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Based on multiple assessment approach, this study used factor analysis and neural 
network modeling methods to build a data-driven multidimensional assessment 
model for English listening and speaking courses in higher education. We found 
that: (1) Peer assessment, student self-assessment, previous academic records, 
and teacher assessment were the four effective assessors of the multi-dimensional 
assessment of English listening and speaking courses; (2) The multidimensional 
assessment model based on the four effective assessors can predict the final 
academic performance of students in English listening and speaking courses, with 
previous academic records contributing the most, followed by peer assessment, 
teacher assessment, and student self-assessment. Therefore, a multidimensional 
assessment model for English listening and speaking courses in higher education 
was proposed: the academic performance of students (on a percentage basis) 
should be composed of 29% previous academic records, 28% peer assessment, 
26% teacher assessment, and 17% student self-assessment. This model can guide 
teachers to intervene with students who need help in a timely manner, based on 
various assessors, thereby effectively improving their academic performance.
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1. Introduction

Assessment is one of the most complex cognitive behavior in the cognitive domain of 
educational goals (Bloom, 1956), and requires a rational and in-depth assessment of the essence 
of things. Currently, educational assessment is mostly static assessment or standardized testing 
(normative/standardized assessment; Haywood and Lidz, 2006). The tools and processes used 
in such assessments are standardized, and individual abilities are represented by statistical 
numbers (Sternberg and Grigorenko, 2002). The advantage of static assessment lies in its design 
objectivity, precision, and structuralism. However, it only provides test scores, focuses only on 
students’ existing abilities, and the teacher is the only assessor. This assessment method is 
one-sided, easily leading students into a repetition of ineffective rote memorization tactics, 
seriously undermining students’ learning interest and confidence (Thanh Pham and Renshaw, 
2015). The teaching assessment of listening and speaking courses in universities, which are often 
the first to incorporate new teaching methods such as digital technologies, must evolve from 
traditional static assessment methods to more comprehensive and accurate ones. Therefore, it 
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is necessary to reform and improve the teaching assessment system of 
these courses.

The multiple assessment approach (Maki, 2002), based on the 
theory of multiple intelligences and constructivism, emphasizes the 
diversity of assessment methods, content, and subjects (Linn, 1994; 
Messick, 1994; Brennan and Johnson, 1995; Flake et al., 1997; Lane 
and Stone, 2006; Lane, 2013). Among them, the diversification of 
assessment subjects refers to the assessment of students by teachers 
(teacher assessment), student peers (peer assessment), and students 
themselves (student self-assessment). This is beneficial for expanding 
the sources of assessment information and potentially improving the 
reliability and validity of the assessment (Sadler, 1989; Shepard, 2000; 
Hattie and Timperley, 2007; Li et al., 2019; Ghafoori et al., 2021). The 
diversification of subjects aims to break the single-subject assessment 
model, allow more people to participate in the assessment activities, 
and transform assessment from one-way to multi-directional, to 
construct an assessment model that combines student self-assessment, 
peer assessment, and teacher assessment.

Student self-assessment is the learner’s value judgment of his or 
her own knowledge and ability level (Bailey, 1996); peer assessment 
is the value judgment of a student’s ability level, course participation, 
and effort by classmates (Topping et  al., 2010); and teacher 
assessment is the value judgment of a student’s learning situation 
made by the teacher. Educationalist Rogers believes that true 
learning can only occur when learners have a clear understanding of 
learning goals and assessment criteria (Rogers, 1969). Students as 
the main assessors embody the idea that “assessment is a learning 
tool” (Sitthiworachart and Joy, 2003), which is conducive to 
enhancing students’ metacognitive and self-regulation abilities 
(Nicol, 2010), promoting teachers and students to discover each 
other’s strengths and weaknesses, and timely improving temporary 
shortcomings. However, when using these three sources of 
assessment, we  must be  cautious about potential biases, such as 
reliability, grading, social response bias, response style, and trust/
respect (Dunning et al., 2004; van Gennip et al., 2009; Van Gennip 
et al., 2010; Brown et al., 2015; Panadero, 2016; Meissel et al., 2017). 
To ensure optimal conditions for accuracy and avoid known pitfalls, 
both teachers and students should strive to be as objective as possible 
when evaluating performance. This highlights the importance of 
having a comprehensive assessment system rather than relying on a 
one-sided system.

