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Admission tests are among the most widespread and effective criteria for student 
selection in medicine in Germany. As such, the Test for Medical Studies (TMS) and 
the Hamburg Assessment Test for Medicine, Natural Sciences (HAM-Nat) are two 
major selection instruments assessing applicants’ discipline-specific knowledge 
and cognitive abilities. Both are currently administered in a paper-based format 
and taken by a majority of approximately 40,000 medicine applicants under 
high-stakes conditions yearly. Computer-based formats have not yet been used 
in the high-stakes setting, although this format may optimize student selection 
processes substantially. For an effective transition to computer-based testing, the 
test formats’ equivalence (i.e., measurement invariance) is an essential prerequisite. 
The present study examines measurement invariance across test formats for both 
the TMS and HAM-Nat. Results are derived from a large, representative sample 
of university applicants in Germany. Measurement invariance was examined via 
multiple-group confirmatory factor analysis. Analyses demonstrated partial scalar 
invariance for both admission tests indicating initial evidence of equivalence 
across test formats. Generalizability of the results is examined, and implications 
for the transition to computer-based testing are discussed.
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1. Introduction

In higher education, academic disciplines like medicine tend to have far more study 
applicants than available study places. Inevitably, thorough student selection becomes necessary. 
In Germany, allocating university admission spots must, in principle, follow the criterion of 
aptitude (Bundesverfassungsgericht [BVerfG], 2017). To meet this objective, various selection 
criteria have been used over the past few years, ranging from easily accessible measures like high 
school grade point average (GPA) to more complex criteria like situational judgement tests, 
multiple mini-interviews, or admission tests (Schwibbe et al., 2018). The latter are predominantly 
used to capture applicants’ cognitive abilities and, thus, predict academic achievement above 
conventional measures like GPA (e.g., Schult et al., 2019).

Traditionally, admission tests were conducted in a paper-based format. However, using a 
computer-based format has several advantages over the traditional approach. Although 
dependent on the type of computer-based testing (e.g., pre-assembled test forms vs. 
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computer-adaptive tests), some of these advantages seem to 
be overarching. For example, computer-based testing has the clear 
benefit of faster administration, processing, and delivery of test results 
to test takers and examination institutions (Kikis-Papadakis and 
Kollias, 2009). Further, computer-based testing can be  more 
sustainable (e.g., reduced logistics) and offer cost advantages (Farcot 
and Latour, 2009). Considering these benefits, it may seem attractive 
for institutions to transition to a computer-based test format, and 
several large-scale assessments in admission, like the Medical College 
Admission Test (MCAT) or University Clinical Aptitude Test (UCAT), 
are already conducted in a computer-based format. However, if results 
from different test formats are meant to be  compared, ensuring 
equivalence between these formats is essential. Testing standards, like 
the Standards for Educational and Psychological Testing (American 
Educational Research Association et  al., 2014), require the 
documentation of psychometric properties of different test formats 
and direct proof of score comparability. These requirements can 
be  adequately met by examining measurement invariance across 
different test formats.

Measurement invariance is given if a scale’s measurement 
properties are stable between two or more groups. Groups may 
be defined by participants’ characteristics (e.g., academic degree), 
measurement points, or, as in the present study, different conditions 
(i.e., paper-based vs. computer-based format). Only in the case of a 
scale’s measurement invariance, meaningful comparisons of statistics, 
such as mean scores and regression coefficients between groups, are 
feasible (Chen, 2008). If the measurement invariance of a scale is 
examined, it is not simply a question of whether the scale is invariant 
or not, but multiple levels of invariance can be distinguished (e.g., 
Vandenberg and Lance, 2000). The most prevalent way to examine 
these levels, based on classical test theory, is to use multiple-group 
confirmatory factor analysis. Briefly summarized, four hierarchical 
steps are administered to examine the degree of invariance (e.g., 
Putnick and Bornstein, 2016). First, the most basic level of invariance 
is tested, which is known as configural invariance. Configural 
invariance tests whether the factorial structure of a predetermined 
model is similar between groups. No other equality constraints are 
made, and values of parameters within the model may vary. Second, 
metric invariance is tested by constraining factor loadings between 
latent and manifest variables to be equal across groups. Third, scalar 
invariance is tested. In addition to constraining factor loadings, item 
intercepts are hold equal across groups as well. If scalar invariance is 
established, latent variable mean scores can be compared meaningfully 
between groups (Vandenberg, 2002). Lastly, the most restrictive level 
of invariance is tested, known as strict invariance. In this step, residual 
variances are also fixed across groups. Only if residual invariance is 
established, the latent constructs are measured identically across 
groups. However, if differences in latent mean scores or factorial 
structure are of interest, strict invariance is not required (Pendergast 
et al., 2017) and is therefore omitted in further analyses.

In case of admission tests, assessing the measurement invariance 
between paper-based and computer-based formats is of particular 
importance. This is mainly due to the fact that test results in many 
academic disciplines can be used for admission over several years and, 
therefore, applicants with test scores from different test years apply 
simultaneously. In case the test modality of a selection criterion 
changes from a paper-based to a computer-based format from  
one year to the next, a sufficient level of measurement invariance (i.e., 

scalar or strict invariance) must be established to allow applicants’ 
scores to be  compared adequately. A lower level of measurement 
invariance would compromise the fairness of the selection criterion 
because applicants with an identical ability level would not necessarily 
obtain identical test scores in different test modalities.

