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Editorial on the Research Topic

AI for tackling STEM education challenges

Artificial intelligence (AI), an emerging technology, finds increasing use in STEM

education and STEM education research (e.g., Zhai et al., 2020b; Ouyang et al., 2022; Linn

et al., 2023). AI, defined as a technology to mimic human cognitive behaviors, holds great

potential to address some of the most challenging problems in STEM education (Neumann

and Waight, 2020; Zhai, 2021). Amongst these is the challenge of supporting all students

to meet the vision for science learning in the 21st century laid out, for example in the

U.S. Framework for K-12 Science Education (National Research Council, 2012), Germany

(Kulgemeyer and Schecker, 2014), Finland (Finnish National Board of Education, 2016), and

the PISA framework (OECD, 2017). These policy documents call for students to develop

proficiency in using ideas so that learners can use their knowledge to solve challenging

problems and make sense of complex phenomena. For instance, the Framework calls for

students to develop the ability to integrate their knowledge of the disciplinary core ideas

(DCIs) and crosscutting concepts across different science disciplines (CCCs) with the

skills to engage in major scientific and engineering practices (SEPs) to explain everyday

scientific phenomena and solve real-life problems. The Framework also describes pathways,

called learning progressions, of how students are expected to progress in developing the

competence envisioned. However, to best support students in developing such competence,

assessments that allow students to use knowledge to solve challenging problems and make

sense of phenomena are needed. These assessments need to be designed and tested to validly

locate students on the learning progression and hence provide feedback to students and

teachers about meaningful next steps in their learning. Yet, such tasks are time-consuming

to score and challenging to provide students with appropriate feedback to develop their

knowledge to the next level.

AI technologies, more specifically machine learning, have successfully demonstrated to

assist in automatically assessing complex constructs such as students’ explanations (Nehm

et al., 2012) argumentation competence (Zhai et al., 2022a), drawing models (Zhai et al.,

2022b) produced by students in response to tasks that resemble the complex tasks used

in instruction (for an overview see Zhai et al., 2020a). Machine learning-based assessment

practices cover a range of scholarly works aiming to exploit the potential of AI technologies

to assess learning in the context of STEM education to support learners in the development

of the envisioned competence.
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Kaldaras et al., in their paper, focus on the development of

rubrics for scoring constructed-response tasks in relation to a

learning progression as a basis for AI-based scoring. One of the

main challenges in using machine learning is the development

of rubrics that can accurately capture the complexity of the

construct and yield sufficient scoring accuracy between humans

and machines. While holistic scoring is traditionally used in

learning progression-based assessment, analytic scoring has been

identified as a means to increase human-machine agreement.

Kaldaras et al. describe a systematic procedure on how to derive

analytical scores from holistic rubrics, exemplify its use and reflect

on the challenges as well as how to overcome them.

In a second paper, Kaldaras and Haudek detail an elaborate

procedure of how to validate scores obtained through machine

learning algorithms. Much of the research on machine-based

scoring focuses solely on the human-machine scoring agreement.

However, understanding where and why human and machine

scorers disagree is highly important (Zhai et al., 2021). Drawing on

a learning progression of scientific argumentation as an example,

Kaldaras and Haudek demonstrate how their procedure not only

helps construct a valid argument for machine-based scores but

more importantly, which items and components of the respective

scoring rubric pose threats to the validity of the scores.

Bertolini et al. examined the application of Bayesian

methodologies to identify factors that indicate student retention

and attrition in an undergraduate STEM course. The researchers

found that the interaction with the course learning management

system (LMS) and performance on diagnostic concept inventory

(CI) assessments were themost significant predictors of final course

performance. The study highlights that Bayesian methodologies

provide a more pragmatic and interpretable way of assessing

student performance in STEM courses. The authors suggest that

the use of Bayesian techniques can help educators make more

informed decisions based on data-driven insights, which can

ultimately lead to more effective teaching and learning strategies.

The authors emphasize the importance of carefully considering the

data and prior assumptions when using Bayesian techniques for

educational research and assessment.

Taking the idea of using data produced by students as they

learn one step further, Kubsch et al. describe a framework

that uses evidence-centered design to guide the development of

learning environments providing meaningful learning activities

to promote student learning. The framework also describes

how data from the activities are automated and how machine

learning-based analysis of this data can focus on improving

students’ learning. The idea is to analyze the process and product

data generated as students learn using digital technologies to

determine the extent to which students have mastered the

learning goals of individual activities and to predict the extent

to which students progress toward the overall learning goals of

the unit.

Wulff et al. explored the potential of machine learning in

combination with natural language processing (NLP) to enhance

formative assessment of written reflections in science teacher

education. The authors use ML and NLP to filter higher-

level reasoning sentences in physics and non-physics teachers’

written reflections on a standardized teaching vignette and then

cluster the filtered sentences to identify themes and represent

knowledge in the teachers’ written reflections. The study found

that ML and NLP can be used to filter higher-level reasoning

elements and identify quality differences in physics and non-

physics preservice teachers’ texts. Overall, the authors argue that

ML and NLP can enhance writing analytics in science education

by providing researchers with an efficient means to answer derived

research questions.

Consistent with prior findings (Zhai et al., 2020a), the

papers included in this Research Topic suggest that machine

learning and AI have the potential to address challenging

problems in STEM education, including assessing complex

constructs, identifying factors that indicate student performance

and retention, and enhancing formative assessment. These

papers demonstrate the importance of carefully considering

the data and prior assumptions when using machine learning

and AI techniques for educational research and assessment.

These papers also show the value that AI techniques can

have in improving STEM Education. AI and machine learning

hold promise in supporting reforms by helping to improve

how teachers provide students with timely feedback when

learners engage in complex tasks that require complex scientific

reasoning and use-of-knowledge. With immediate results teachers

and instructors can tailor feedback to differentiate instruction

to promote learning and support learners in developing the

knowledge to advance to the next level of understanding. As

such, these findings have important implications for educational

researchers, practitioners, and policymakers seeking to improve

STEM education.

As these articles illustrate, advances in AI and ML allow

researchers to analyze students’ complex performances captured

in open-ended text responses and representations and provide

immediate feedback to learners and teachers. This work has

the potential to transform the teaching and learning of K−16

science education. Such research can help to improve assessment,

instruction, and curriculum materials to promote student learning.

AI when used appropriately can ensure that all students have the

opportunities to learn the skills and knowledge needed to succeed

in the 21st century.
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