Research on the diversification of assessment subjects has mainly 
focused on exploring the relationship between the three types of 
assessment mentioned above (To and Panadero, 2019; Xie and Guo, 
2022). Studies showed that the relationships between the assessment 
subjects are weak (Boud and Falchikov, 1989; Falchikov and Boud, 
1989; Falchikov and Goldfinch, 2000; Chang et al., 2012; Brown and 
Harris, 2013; Double et al., 2020; Yan et al., 2022). For instance, the 
results of student self-assessment and peer assessment were not 
consistent with the assessments given by teachers (Goldfinch and 
Raeside, 1990; Kwan and Leung, 1996; Tsai et al., 2002). Some studies 
have found that 39% of students overestimate their performance 
(Sullivan and Hall, 1997), while other studies have found that students’ 
self-assessment scores were significantly lower than the scores given 
by teachers(Cassidy, 2007; Lew et  al., 2009; Matsuno, 2009). The 
results of these studies were influenced by the type of task and the 
individual characteristics of the learners, and these factors need to 
be  considered when interpreting the results. This allows for the 

possibility of conducting a factor analysis to differentiate assessments 
from the various assessors involved.

In addition to the factors related to the assessment subjects, 
students’ previous academic performance is also a key factor that 
influences their current academic performance due to the cumulative 
effect of learning (Plant et al., 2005; Brown et al., 2008). As a student 
progresses through their education, the knowledge and skills they 
acquire build upon each other. Thus, if a student struggles in a 
prerequisite course or fails to master certain concepts, it can hinder 
their ability to succeed in subsequent courses. Additionally, a student’s 
previous academic performance can affect their confidence and 
motivation, which can in turn impact their current academic 
performance (Ciarrochi et  al., 2007). There are situations where 
previous performance has a stronger influence than other predictors, 
creating what is known as an autoregressive relationship (Biesanz, 
2012). Overall, previous academic performance can serve as an 
assessor of future academic success, highlighting the importance of 
consistent effort and dedication in one’s education. Therefore, in this 
study, we  also included previous academic performance in the 
construction of the multidimensional assessment model.

With the increase of assessors in the assessment system, it is a 
more meaningful research problem to mine the association of various 
assessors in the data to provide decision-making guidance for 
education. Currently, in the field of computer science, the 
representative methods for data dimensionality reduction and 
modeling are factor analysis (Kim et al., 1978) and machine learning-
based predictive modeling (Alpaydin, 2016). This study used the two 
methods to reduce dimensionality and model different sources of 
assessment information, and discovered patterns in complex data.

Factor analysis is a multivariate statistical method that can screen 
out the most influential factors from numerous items and use these 
factors to explain the most observed facts, thus revealing the essential 
connections between things (Tweedie and Harald Baayen, 1998). 
Factor analysis has a long history of successful application in 
corresponding education research (Cudeck and MacCallum, 2007). 
For instance, in China scholars analyzed various items that affect 
students’ comprehensive quality using factor analysis, calculated each 
student’s comprehensive score, and compared it with traditional 
assessment methods. They found that this method can make up for 
the shortcomings of relying solely on Grade Point Average (GPA) 
(Chang and Lu, 2010).