Several meta-analytical studies suggest that the effects of test 
modalities on cognitive ability seem to be marginal to nonexistent 
(e.g., Mead and Drasgow, 1993; Wang et  al., 2008), although 
heterogonous findings have been reported. However, many reviewed 
studies are based on manifest approaches like the comparisons of 
mean scores. Schroeders (2009) pointed out that a mere comparison 
of mean differences of manifest or latent scores to assess equivalence 
is insufficient. Instead, advanced methods based on confirmatory 
factor analysis (CFA) and item response theory (IRT) models are 
required to test adequately for equivalence. Empirical evidence on the 
equivalence of cognitive abilities across test modalities based on such 
advanced methods is drastically reduced, and existing studies (e.g., 
Schroeders and Wilhelm, 2011; Bailey et al., 2018; Vermeent et al., 
2022) vary considerably regarding their design, method of equivalence 
testing, and cognitive ability examined. Thus, results cannot be easily 
compared, and equivalence (i.e., measurement invariance) should 
be investigated on a case-by-case basis. Bailey et al. (2018) explicitly 
caution against implementing computer-based formats without 
testing for measurement invariance. This is particularly important for 
cognitive ability tests used in the field of student selection, where test 
results influence the lives of test-takers and often determine an 
individual’s future career path.

In the present study, we  seek to examine the measurement 
invariance between traditional paper-based and computer-based 
formats of cognitive ability tests used as selection criteria for the study 
of medicine. For this purpose, we investigate the two major admission 
tests used by universities in Germany: (1) the Test für medizinische 
Studiengänge (TMS; en. Test for Medical Studies) and (2) the 
Hamburger Naturwissenschaftstest (HAM-Nat; en. Hamburg 
Assessment Test for Medicine, Natural Sciences). Approximately 70% 
of all available university places, after deduction of preliminary quotas, 
are affected by the score in the TMS or HAM-Nat, and the number of 
annual test-takers amounts to over 30,000 and 2,000, respectively. 
Both tests are currently administered in a paper-based format and, in 
the future, may transition to a computer-based format. Following 
recommendations reiterated by many scholars, we  investigate the 
measurement invariance between these two test modalities before the 
implementation of the computer-based format in order to justify its 
use in a high-stakes setting. In view of the considerable importance of 
both tests in the selection process in Germany, an unbiased assessment 
is not only desirable but urgently needed. Additionally, we seek to 
provide further support for the measurement invariance of  
cognitive ability tests across test modalities, as previous findings 
are heterogeneous.

2. Methods

2.1. Materials

2.1.1. TMS
The TMS is a psychometric aptitude test measuring cognitive 

abilities relevant to the medical field. The test consists of eight subtests 
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(e.g., comprehension and analysis of longer schoolbook-like texts, and 
mental rotation of three-dimensional objects), and the overall test 
time amounts to 5 h and 7 min. In the present study, solely the core 
subtests of the TMS (Trost et al., 1998) were included: Medizinisch 
naturwissenschaftliches Grundverständnis (MNGV; en. Basic Medical 
and Scientific Understanding), Quantitative und formale Probleme 
(QFP; en. Quantitative and Formal Problems), Textverständnis (TV; 
en. Text Comprehension), and Diagramme und Tabellen (DUT; en. 
Diagrams and Tables). An overview of these subtests, including a brief 
description, is listed in Table 1.

In 2021, the paper-based test was used as a selection criterion by 
37 universities. Overall, four parallel versions (version A, B C, and D) 
of the TMS were used on four different test days in that year. All 
versions were included in the analyses and were used to split the total 
sample for validation purposes.

2.1.2. HAM-Nat
The HAM-Nat test is a multiple-choice ability test including a 

natural science knowledge part (Nat) and three reasoning tests 
(numerical, verbal, and figural reasoning). Again, we only included 
the core of the test (i.e., the Nat-subtest). The Nat-subtest, which has 
been used for 15 years, consists of questions drawn from a published 
item bank with approximately 900 items.1 Therefore, it was possible to 
compare the item parameters of the items used in the computer-based 
format with those from the paper-based format. This, however, was 
not possible for the three reasoning subtests that were only recently 
added to the HAM-Nat. Items of the Nat-subtest consist of an item 
stem, four distractors, and one correct answer. Test participants have 

1 https://viamint.haw-hamburg.de/

90 min to answer the 60 items test, which has been designed to 
maximize discrimination in the upper quarter. Thus, the test is rather 
difficult. The current list of topics is available online at UKE  - 
Prodekanat für Lehre.

2.2. Procedure

Six weeks prior to the high-stakes test dates of TMS and 
HAM-Nat, applicants were contacted and invited to a computer-based 
preparation study. As an incentive, participants in both preparation 
studies were given the opportunity to use the study content in 
preparation for the high-stakes test. Participation in both preparation 
studies was permitted. For reasons of feasibility, both preparation 
studies were administered in an unproctored setting.

The computer-based tests were designed to be  as similar as 
possible to the respective paper-based test. Test parts were time-
limited accordingly, but in contrast to the high-stakes condition, 
participants were allowed to take breaks between test parts. All items 
were transferred to fit on one single screen and were scored 
dichotomously (right/wrong).

Additional arrangements were introduced to ensure maximum 
similarity between the paper-based and computer-based format. First, 
participants were instructed to emulate a high-stake test situation 
(e.g., quiet environment, sufficient time frame). Second, participants 
were given the opportunity to go back and forth within each subtest 
to review and change previous answers. Third, test parts of the TMS 
were presented in the same order as in the paper-based condition. 
Last, immediate feedback in terms of percentiles was provided to 
maximize participants’ motivation in the low-stakes setting (i.e., 
computer-based test format) and, therefore, enhancing participants’ 
efforts to do their best. By doing so, participants were given the 
opportunity to receive rather accurate information about their 
performance level as well as their chances for admission.

