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Making mathematics together by 
modeling shared experiences
Corey Brady 

Department of Teaching and Learning, Southern Methodist University, Dallas, TX, United States

Introduction: This article illustrates a pedagogical approach to integrating models 
and modeling in Geometry with mathematics teacher-learners (MTLs). It analyzes 
the work of MTLs in a course titled “Computers, Teaching, and Mathematical 
Visualization” (or “MathViz”), which is designed to engage MTLs in making 
mathematics together. They use a range of both physical and virtual models of 
2-manifolds to formulate and investigate geometric conjectures of their own.

Objectives: The article articulates the theoretical basis and design rationale 
of MathViz; it analyzes illustrative examples of the discourse produced in 
collaborative investigations; and it describes the impact of this approach in the 
students’ own voices.

Methods: MathViz has been iteratively refined and researched over the past 6 years. 
This study focuses on one iteration, aiming to capture the phenomenological 
experience of the MTLs as they structured and pursued their own mathematical 
investigations. Video data from two class sessions of the Fall 2021 iteration of the 
course are analyzed to illustrate the discourse of collaborating students and the 
nature of their shared inquiry. Excerpts from this class’s Learning Journals are 
then analyzed to capture themes across students’ experience of the course and 
their perspectives on its impact.

Results: Analysis of students’ discourse (while investigating cones) shows how 
they used models and gesture to make sense of geometric phenomena; forged 
connections with investigations they had conducted throughout the course 
on different surfaces; and articulated and proved mathematical conjectures of 
their own. Analysis of students’ Learning Journals illustrates how experiences in 
MathViz contributed to their conceptualization of making mathematics together, 
using a variety of models and technologies, and developing a set of practices that 
that they could introduce with their future students.

Discussion: An argument is made that this approach to collective mathematical 
investigation is not only viable and valuable for MTLs, but is also relevant to 
philosophical reflections about the nature of mathematical knowledge-creation.
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1. Introduction

A key conjecture of this article—as well as of the course from which its data are drawn—is 
that teacher-learners can benefit from opportunities to connect rich disciplinary learning 
experiences with their emergent conceptions of their future classrooms and of themselves as 
teachers. This article examines how mathematics teacher-learners (MTLs) used physical and 
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virtual models to formulate and conduct their own investigations into 
the intrinsic geometry of 2-manifolds, and how this semester-long 
experience impacted their views of mathematics teaching and 
learning. In particular, it explores how experiences of making 
mathematics together supported MTLs’ view that mathematical 
creativity and discovery could be accessible to all students, and not just 
an exceptional few.

This is also a project of didactical phenomenology (Freudenthal, 
1983), where MTLs are invited to “step into the learning process of 
mankind” (p. ix), around conceptualizing Euclidean and 
non-Euclidean approaches to mathematizing two-dimensional space 
(cf. Moreno-Armella et al., 2018). Because the MTLs have the freedom 
(and the need) to construct and select models to support their own 
investigations, it illuminates how they experience mathematical 
practices associated with discovery. And because it asks them to use 
their own inquiry experiences as a lens on teaching possibilities in 
their future classrooms, it includes them in a type of 
autodidactical phenomenology.

The teachers’ investigations in this “MathViz” course have a 
radical openness. Students generate definitions of their own, and they 
formulate and investigate conjectures that express emergent 
curiosities. Although I  have taught the course six times engaging 
roughly the same mathematical terrain, the texture of the theorems 
and findings created by each group have been unique.

Students in the course have generally had some prior experience 
with Euclidean Geometry, and this provides a basis for them to 
explore comparative geometries. However, students often see their 
prior geometry experience as closed off and terminated, and some of 
them have strong negative memories of it. MathViz thus follows 
Nemirovsky’s (2018) idea of “pedagogies of emergent leaning,” first to 
revitalize students’ conceptions of planar geometry through shared 
and embodied intrinsic experiences in the plane, and then to mobilize 
that intrinsic perspective to imagine and mathematize embodied 
experiences of the local and global geometry of other 2-manifolds.