The application of machine learning-based predictive modeling 
methods in assessment studies has also become increasingly 
widespread. Among them, the neural network model, inspired by the 
structure of the human brain neuron, can simultaneously include 
multiple predictive variables in the model and calculate the 
contribution of variables to the model (Lecun et al., 2015). It is a 
multilayer perceptron. During the training phase, the connections 
between layers are assigned different weights. The hidden layer(s) also 
performs a kind of dimensionality reduction (like PCA) which helps 
to learn the most relevant of the many (correlated) features. It can 
implicitly detect all possible (linear or nonlinear) interactions between 
predictors which is advantageous over general linear regression 
models when dealing with complex stimulus–response environments 
(e.g., Tu, 1996). Scholars found that compared to the regression 
methods, the deep learning-based models were more effective in 
predicting students’ performance (Okubo et  al., 2017; Kim et  al., 
2018). Online English teaching assistance system, using decision tree 
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algorithms and neural network models, was also implemented, which 
improved the efficiency of teaching (Fancsali et al., 2018; Zheng et al., 
2019; Sun et al., 2021). However, the hidden layer(s) likes a black box, 
as the common factors inside cannot be directly observed. Therefore, 
it is necessary to combine with other methods to “unbox” the 
intermediate stage.

Factor analysis and machine learning methods have different 
approaches, but they can be  combined to improve the 
interpretability of the model. For instance, factor analysis can 
be used as a pre-processing step to simplify the input items before 
feeding them into a machine learning model. This reduces model 
complexity and clearly extracts factors and their constituent 
components. Machine learning methods can improve the predictive 
accuracy, aiding in interpreting the factor analysis results. The 
combination of the two methods has been used in various fields 
(Nefeslioglu et  al., 2008; Marzouk and Elkadi, 2016), including 
education (Suleiman et al., 2019). Hence, this study attempts to 
combine factor analysis and machine learning methods in assessing 
English listening and speaking courses in universities to investigate 
the feasibility of using a multidimensional assessment model in 
these courses.

2. The present study

As mentioned, this study aims to explore effective assessment 
methods for English listening and speaking courses in higher 
education and construct a multidimensional assessment model. 
Specifically, it has two main research questions: (1) What are the key 
factors of the multidimensional assessment model? (2) Can the 
multidimensional assessment model constructed based on these key 
factors predict students’ academic performance, and what is the 
significance of each factor in the model?

To address the above issues, we collected assessment data from 
various sources, including peer ratings of learners’ language abilities 
and classroom performance, self-ratings by learners, teacher ratings, 
and previous academic records. With the help of computational 
science methods, specific assessment factors were extracted from 
complex data, and the assessment factors were tested to see if they 
could successfully predict students’ current academic performance 
(See Figure 1 for an illustration). We hypothesized that: (1) factor 
analysis can distinguish different sources of assessment data, which 
can be summarized into four common factors: previous academic 
records, peer assessment, and teacher assessment, and student self-
assessment; (2) the neural network model can use these four 
common factors to establish a prediction model for students’ 
academic performance.

3. Methods

3.1. Participants

Sixty-two undergraduate students majoring in English from a 
university in China were recruited for this study. Among them, there 
were 55 female and 7 male students, with a mean age of 19.37 years 
(SDage = 0.71), ranging from 18 to 21 years old. All participants were 
native Chinese speakers with English as their second language, with a 

mean age of acquisition (AOA) of 8.65 years (SDAOA = 1.56). Prior to 
the experiment, all participants signed an informed consent form.

3.2. Tools

The research tools used in this study were mainly paper-and-
pencil materials, including a background survey questionnaire, a 
student self-assessment scale, a peer assessment scale, a teacher 
assessment scale, and tests.

 • The background survey questionnaire included three items: the 
English score in the college entrance examination (out of 150 
points), the academic grade in the first semester of the listening 
and speaking course (out of 100 points), and the academic grade 
in the second semester of the listening and speaking course (out 
of 100 points).

 • The student self-assessment scale required students to assess their 
own English proficiency, including listening ability, speaking 
ability, reading ability, and writing ability. It was a five-point 
Likert scale.