2.3. Study design and participants

We investigated measurement invariance across test modalities in 
two separate studies, one for each admission test (i.e., TMS and 
HAM-Nat). The studies were done as part of the research cooperation 
network Studierendenauswahl-Verbund (stav; en. student selection 
network2) funded by the German Federal Ministry of Education and 
Research. All participants of TMS and HAM-Nat in 2021 were invited 
to participate in the computer-based preparation tests. Participation 
was voluntary and all participants gave written informed consent.

2.3.1. Study 1 (TMS)
In a within-subjects design, participants first completed the 

computer-based test and six weeks later the paper-based format. The 
latter was used as a selection criterion for the study of medicine in 
2021. For confidentiality reasons, a previously administered version 
of the TMS was used in the computer-based format (ITB Consulting 
GmbH, 2019).

2 https://projekt-stav.de/

TABLE 1 Overview of examined TMS subtests.

Subtest 
(abbreviation)

Task # of 
Items

Duration 
(in min)

MNGV

Comprehension of 

medical or natural 

scientific contents 

presented in short 

texts

20 60

QFP

Analysis of 

numbers, variables, 

and formulas 

within medical or 

natural scientific 

context

20 60

TV

Analysis and 

comprehension of 

scientific texts

18 60

DUT

Analysis and 

interpretation of 

graphs and tables 

within medical or 

natural scientific 

context

20 60
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A total of n  = 4,529 applicants to medical schools in Germany 
completed the computer-based TMS amounting to approximately 28.1% 
of the original TMS cohort. Of those participants with both computer-
based and paper-based test data, n = 3,044 (18.9%) were included in the 
analysis. Participants were excluded if they did not answer at least one 
item correctly in one or more subtests in the computer-based format 
(n  = 1,142) to ensure that an appropriate amount of time on the 
low-stakes test was spent (e.g., Attali, 2016). Further, due to loss of data 
in the paper-based format, n = 343 participants were excluded as well. 
Within the final sample, n  = 2,205 (72.4%) identified as female. 
Participants’ age ranged from 18 to 52 (Mage = 19.6; SDage = 2.6).

2.3.2. Study 2 (HAM-Nat)
In a between-subjects design, participants of the HAM-Nat in 

2021 were invited to the computer-based study. All 60 items used in 
this study were assembled from the published item bank (as described 
in section 2.1.2) and, therefore, have been used in the high-stakes 
paper-based setting over the previous years. To form a comparable 
sample of test-takers who took the paper-based test, only test-takers 
who had completed at least 55 of the 60 items used in the computer-
based study were selected. Due to this procedure, missing data was 
induced in the paper-based sample and imputed by logistic regression 
(Van Buuren, 2018). For the imputation, all remaining items were 
used to predict missing answers to items. To increase the sample size 
and enhance generalizability, not only test-takers of the cohort of 2021 
were included, but of the cohorts of 2010 to 2021 instead.

A total of n = 660 applicants (27.5% of the original HAM-Nat 
cohort) participated in the computer-based study of the HAM-Nat. 
Again, participants who did not answer any item correctly (n = 4) were 
excluded, resulting in a final sample of n = 656 participants. Within 
this sample, n = 463 (71.7%) identified as female and participants’ age 
ranged from 18 to 27 (Mage = 20.7; SDage = 2.1). The final sample of the 
paper-based format included N = 844 participants. For the paper-
based format, due to the sampling technique, sample characteristics 
were not available. However, the 2021 test-takers showed comparable 
demographic details as the computer-based sample (Mage  = 20.8; 
SDage = 2.8; 71.0% identified as female).

2.4. Data analysis

We tested for measurement invariance by multiple-group 
confirmatory factor analysis. To evaluate the fit between hypothesized 
models and observed data, we followed recommendations of Jackson 
et al. (2009) by reporting several fit indices and relying on alternative 
fit indices. Specifically, we  based evaluation of model fit on the 
chi-square value, associated degrees of freedom and probability values, 
the comparative fit index (CFI) as an index to describe the incremental 
fit, and the root mean square error of approximation (RMSEA) and its 
associated confidence intervals as well as the standardized root mean 
squared residual (SRMR) as residual-based measures. As suggested by 
Hu and Bentler (1999), we  assumed an acceptable model fit if 
CFI ≥ 0.950, RMSEA ≤ 0.060, and SRMR ≤ 0.080.

To assess the level of measurement invariance, we  compared 
increasingly restrictive models. To establish the next higher level of 
invariance, a change of CFI (∆CFI) < 0.010 paired with a change of 
RMSEA (∆RMSEA) < 0.015 and a change of SRMR (∆SRMR) < 0.030 for 
metric invariance and < 0.015 for scalar invariance is required (Chen, 

2007). In case of violation of full measurement invariance in any of the 
steps, we tested for partial invariance by sequentially releasing constraints 
beginning with the highest modification index (Yoon and Kim, 2014).

