thinking might be captured in

complex learning environments, such as games, and how modeling

scientific thinking might provide more nuanced information when

it involves data from sensors that indicate what learners are

attending to (e.g., eye trackers). Like other recent work in less

constrained environments (e.g., Cai et al., 2022), Cloude et al. found

that eye-gaze data helped to assess learner performance. Their

work also explains how different behavioral indicators interact

with student prior knowledge and learning, creating possibilities

for fine-grained adaptation when multiple sensor channels are

combined to model learner processes.

Similar to the work by Cloude et al., Tempelaar et al. used

analytics to characterize student engagement with instructional

activities. In this work, Tempelaar et al. applied analytics to

data on student dispositions about the nature of intelligence

(whether it is fixed or malleable, referred to as entity mindset or

incremental mindset, respectively) and the value of effort invested

into instructional activities. Data from a university course in

mathematics and statistics (N = 1,146) were used to identify

students’ dispositional profiles based on the mindset and effort

constructs. Two key results emerged. First, the clusters revealed

that student mindset and effort beliefs do not always converge
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to the constructs predicted by original theories, such as that

individuals with fixed mindsets do not believe in the value of

effort. This finding has implications for designing interventions

targeting student mindset or effort beliefs since such interventions

may need to account for more nuanced student dispositions than

predicted by current theories. The second key result emerged from

a subsequent analysis comparing target outcomes between the

dispositions characterized by the clusters. This analysis showed that

some outcomes were not aligned with predictions from mindset

theory. For instance, theory predicts that students with an entity

mindset will not learn effectively. However, descriptively, the entity

cluster (the one with the highest belief in ability being fixed) had

one of the highest scores on quizzes and exams, possibly because

students in this cluster also believed in the value of effort. Thus, it

may be premature to assume that students with a particularmindset

will have academic outcomes related to that mindset.

The work of the Cloude and Tempelaar teams highlights

the potential for using analytics to represent aspects of student

behaviors and characteristics that have yet to be widely modeled

or used to support adaptation. Their work creates a foundation for

using data to treat complex constructs in a more nuanced manner

than has previously been done. In one case, student beliefs were

directly measured by asking students to respond to questionnaires.

As was the case in Tempelaar et al.’s work, using an assessment may

be more appropriate when the construct is expected to be relatively

stable over time. In the other work, student attention and scientific

thinking were inferred using sensor data. This work by Cloude

et al. provides an example of stealth assessment, which refers to the

unobtrusive measurement of user traits without explicitly asking

them to complete an assessment (Shute and Ventura, 2013). This

approach may be more appropriate for measuring dynamic learner

states or when direct measurement could interfere with the learning

task or process as would be expected in an educational game.

The availability of data generated in digital learning

environments presents opportunities to develop new forms

of learning and assessment. Learning analytics can leverage data

from various sources, including online learning platforms, to

provide insights into student progress, performance, and processes.

Educators can use learning analytics to identify at-risk students,

monitor learning outcomes, and make data-driven decisions to

enhance assessment strategies and instructional design. Learning

analytics and automated assessment are areas of research that

leverage digital data to help teachers better understand student

learning and provide support while maintaining high-quality

learning outcomes.

The application of machine learning and learning analytics to

mine patterns in data can contribute to the development of adaptive

learning systems. These systems enable personalized feedback;

data-driven adaptation; adaptive content delivery, intervention,

and support; and continuous improvement. Adaptive learning

environments can respond to learners’ needs, enhance engagement,

and promote effective learning outcomes. Automated assessment

systems can identify areas of strength and weakness, allowing

adaptive learning systems to tailor the learning experience to

individual needs. Such systems use data, analytics, and models to

dynamically adjust the content, pace, and difficulty level of learning

materials, ultimately providing better support for students.

This special issue brings together papers focused on various

aspects of automated assessment and learning analytics within

adaptive and personalized learning environments. With the

growing abundance of data in digital learning environments,

it is essential for researchers to leverage this data to examine

and understand the challenges students face and recommend

appropriate interventions.

While automated assessments and adaptive learning are being

increasingly applied, human involvement and expertise in the

process remain crucial. Instructors play a vital role in interpreting

and validating the outcomes of automated assessments, providing

contextual feedback, and ensuring fairness and equity in the

assessment process. In sum, the use of predictive models augments

and enhances assessment practices instead of replacing human

judgment and expertise.
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