 • The peer assessment scale required students to rate their 
classmates, except for themselves, based on their understanding 
of their classmates and their performance in the course. The scale 
included seven items: listening ability, speaking ability, reading 
ability, writing ability, class participation, cooperation and 
competitiveness awareness, and learning attitude and 
perseverance. It was also a five-point Likert scale.

 • The teacher assessment scale required teachers to grade each 
student (out of 100 points) based on their comprehensive 
performance in the course.

 • The tests included regular in-class tests and the final exam. There 
were seven regular in-class tests, with multiple-choice questions 
based on IELTS listening and a listening textbook. The average 
correct rate of the seven quizzes was used to represent the 
students’ in-class test score (in percentage). The final exam 
comprised of a combination of randomly selected textbook 
exercises and TOEFL listening questions. The students’ current 
academic performance was being evaluated based on the final 
exam score (out of 100 points).

3.3. Data collection

This study was conducted in the English Listening and Speaking 
course for undergraduate English majors. The course lasted for 
16 weeks, with two class hours per week, taught offline by one teacher. 
The textbook used in the course was the Viewing, Listening and 
Speaking, Student Book, authored by Zhang E., Deng Y., and Xu W., 
published by Shanghai Foreign Language Education Press in January 
2020, with an International Standard Book Number of 
978–7–5,446-6,080-8.

In the course small group presentation sessions were designed, 
with each group consisting of 3–4 students, who chose a topic to 
prepare and present together, thereby enhancing the teacher’s 
understanding of the students and the students’ understanding of each 
other. Starting from the seventh week, in-class tests were randomly 
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arranged before class, totaling seven times. At the end of the course, 
students completed the background survey questionnaire, self-
assessment scale, and peer assessment scale. Finally, a final exam was 
administered, and the teacher evaluated the students’ test scores and 
rate each student based on his/her classroom performance.

3.4. Data analysis

3.4.1. Factor analysis
First, the data of 16 items were analyzed using Kaiser-Meyer-

Olkin (KMO) test (Kaiser, 1974) and Bartlett’s sphericity test (Stone 
et al., 2008) in JMP 14 Pro software (SAS Institute Inc., Cary, NC) to 
determine if the data was the factorability of the data for factor 
analysis (a KMO value of less than 0.60 indicates unsuitability for 
factor analysis, and if the null hypothesis of Bartlett’s sphericity test is 
accepted, factor analysis cannot be performed). Second, items with 

loading of greater than or equal to 0.30 were determined to 
be statistically significant. Third, maximum likelihood method and 
oblimin rotation technique based on a correlation matrix were used 
to extract the factors and determine the number of factors. Fourth, 
common factors were extracted, and the factors were named to 
determine whether they reflected students’ self-assessment, peer 
assessment, teacher assessment, and previous academic records, 
respectively.

We also conducted a confirmatory factor analysis using seven 
items due to the small sample size, which is generally recommended 
to have at least 10 people per item for factor analysis (Costello and 
Osborne, 2005). By shrinking the items to seven (Marsh et  al., 
1998), our sample had approximately 9 people per item. The 
selected seven items were specifically focused on listening and 
speaking courses, including academic grades in the first and the 
second semester, self-assessed listening and speaking ability, peer-
assessed listening and speaking ability, and teacher assessment. 

FIGURE 1

Conceptual model of multidimensional assessment. Items from four assessors were collected. Factor analysis was used to identify the key factors, and 
neural network model was used to construct the multidimensional assessment model based on the key factors.
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These items were chosen because they better represented the four 
hypothesized factors.