As item-level multiple-group confirmatory factor analyses of the 
TMS models yielded some improper solutions (i.e., Heywood cases) 
and some models did not converge, we used parcels as indicators of 
latent factors instead of items. The practice of item parceling is widely 
used in confirmatory factor analysis (Williams and O’Boyle, 2008) 
and measurement invariance testing. However, some researchers 
have raised concerns regarding its use, such as biased estimates of 
model parameters (e.g., Bandalos, 2008; Little et al., 2013). Therefore, 
it is commonly agreed that item-level analysis should be preferred 
over parcel-level analysis when data is well-suited. To avoid 
malpractice, we followed established recommendations by Little et al. 
(2013) and parceling strategies by Matsunaga (2008). More 
specifically, we applied random methods of combining items into 
parcels if a scale was unidimensional and an internal-consistency 
method (e.g., Kishton and Widaman, 1994) if a scale was 
multidimensional. The latter approach aims to capture similar facets 
of the structure into the same parcel. Before applying both methods, 
it is, however, important to empirically scrutinize and understand the 
dimensionality of the TMS’ subtests. In the context of item parceling, 
Matsunaga (2008) recommends using confirmatory factor analysis 
for this purpose. Consequently, we proceeded by imposing a 1-factor 
model on each of the MNGV-, QFP-, and DUT-subtest. For the 
TV-subtest, however, a 3-dimensional structure meets theoretical 
assumptions best, as six items refer to one of three different texts, 
respectively, and therefore represent a testlet. For each subtest, the 
conceptualized structure fitted the data well. Next, items were 
assigned to parcels. As recommended by Matsunaga (2008), 
we utilized three parcels per latent factor. For the MNGV-, QFP-, and 
DUT-subtest, we randomly assigned each item to one of the parcels 
without replacement. Thus, an unequal number of items per parcel 
was used (i.e., two 7-item parcels and one 6-item parcel). As 
we established a 3-factor model for the TV-subtest, we used three 
6-item parcels representing one factor each. Lastly, we checked for 
normality of parcels. Distribution of all parcels was excellent.

All statistical analyses were carried out with the statistics software 
R (R Core Team, 2020). Multiple-group confirmatory factor analyses 
were performed with the R packages semTools (v0.5-6; Jorgensen 
et  al., 2022) and lavaan (v0.6-12; Rosseel, 2012). For item-level 
multiple-group confirmatory factor analysis, we used weighted least 
squares means and variance adjusted (WLSMV) estimation as data 
was dichotomous (Beauducel and Herzberg, 2006). For parcel-level 
multiple-group confirmatory factor analysis, we  used robust 
maximum likelihood (MLR) estimation. Imputation of missing data 
was conducted using the multivariate imputation by chained 
equations technique available in the mice package in R (v3.16.0; Van 
Buuren and Groothuis-Oudshoorn, 2011).

2.4.1. Validation
To assess the generalizability of the results, the TMS sample was 

split in four sub-samples, and analyses were repeated within each 
sub-sample. The allocation of participants to sub-samples was based 
on the respective version used in the paper-based test (i.e., versions 
A, B, C, or D). Test versions used in the computer-based format 
were identical in all sub-samples. Sample characteristics and 
descriptive statistics of each sub-sample are reported in the 
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Supplementary Tables 1–9. No noticeably large differences between 
sub-samples were observed.

For the validation process, sub-sample A was used as a calibration 
sample, as it provided the largest sample size. Then, in a first step, 
multiple psychometric models were evaluated (see section 3.2) to 
establish an appropriate baseline model. Next, measurement 
invariance analyses, as described in section 2.4, were conducted. 
Sub-samples B, C, and D served as validation samples. Within each of 
these sub-samples, the model derived from the analysis in sub-sample 
A was adopted and additional measurement invariance analyses were 
conducted. Results of the latter were compared with results of the 
analysis in calibration sample A.

An identical approach was used to validate the results of the 
HAM-Nat. The model did not, however, converge in both, the 
calibration and the validation sample. Consequently, validation 
analyses were omitted.

3. Results

3.1. Descriptive statistics

Descriptive statistics of the TMS and HAM-Nat separated by test 
modality are summarized in Table 2. Participants correctly answered 
just over half of the items across all subtests in the paper-based format 
of the TMS (M = 46.43, SD = 11.43) as well as in the computer-based 
format of the TMS (M = 46.15, SD = 12.08). Only three out of 3,044 
participants correctly answered all items in the computer-based 
format, while no participant correctly answered all items in the paper-
based format. Therefore, ceiling effects can be ruled out. Participants 
who took the paper-based HAM-Nat correctly answered M = 26.10 
(SD = 11.08) out of 60 items. In the computer-based format of the 

HAM-Nat, participants correctly answered M = 33.33 (SD = 13.59) 
items. Again, there were no ceiling effects.

To estimate reliability, we used Cronbach’s alpha (α), reflecting a 
lower bound of reliability estimation, and McDonald’s omega (ω) to 
correct for a potential underestimation bias of α when assumptions of 
tau-equivalence are violated (Dunn et al., 2014). For the TMS, all 
subtests showed acceptable values of McDonald’s omega (Cronbach’s 
alpha), with reliability estimates ranging between 0.68 ≤ ω ≤ 0.75 
(0.66 ≤ α ≤ 0.74) for the paper-based format and between 
0.71 ≤ ω ≤ 0.77 (0.69 ≤ α ≤ 0.75) for the computer-based format. 
Estimated over all of the presently examined subtests, reliability values 
were high both for the paper-based format (ω = 0.88; α = 0.89) and the 
computer-based format (ω = 0.90; α = 0.90). Similarly, reliability 
estimates for the HAM-Nat were high both for the paper-based format 
(ω = 0.90; α = 0.90) and the computer-based format (ω = 0.94; α = 0.94).

The correlations between TMS subtests across both test modalities 
are presented in Table  3. All correlations were significant and 
substantial between TMS subtests within the paper-based format 
(0.52 ≤ r ≤ 0.64) and the computer-based format (0.47 ≤ r ≤ 0.64).