3.4.2. Neural network modeling
Using neural network modeling method in JMP 14 Pro software 

(SAS Institute Inc., Cary, NC), with the common factors extracted by 
factor analysis as the predictors (the standardized mean values of the 
items included in the common factors; e.g., Suhr, 2005, 2006), a 
predictive model for academic performance was constructed to 
explore the key assessment predictors affecting academic performance. 
The specific parameters of the model were as follows: the neural 
network model had three layers (input layer, hidden layer, and output 
layer), with three nodes in the hidden layer and a hyperbolic tangent 
(TanH) activation function. The model learning rate was set at 0.1, the 
number of boosting models was 10, and the number of tours was 10. 
In order to address the issue of overfitting, cross-validation was 
employed in the study. K-fold cross-validation was deemed more 
suitable when dealing with small sample sizes (Refaeilzadeh et al., 
2009). This method divides the data into K subsets, and each of the 
subsets is used to test the model fit on the remaining data, resulting in 
K models. The best-performing model, based on test statistics, is 
selected as the final model. 10-fold cross-validation is typically 
recommended as it provides the least biased accuracy estimation 
(Kohavi, 1995).

The feature importance of each predictor in the model (feature 
importance) was calculated using the dependent resampled inputs 
method, with values ranging from 0 to 1. A value greater than 0.10 was 
considered a key factor affecting the outcome variable (Saltelli, 2002; 
Strobl et al., 2009). To avoid grouping errors in the cross-validation 
dataset, the 10-fold cross-validation process was repeated 100 times 
(iterations), and the model fit and the feature importance of predictors 
reported were the means of these 100 iterations (Were et al., 2015).

4. Results

4.1. Results of the factor analysis

The results of the factorability test for factor analysis based on 16 
items showed that the KMO value was 0.75, and the Bartlett’s 
sphericity test was significant (χ2 = 533.56, df = 120, p < 0.001), 
indicating the validity of conducting factor analysis on the data.

Four factors were extracted using the maximum likelihood 
method and oblimin rotation technique on a correlation matrix. 
The extraction was based on the eigenvalues (>1) and the “elbow” 
on the scree plot (refer to Figure 2) where the item’s load on the 
common factor reached 0.30. As shown in Table 1, the results of 
the factor analysis were ideal, with a cumulative explained variance 
of 74.22%.

The results of the factorability test for factor analysis based on 
7 selected items showed that the KMO value was 0.63, and the 
Bartlett’s sphericity test was significant (χ2 = 156.78, df = 21, 
p < 0.001), indicating the validity of conducting factor analysis on 
the data. The four factors identified by the confirmatory factor 
analysis were shown in Table  2, and the cumulative explained 
variance of 84.99. Since this analysis was a supplementary analysis 
to validate the findings based on 16 items, we will continue to use 
the 16 items in the neural nets model.

4.2. Results of the neural network 
modeling analysis

As factor analysis cannot directly provide a predictive model for 
student academic performance, we need to use the neural network 
model method to build this predictive model on this basis. As shown 
in Figure 3, using the four standardized common factors obtained 
from factor analysis (the mean of the items contained in the 
standardized common factors) as predictor variables, the model fits of 
the predictive model for the academic performance in the current 
academic performance of the participants were acceptable (Mean 
r2

training = 0.84, SD r2
training = 0.02; Mean r2

test = 0.78, SD r2
test = 0.14).

We further calculated the feature importance of the four common 
factors in the model (see Figure  4). The results showed that all 
assessors played a critical role in predicting the academic performance 
in the current academic performance of the participants (Mean feature 

importance > 0.10). The feature importance of the four assessors was as 
follows: previous academic records (Mean = 0.38; SD = 0.09), peer 
assessment (Mean = 0.36; SD = 0.08), student self-assessment 
(Mean = 0.22; SD = 0.09), and teacher assessment (Mean = 0.33; 
SD = 0.09). Among the four assessors, previous academic records, peer 
assessment, and teacher assessment had a greater contribution than 
student self-assessment.

4.3. The multidimensional assessment 
model in a percentage system

Based on the above results, we  preliminarily constructed a 
multidimensional assessment model for English listening and 
speaking courses in higher education institutions (as shown in 
Figure 5).

The model was composed of a set of 16 assessment items. 
Based on the results of factor analysis, the four largest common 
factors that had the most impact were selected. The mean of the 

FIGURE 2

The scree plot from the factor analysis of 16 items. The “elbow” was 
at the fourth point.
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items included in the common factors was standardized as the 
predictive variable of the neural network model, and a predictive 
model of student academic performance was constructed. Since 
the contribution of each predictive variable in the original 
model included both the main effect of the predictive variable 
and the interaction effect with other variables, the sum of the 
feature importance was greater than 100%. In order to make the 
maximum predicted value of academic performance 100 points, 
we  converted the model to a percentage system. While this 
process was deemed necessary for our study because most 
courses in China use the centesimal system, it may not 
be necessary for other studies. The results showed that students’ 
academic performance (in percentage) should be composed of 

29% for previous grades, 28% for peer assessment, 26% for 
teacher assessment, and 17% for student self-assessment.

5. Discussion

5.1. The effective components of the 
multidimensional assessment model based 
on factor analysis

The four common factors reveal that the seven assessments from 
classmates have high loading on factor 1, which reflects the results of peer 
assessment. Therefore, factor 1 can be named “peer assessment.” The four 
assessments from student themselves have high loading on factor 2, which 
reflects the results of student self-assessment. Therefore, factor 2 can 
be named “self-assessment.” The four items from the first two semesters’ 
listening and writing grades, the in-class test score and the English college 
entrance exam score, have high loading on factor 3, reflecting the early 
academic performance of the participants. Therefore, factor 3 can be named 
“previous academic records.” The teacher’s assessment has high loading on 
factor 4, which reflects the rating results of the teacher. Therefore, factor 4 
can be named “teacher assessment.” The result indicates that the assessment 
items from different sources are relatively independent and have a certain 
level of discriminant validity. The multiple assessments of students’ English 
listening and speaking courses can be composed of these four factors.

TABLE 1 Loading of the 16 items of the multidimensional assessments in 
the factor analysis.

Items Factor 1 Factor 2 Factor 3 Factor 4

Peer assessment

Cooperation and 

competitiveness
0.97

Listening ability 0.91

Speaking ability 0.88

Reading ability 0.85

Writing ability 0.85

Class participation 0.83

Learning attitude 

and perseverance
0.57

Self-assessment

Listening ability 0.81

Reading ability 0.78

Speaking ability 0.78

Writing ability 0.77

Previous academic records

Grade of the first 

semester’s listening 

and speaking course

0.83

Grade of the second 

semester’s listening 

and speaking course

0.73

In-class test score 0.51

English score in the 

college entrance 

examination

0.41

Teacher assessment

Student’s 

performance

0.63

Variance 5.58 3.10 2.61 0.59

Communicative 

Percent (%)

34.85 54.20 70.53 74.22

Only the loadings with absolute values greater than 0.30 are displayed.

TABLE 2 Loading of the 7 items of the multidimensional assessments in 
the factor analysis.

Items Factor 1 Factor 2 Factor 3 Factor 4

Peer assessment

Listening ability 0.98

Speaking ability 0.87

Self-assessment

Speaking ability 0.99

Listening ability 0.67

Previous academic records

Grade of the 

second 

semester’s 

listening and 

speaking course

0.89

Grade of the first 

semester’s 

listening and 

speaking course

0.69

Teacher assessment

Student’s 

performance

0.98

Variance 1.87 1.54 1.54 1.00

Communicative 

Percent (%)

26.71 48.70 70.64 84.99

Only the loadings with absolute values greater than 0.30 are displayed.
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5.2. A predictive model for student 
academic performance based on neural 
network model method

The results of the predictive model built using the neural 
network method showed that the four assessors (previous academic 

records, peer assessment, teacher assessment, and self-assessment) 
could predict student academic performance and all of them were 
key factors in predicting academic performance (Mean feature 

importance > 0.10). The order of their feature importance was previous 
academic records, peer assessment, teacher assessment, and 
student self-assessment.