3.2. Baseline models and single-group 
CFAs

Prior to the measurement invariance analyses, three different 
TMS models were compared to establish an appropriate longitudinal 
baseline model in the calibration sample: first, a general factor model, 
in which all parcels were specified to load on a single factor, second, a 
higher-order model with four first-order factors (i.e., one for each 
TMS subtest), which were specified to load on a single second-order 
factor, and third, a common-factor model with four correlated factors. 
Again, all parcels of the same TMS subtest were specified to load on 

TABLE 2 Descriptive statistics of paper-based and computer-based TMS and HAM-Nat formats.

n M SD SE Minimum Maximum Skewness Kurtosis α ω
Paper-based TMS

MNGV 3,044 12.07 3.46 0.06 0 20 −0.26 −0.23 0.68 0.69

QFP 3,044 11.68 3.81 0.07 1 20 −0.04 −0.54 0.74 0.75

TV 3,044 11.32 3.31 0.06 1 18 −0.03 −0.48 0.68 0.71

DUT 3,044 11.36 3.43 0.06 1 20 −0.07 −0.35 0.66 0.68

Sum Score 3,044 46.43 11.43 0.21 12 75 −0.14 −0.30 0.88 0.89

Computer-based TMS

MNGV 3,044 11.87 3.40 0.06 1 20 −0.01 −0.33 0.69 0.71

QFP 3,044 11.55 3.93 0.07 1 20 0.00 −0.70 0.75 0.77

TV 3,044 10.51 3.67 0.07 1 18 −0.02 −0.53 0.74 0.76

DUT 3,044 12.21 3.63 0.07 1 20 −0.36 −0.16 0.72 0.73

Sum Score 3,044 46.15 12.08 0.22 11 78 −0.08 −0.44 0.90 0.90

Paper-based HAM-Nat

Sum Score 844 26.10 11.08 0.38 1 57 0.67 −0.29 0.90 0.90

Computer-based HAM-Nat

Sum Score 656 33.33 13.59 0.53 1 60 −0.04 −0.97 0.94 0.94

Descriptive statistics of the TMS are based on the total sample. Descriptive statistics of sub-samples A, B, C, and D are reported in the Supplementary Tables 2–5. n = sample size; M = mean; 
SD = standard deviation; SE = standard error of mean; α = Cronbach’s alpha; ω = McDonald’s omega.
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one of the four factors. In contrast to the TMS, there is no theoretical 
justification for using a higher-order or common-factor model to 
analyse the HAM-Nat, as the test is constructed without subtests. 
Therefore, we continued the analysis with a general factor model.

Table 4 shows the model fit of the TMS baseline models in the 
calibration sample. Since the TMS general factor model did not 
show an adequate fit (CFI = 0.772, RMSEA = 0.100, SRMR = 0.062), 
it was not considered for further analyses. However, a good model 
fit was observed for both the TMS common-factor model 
(CFI = 0.986, RMSEA = 0.026, SRMR = 0.029) and the TMS higher-
order model (CFI = 0.967, RMSEA = 0.039, SRMR = 0.046). 
Despite the common-factor model showing a significantly better 
fit (Δχ2 = 257.23, Δdf = 19, p < 0.001), the higher-order model was 
chosen for all subsequent analyses because a) it is the theoretically 
more plausible model and b) it also showed an acceptable fit 
according to our cut-off criteria. The final longitudinal TMS 
model is depicted in Figure 1. Parameter estimates are reported in 
Supplementary Table  10. Correlations of residual variances 
between parcels of the paper-based and computer-based format 

were not significantly different from zero for all but 
two correlations.

According to Pendergast et al. (2017), an important preliminary 
step to test for measurement invariance is to ensure that the respective 
model has at least an adequate fit for each group (i.e., test format). Due 
to the within-subjects design, this step is not necessary for the TMS 
model but only for the HAM-Nat model. The HAM-Nat model 
showed an excellent model fit for the paper-based format (CFI = 0.994, 
RMSEA = 0.018, SRMR = 0.041) and for the computer-based format 
(CFI = 0.972, RMSEA = 0.026, SRMR = 0.041), as indicated in Table 4.

3.3. Measurement invariance testing

Since all preliminary conditions are met, multiple-group 
confirmatory factor analyses were conducted to assess the level of 
measurement invariance across paper-based and computer-based 
formats of both admission tests. Results of the TMS are based on 
validation sample A. All results are reported in Table 5.

TABLE 3 Pearson correlations of TMS subtests.

Variable 1 2 3 4 5 6 7

1. MNGVPB

2. QFPPB

0.52

[0.49, 0.54]

3. TVPB

0.64 0.47

[0.62, 0.66] [0.44, 0.49]

4. DUTPB

0.57 0.60 0.53

[0.54, 0.59] [0.58, 0.63] [0.50, 0.55]

5. MNGVCB

0.60 0.48 0.54 0.54

[0.57, 0.62] [0.45, 0.50] [0.51, 0.56] [0.51, 0.57]

6. QFPCB

0.49 0.68 0.45 0.56 0.56

[0.46, 0.51] [0.66, 0.69] [0.42, 0.48] [0.54, 0.59] [0.53, 0.58]

7. TVCB

0.57 0.45 0.55 0.49 0.64 0.52

[0.54, 0.59] [0.42, 0.48] [0.52, 0.57] [0.47, 0.52] [0.61, 0.66] [0.50, 0.55]

8. DUTCB

0.50 0.54 0.45 0.57 0.58 0.60 0.57

[0.48, 0.53] [0.51, 0.56] [0.42, 0.48] [0.55, 0.59] [0.55, 0.60] [0.57, 0.62] [0.54, 0.59]

Correlations are calculated over all sub-samples. Correlations within each sub-sample (A, B, C, and D) are reported in Supplementary Tables 6–9. Values in square brackets indicate the 95% 
confidence interval for each correlation. PB = paper-based format; CB = computer-based format; N = 3,044. All correlations were significant at p < 0.01.

TABLE 4 Results of TMS baseline model fit in calibration sample A and HAM-Nat model fit separated by test modality.