The results of the present study indicate the previous academic 
grades and regular in-class test score had the strongest explanatory 
power (this may not necessarily hold true for other studies). Both of 
them were based on paper-and-pencil tests that were similar in form 
and content to the final exam of the current semester and were 
familiar to students. Research has shown that previous academic 
achievement can have a positive impact on learning strategies and 
motivation through the mediating effect of positive academic 
emotions (Elias and MacDonald, 2007; Vettori et al., 2020). When 
students have good previous academic performance, they experience 
positive emotions such as happiness, pride, and relaxation, which 
can motivate them to use cognitive strategies more flexibly, which in 
turn can have a positive impact on their subsequent 
academic performance.

Peer assessment was based on students’ mutual understanding 
and can more objectively and comprehensively reflect students’ 
abilities and daily performance (Shen et  al., 2020). This study 
confirms previous findings that peer assessment scores have high 
reliability and are significantly correlated with students’ final 
grades (Li et al., 2016). For the evaluated students, the timely and 
rich feedback provided by peer assessment helps to avoid 
deepening confusion and accumulating mistakes. For teachers, 

FIGURE 3

Distribution of the model fits of the neural network model. This 
figure shows the mean r2 values obtained from 100 iterations of the 
training and test groups, and the error bars represent the standard 
deviations of 100 iterations.

FIGURE 4

Distribution of the feature importance of the assessors in the neural network model. This figure shows the mean feature importance values obtained 
from 100 iterations, and the error bars represent the standard errors of 100 iterations.
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peer assessment can to some extent replace teacher assessment, 
thereby reducing teachers’ workload.

Teacher assessment is also an important predictor of academic 
performance. Students who have positive and supportive relationships 
with their teachers are more likely to achieve higher levels of success 
than those with more conflicted relationships (Aultman et al., 2009). 
Teachers who report interacting with students more frequently may 
be  better equipped to connect their subject matter to students’ 
interests. This, in turn, can help teachers to make the subject matter 
more relatable and engaging for the students, leading to better learning 
outcomes (Panadero et  al., 2017). Based on one semester of 
communication, teachers may know students well, so they could 
successfully predict their performance.

Student self-assessment is also a good assessment index for 
predicting academic performance (Puustinen and Pulkkinen, 2010; 
Yan and Carless, 2022; Yan et al., 2023), but in this study, its predictive 
power was the lowest. This may be because individuals find it difficult 
to make accurate self-assessments of their abilities, for example, self-
assessment of abilities such as humor, grammar, and logical reasoning 
can be easily influenced by other factors (Ferraro, 2010; Park and 
Santos-Pinto, 2010). Especially in a culture like China, where 
interdependence is emphasized, the habit of modesty may lead 
individuals to show self-depreciation when self-evaluating in order to 
obtain more social approval (Fay et al., 2012).

It is worth noting that the order of the four common factors in 
factor analysis and the order of the assessors’ feature importance in 
the neural network model were not consistent. The four common 
factors extracted by factor analysis were ranked: peer assessment, 
student self-assessment, previous academic records, and teacher 
assessment; while the order of the assessors’ feature importance in the 
neural network model was: previous academic records, peer 
assessment, teacher assessment, and student self-assessment. The 

reason for this discrepancy is that factor analysis adds up the loadings 
of the items contained in the common factor and ranks them 
according to the total amount. The more items, the higher the ranking. 
However, the neural network model takes the average and 
standardized score data of each item in the common factor and inputs 
it into the model for prediction, so the results obtained may 
be slightly different.