Model χ2 df p CFI RMSEA (90% CI) SRMR

TMS

1 General factor model 3,175.78 239 < 0.001 0.772 0.100 (0.097–0.103) 0.062

2 Higher-order model 653.68 231 < 0.001 0.967 0.039 (0.035–0.042) 0.046

3 Common-factor model 387.95 212 < 0.001 0.986 0.026 (0.022–0.030) 0.029

HAM-Nat

4a Computer-based format 2,681.48 1710 < 0.001 0.972 0.026 (0.024–0.028) 0.041

4b Paper-based format 2,089.84 1710 < 0.001 0.994 0.018 (0.015–0.021) 0.041

df = degrees of freedom; CFI = comparative fit index; RMSEA = root mean square error of approximation; CI = confidence interval; SRMR = standardized root mean squared residual.
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As an appropriate TMS baseline model had already been 
established, the first step of testing for measurement invariance (i.e., 
establishing configural invariance) was already taken. Therefore, 
we proceeded by constraining parcel loadings to be equal across both 
test modalities resulting in a well-fitting metric model (CFI = 0.960, 
RMSEA = 0.041, SRMR = 0.058). Cut-off criteria, as described by Chen 
(2007), were not surpassed (∆CFI = −0.007, ∆RMSEA = 0.002, 
∆SRMR = 0.012), supporting metric invariance. We continued the 
analysis by testing for scalar invariance, in which parcel intercepts are 
constrained to be equal across test modalities. In this step, the cut-off 
value of the ΔCFI exceeded the threshold of −0.010 (∆CFI = −0.033). 
Therefore, full scalar invariance was not supported and we proceeded 
by testing for partial scalar invariance by releasing constraints in a 
backward fashion within each subtest. Modification indices suggested 
that the first parcel of the MNGV-subtest, the second parcel of the 
QFP-subtest, the third parcel of the TV-subtest, and the third parcel 
of the DUT-subtest lacked invariance the most. With free estimation 
of the intercepts of these parcels, the model fitted the data adequately 
(CFI = 0.951, RMSEA = 0.045, SRMR = 0.061), and the ΔCFI no longer 
exceeded the threshold of −0.010 (∆CFI = −0.009).

Analyses were conducted similarly for the HAM-Nat general 
factor model. The baseline model showed an excellent fit (CFI = 0.986, 
RMSEA = 0.023, SRMR = 0.041), establishing configural measurement 
invariance. We  continued to check for metric invariance. Despite 
showing a good model fit (CFI = 0.967, RMSEA = 0.035, 
SRMR = 0.048), the cut-off value for the ΔCFI was surpassed 
(∆CFI = −0.019). Therefore, we proceeded to establish partial metric 
invariance by releasing factor constraints. After releasing eight 
constraints, partial metric invariance was established (∆CFI = −0.010, 
∆RMSEA = 0.007, ∆SRMR = 0.003). In a final step, we  tested for 
partial scalar invariance by constraining item intercepts and retaining 
the constraints applied in the previous step. Without releasing any 
other constraints, partial scalar invariance was established, as the 

model fitted the data well (CFI = 0.976, RMSEA = 0.030, 
SRMR = 0.046), and cut-off criteria were not surpassed 
(∆CFI = −0.003, ∆RMSEA = 0.001, ∆SRMR = 0.002).

3.3.1. Validation
Results of the measurement invariance analyses of the TMS in 

validation samples B, C, and D are reported in Table  6. Before 
conducting the measurement invariance analyses, prerequisites of 
item parceling were reexamined in each validation sample and 
successfully met. As established in calibration sample A, the higher-
order model was chosen for further analyses and demonstrated good 
fit in each of the validation samples. Next, measurement invariance 
analyses were conducted to validate the results found in calibration 
sample A. In each validation sample, configural and metric invariance 
were successfully established. However, full scalar invariance was not 
achieved in any of the validation samples. Consequently, partial 
invariance was tested by first relaxing the same constraints as in 
calibration sample A (models 13a, 16a, and 19a). Partial scalar 
invariance was not achieved for any of these models. However, since 
different test versions were used in the paper-based format for 
sub-samples A – D, it is plausible that different parcels are responsible 
for the lack of scalar invariance in each validation sample. Therefore, 
additional analyses were conducted to examine whether partial scalar 
invariance could be achieved by relaxing individual constraints in 
each validation sample. In sub-sample B, partial scalar invariance 
could be achieved by relaxing constraints for the intercepts of the 
second and third TV-parcel as well as the first MNGV-parcel (model 
13b). In sub-sample C, no reasonable partial invariance could 
be achieved as half of all the parcels would have required the intercept 
constraints to be  relaxed. Lastly, partial scalar invariance was 
achieved in sub-sample D by relaxing constraints for the intercepts 
of the first and second parcels of MNGV and TV, respectively 
(model 19b).

FIGURE 1

Longitudinal higher-order model of the TMS. PB = paper-based format; CB = computer-based format. For reasons of clarity only two correlated 
residuals across test modalities were displayed.
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4. Discussion

The present study examined measurement invariance across 
paper-based and computer-based formats of two cognitive ability tests 
(i.e., TMS and HAM-Nat) used as criteria in student selection in 
medicine. Previous research has repeatedly indicated measurement 
invariance to be essential in order to meaningfully compare test results 
of different test formats (Vandenberg and Lance, 2000; Wicherts, 
2016). Thus, establishing measurement invariance is an essential 
prerequisite to a fair selection process as applicants with test scores of 
both modalities compete for a study place in the transition to 
computer-based testing.