5.3. Data-driven multidimensional 
assessment model

According to the data-driven multiple assessment model 
we  constructed, the students’ final academic performance in the 
English Listening and Speaking III course in college can be roughly 
summarized as follows: Academic performance of the Listening and 
Speaking III = 29% × Previous academic records (standardized average 
scores of the college entrance examination English test, Listening and 
Speaking I, Listening and Speaking II, and in-class tests) + 28% × Peer 
assessment (standardized average scores of peers’ assessment of 
listening, speaking, reading, and writing abilities, class participation, 
cooperation and competitiveness, and learning attitude and 
perseverance) + 26% × Teacher assessment (standardized teacher 
ratings) + 17% × Self-Assessment (standardized average scores of 
students’ self-assessment of listening, speaking, reading, and 
writing abilities).

This model provides a new solution for course assessment. 
Practically, teachers can establish their own course assessment 
methods and assign course scores to students based on the model. 
Using only the final exam score to evaluate English listening and 
speaking courses in higher education is not adequate. Learners cannot 
receive accurate and timely feedback during the learning process, and 

FIGURE 5

Distribution of the feature importance of the assessors in the neural network model. This figure shows the mean feature importance values obtained 
from 100 iterations, and the error bars represent the standard errors of 100 iterations.
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teachers cannot provide personalized advice for each student. This is 
not conducive to language learners’ learning. Introducing the theory 
of multiple assessments into the educational assessment system can 
promote the theoretical construction and practical development of the 
assessment system in higher education. Based on the results of this 
study, we can try to incorporate different assessment subjects into 
educational assessments, such as allowing students to participate in 
assessments, and having students themselves and peers rate learners’ 
language abilities, and presentation skills and classroom performance. 
During the teaching process, teachers should actively collect data on 
students’ previous academic records, self-assessment, peer assessment, 
and teacher assessment to establish a more comprehensive assessment 
for each student. Before the final exam, predicting students’ learning 
performance can give more attention to students who may have lower 
grades, and ensure that each student can achieve satisfactory results 
in the final exam. Excellent performance in this semester will also have 
a positive impact on future semesters, forming a virtuous circle.

6. Conclusions and outlook

In this study, factor analysis and neural network models were 
used to explore the relationships between multiple assessments 
and academic performance in English listening and speaking 
courses in higher education. The results showed that factor 
analysis could sort out assessments from different sources, and 
the four factors were from the students themselves, their peers, 
teachers, and previous academic records, respectively. This 
demonstrated the independence of multiple assessments in 
practical applications. These four assessors were further 
incorporated into a predictive model for academic performance, 
and all of them were found to be  important variables for 
predicting the current academic performance. Therefore, a data-
driven multidimensional assessment model for English listening 
and speaking courses in higher education was constructed. This 
study actively responded to the demand for interdisciplinary 
research methods, integrated assessment, teaching, and computer 
science and technology based on multiple assessment theory, 
verified the effectiveness of multiple assessments, and provided a 
reference for the reform of English educational assessment 
in universities.

However, this study is a preliminary exploration of multiple 
assessment theory in educational practice, and there are still many 
shortcomings that need to be addressed through further research. This 
is mainly reflected in the fact that multiple assessments strive for 
holistic assessment, emphasizing the diversification of assessment 
methods, content, subjects, etc. The first limitation is that this study 
only focused on the diversification of assessment subjects, considering 
assessments from students, peers, and teachers, but the diversification 
of assessment methods and contents still requires further research. 
The second limitation is that due to the small-class setting in China 
and the avoidance of teacher variances, we only have a small sample 
size, which may cause the possible lack of statistical power. The third 
limitation is that we  only used the eigenvalue and scree plot to 
determine the number of factors, which is a poor basis. The forth 
limitation is that we used a non-refined method to determine the 
factor scores. It is possible for future studies to refine our proposed 
method with a larger number of participants.

Moreover, our study focuses on courses that seek to establish a 
comprehensive assessment system for developing interpersonal 
abilities, such as speaking or listening skills. For courses that aim to 
provide fundamental knowledge or skills, such as programming, 
mathematics, or surgical skills, a comprehensive assessment system 
may not be urgent.
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