Our results are based on a large, representative sample of medical 
applicants in Germany. Overall, the results show clear initial evidence 
of measurement invariance between the paper-based and the 
computer-based cognitive ability tests, though with some limitations. 
In a stepwise procedure, partial scalar invariance was demonstrated 
for, both, the HAM-Nat and TMS. Despite missing support for full 
scalar invariance, the majority of items (parcels) were invariant (i.e., 
52 out of 60 items in the HAM-Nat model and 8 out of 12 parcels in 
the TMS model). These results lead to the following implications: 
First, the factorial structure between paper-based and computer-based 
formats of both admission tests did not differ. Second, individual 
items (parcels) have similar weights and are equally salient to the 
presently examined subtests of the TMS and the HAM-Nat across 
both test formats. Third, a majority of item (parcel) intercepts are 
equivalent across test modalities. In conclusion, both the TMS and the 
HAM-Nat appear similarly but not identically conceptualized across 
paper-based and computer-based test formats.

To assess the generalizability of the TMS results, analyses were 
repeated in three comparable sub-samples. While configural and 
metric invariance were fully supported in all sub-samples, partial 
scalar invariance was established only in two out of three sub-samples 
when constraints were relaxed in each sub-sample individually. It is 
important to note, however, that the paper-based and computer-based 
versions of the TMS consisted of different items, and, further, different 

test versions in all of the paper-based formats were used. Both of these 
conditions are likely significant factors to the present findings. In 
order to disentangle the effects of test versions and test modalities, 
analyses with identical test versions in the computer-based and paper-
based format of the TMS are required. Nonetheless, demonstrating 
partial scalar invariance in the initial sample as well as two out of three 
validation samples and full metric invariance despite different test 
versions serves as an indication of equivalence across test modalities 
of the TMS.

Based on the present findings, the transition from a paper-based 
to a computer-based format of both the TMS and the HAM-Nat is 
(partly) justified in terms of comparability of test scores without 
compromising the fairness of student selection, though should 
be treated with caution. Further investigation for both tests is still 
required and imperative. Institutions may change to a computer-based 
test format of the HAM-Nat while being able to meaningfully compare 
applicants’ test scores with results of paper-based formats. However, 
as each version of the HAM-Nat consists of assembled items from a 
larger item bank, investigating the equivalence of all items and 
replicating the present findings is necessary, as the latter was not 
possible in this study due to limited sample size. This study is a first 
step of understanding the HAM-Nats’ equivalence, analyzing 60 items 
which were used in previous high-stakes settings. Analyses revealed 
only eight items as being not invariant. Understanding the causes of 
non-invariance in these items is essential, as they may affect other 
items as well. So far, content-related reasons for the lack of invariance 
of these items remain unclear. A cautious interpretation of the reasons 
leads us back to the different processing conditions (high-stakes vs. 
low-stakes, proctored vs. unproctored). For example, it is conceivable 
that less capable test-takers are more likely to guess in the high-stakes 
setting, inducing randomness, while in the low-stakes setting they are 
more likely to omit the item or use unauthorized aid. Or, conversely, 
the more capable test-takers in the high-stakes setting make an effort 
to solve items, while omitting or guessing these items in a low-stakes 
context due to a lack of motivation. As for the TMS, even though 
results demonstrated a first indication of measurement invariance, a 

TABLE 5 Results of testing for measurement invariance across test modalities.

Model χ2 df p CFI RMSEA (90% 
CI)

SRMR Comparison 
of models

χ2 diff ∆df ∆CFI ∆RMSEA ∆SRMR

TMS

5 Configural 653.68 231 < 0.001 0.967 0.039 (0.035–0.042) 0.046

6 Metric 758.72 247 < 0.001 0.960 0.041 (0.038–0.044) 0.058 6 vs. 5 112.87 16 −0.007 0.002 0.012

7 Scalar 1,200.21 259 < 0.001 0.927 0.054 (0.051–0.057) 0.065 7 vs. 6 448.03 12 −0.033 0.013 0.007

7a
Partial 

Scalar
889.12 255 < 0.001 0.951 0.045 (0.042–0.048) 0.061 7a vs. 6 135.39 8 −0.009 0.004 0.003

HAM-Nat

8 Configural 4,771.32 3,420 < 0.001 0.986 0.023 (0.021–0.024) 0.041

9 Metric 6,628.40 3,479 < 0.001 0.967 0.035 (0.033–0.036) 0.048 9 vs. 8 1,857.08 59 −0.019 0.012 0.007

9a
Partial 

Metric
5,771,37 3,471 < 0.001 0.976 0.030 (0.028–0.031) 0.044 9a vs. 8 1,000,05 51 −0.010 0.007 0.003

10
Partial 

Scalar
6,085,77 3,522 < 0.001 0.973 0.031 (0.030–0.032) 0.046 10 vs. 9a 314,40 49 −0.003 0.001 0.002

df = degrees of freedom; CFI = comparative fit index; RMSEA = root mean square error of approximation; CI = confidence interval; SRMR = standardized root mean squared residual. All robust 
χ2 difference tests (χ2 diff) were significant at p < 0.001.
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change in test format should be preceded by analyses on the item-level 
using identical items for all test formats.

On a broader scale, these findings may serve as an exemplification 
for other fields in higher education using cognitive ability tests in 
student selection when pursuing a transition from paper-based to 
computer-based test application. The heterogeneity of results found in 
different but comparable samples of the TMS emphasize the 
importance of carefully investigating measurement invariance in 
different conditions. For example, different test versions of a given 
cognitive ability test, which are typically used in student selection 
across years to avoid learning effects, may be completely, only partly, 
or not at all invariant. Thus, measurement invariance cannot be simply 
assumed and rather, should be treated as a localized issue, which needs 
to be established for each admission criterion and, put even more 
strongly, in each situation, in which raw test scores are meant to 
be treated interchangeably.

The present study has several limitations that need to 
be considered. First, computer-based formats of both admission 
tests were applied in a low-stakes setting, whereas the respective 
paper-based tests were applied in a high-stakes setting. As 
participants’ effort in low-stakes settings has shown to be a decisive 
factor to test performance (Wise and DeMars, 2005), the present 
difference in stakes needs to be  considered. We  attempted to 
increase participants’ effort in the low-stakes test situations (i.e., 

computer-based testing) by providing an opportunity to prepare for 
the high-stakes test (i.e., paper-based testing) and, additionally, 
providing immediate feedback in terms of raw scores and 
percentiles. To further minimize the effects of stakes, analyses solely 
included participants who completed the entire test in the 
low-stakes setting. By doing so, we ensured that participants spent 
an appropriate amount of time on the low-stakes tests, as this 
approach has been shown to lead to drastically reduced stakes 
effects (Attali, 2016). Second, different items were used in the 
paper-based and computer-based format of the TMS to not 
compromise the high-stakes tests. Therefore, parallel TMS versions 
in order to limit potential bias caused by different items were used. 
Although this approach has already been used and demonstrated 
effectively in previous analyses of measurement invariance (e.g., 
Bertola et al., 2021), the present results should be interpreted with 
this limitation in mind and may cause the heterogeneous findings 
in different TMS sub-samples. Lastly, results of the measurement 
invariance analysis of the TMS are based on parcels instead of items, 
as the TMS models did not converge on the item-level or yielded 
Heywood cases. Consequently, the identification of non-invariant 
items is hindered, but still possible on the parcel-level. Further, to 
account for the existing concerns in parceling for confirmatory 
factor analytic tests of measurement invariance (Meade and 
Kroustalis, 2006), we  closely followed established parceling 

TABLE 6 Results of testing for measurement invariance across test modalities in validation samples B, C, and D of the TMS.

Model χ2 df p CFI RMSEA (90% 
CI)

SRMR Comparison 
of models

χ2 diff ∆df ∆CFI ∆RMSEA ∆SRMR

TMS (B)

11 Configural 572.69 231 < 0.001 0.961 0.044 (0.039–0.048) 0.052

12 Metric 606.81 247 < 0.001 0.960 0.044 (0.039–0.048) 0.058 12 vs. 11 33.55 16 −0.001 0.000 0.006

13 Scalar 841.08 259 < 0.001 0.935 0.054 (0.050–0.058) 0.065 13 vs. 12 235.36 12 −0.025 0.010 0.007

13a
Partial 

Scalar
742.10 255 < 0.001 0.945 0.050 (0.046–0.054) 0.062 13a vs. 12 138.86 8 −0.015 0.006 0.004

13b
Partial 

Scalar
690.61 256 < 0.001 0.951 0.047 (0.044–0.052) 0.060 13b vs. 12 85.28 9 −0.009 0.007 0.002

TMS (C)

14 Configural 468.46 231 < 0.001 0.957 0.044 (0.038–0.050) 0.047

15 Metric 519.95 247 < 0.001 0.951 0.046 (0.040–0.051) 0.062 15 vs. 14 53.05 16 −0.006 0.002 0.015

16 Scalar 742.60 259 < 0.001 0.913 0.059 (0.054–0.064) 0.072 16 vs. 15 223.92 12 −0.038 0.013 0.010

16a
Partial 

Scalar
657.39 255 < 0.001 0.928 0.054 (0.049–0.060) 0.069 16a vs. 15 140.59 8 −0.023 0.008 0.007

TMS (D)

17 Configural 397.96 231 < 0.001 0.970 0.038 (0.032–0.044) 0.050

18 Metric 445.61 247 < 0.001 0.964 0.040 (0.034–0.046) 0.067 18 vs. 17 50.46 16 −0.006 0.002 0.017

19 Scalar 607.37 259 < 0.001 0.937 0.052 (0.046–0.057) 0.073 19 vs. 18 163.95 12 −0.027 0.012 0.006

19a
Partial 

Scalar
546.26 255 < 0.001 0.947 0.048 (0.042–0.053) 0.073 19a vs. 18 104.52 8 −0.017 0.008 0.006

19b
Partial 

Scalar
505.02 255 < 0.001 0.955 0.044 (0.039–0.050) 0.071 19b vs. 18 60.75 8 −0.009 0.004 0.004

df = degrees of freedom; CFI = comparative fit index; RMSEA = root mean square error of approximation; CI = confidence interval; SRMR = standardized root mean squared residual; a = Partial 
Scalar model with the same relaxed constraints as in sub-sample A; b = Partial Scalar model with individually relaxed constraints for each sub-sample (sub-sample B: TV parcel 1, TV parcel 2, 
and MNGV parcel 1; sub-sample D: MNGV parcel 1, MNGV parcel 2, TV parcel 1, and TV parcel 2). All robust χ2 difference tests (χ2 diff) were significant at p < 0.001.
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recommendations (Matsunaga, 2008) and checked preconditions 
carefully. Thus, results can nevertheless be meaningfully interpreted.

Finally, this study has shown that investigating measurement 
invariance across test modalities of cognitive ability tests in a high-
stakes setting has several practical hurdles. Despite these hurdles, 
we have succeeded in creating initial prerequisites for a transition to 
computer-based testing that are important for our purposes: 
configural and metric invariance. Establishing scalar invariance, 
which is required for the direct comparison of test scores from both 
test modalities, was not fully supported. In this regard, further 
research is needed and identifying reasons that may cause invariance 
remains an important task.
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