In their journey from the plane to spheres, cylinders, cones, and 
hyperbolic planes, students notice unfamiliar phenomena; wonder 
about their meaning; ask questions that articulate their conceptions of 
these phenomena in terms understood by the community; and 
formulate and investigate conjectures about them. In the course of this 

work, the classroom group develops multifaceted relations among (a) 
mathematical contexts, objects, and actions; (b) models of various 
kinds (physical and virtual, specific and general); and (c) shared 
mathematical experiences (see Figure 1).

2. Models and modeling in MathViz

Models in MathViz include models of mathematical structures 
and systems (e.g., a Lénárt model of the geometry of the sphere). They 
also include models of forms of experience (e.g., turtle geometry as a 
model of experiences of wayfinding and navigation). Further, forms 
of mathematical experience (e.g., taking an intrinsic perspective) can 
be  seen as influencing the use of models (e.g., using a dynamic 
geometry construction to analyze possible paths in turtle geometry). 
And mathematical practices (e.g., proving a conjecture) can guide the 
social use of models to create and stabilize shared experiences among 
the community (e.g., when collaboratively constructing a proof). 
Given this cluster of relations, MathViz amplifies both the types and 
modalities of model (virtual/computational, and physical models in 
various materials) and the forms of experience that students can use 
models to invoke (e.g., embodied experiences, narratives, and 
artistic expression).

2.1. Manipulatives and models for MTLs

MathViz bridges a traditional distinction between models of 
mathematics on one hand and modeling with mathematics on the other 
(cf. Hirsch and McDuffie, 2016). A classic example of a “model of 
mathematics” is a manipulative. At one level, then, MathViz could 
be  interpreted as providing MTLs authentic experiences with 
manipulatives in service of their own learning. Thoughtful, generative 
use of manipulatives is important for learners of all ages (Bartolini and 
Martignone, 2020), and in the digital era, it is increasingly important 
for teachers and students to develop fluency and expressivity with 
mathematical representations across media (Nemirovsky and Sinclair, 
2020). A rich area of research is investigating the balance between 
virtual and physical manipulatives—selecting between modalities 
(Moyer-Packenham and Westenskow, 2013), sequencing them (Hunt 
et  al., 2011), or, more generally, understanding the interactions 
between learning experiences with each type (Maschietto and Soury-
Lavergne, 2013; Brady and Lehrer, 2021; Soury-Lavergne, 2021).

Researchers also raise questions about teachers’ and students’ 
stances toward manipulatives, and about when and how they should 
be employed. For instance, Kamii et  al. (2001) argue that a given 
manipulative may be helpful at one stage of development and not at 
others. For the MTLs in MathViz, as for all learners, “ascribing 
mathematical meanings to empirical phenomena” (Voigt, 1994, 
p. 172) involves active interpretive work, as “physical embodiments of 
mathematical ideas” are not “transparent” (Brown, 1996, p. 120) but 
involve ambiguity and polysemy.

In some teaching settings, this can be  seen as an unfortunate 
liability—in particular, when a physical apparatus is designed to 
convey the designer’s targeted mathematical notions. In particular, it 
should not be  assumed that any such manipulative will itself 
“automatically determine the way it is used and conceived of by the 
students” (Bartolini and Martignone, 2020). The intended mental 

FIGURE 1

Interactions among mathematics, models, and experience.
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constructions and associations may not be evident or constructed by 
the learners (Ball, 1992; Uttal et al., 1997; McNeil and Jarvin, 2007), 
and the very “semiotic potential” (Bartolini Bussi and Mariotti, 2008) 
of manipulatives can result in students’ emphasizing personal and 
idiosyncratic interpretations of their work with them, at the expense 
of the intended mathematical meanings.

In an important sense, these findings simply reflect that a 
manipulative can become problematic when its expressive semiotic 
power as a model is neglected. This recalls the famous model-of/
model-for contrast (e.g., Fox Keller, 2000), in which viewing a model 
as a simple, objective, stable, or transparent embodiment of an idea 
robs it of power. In contrast, the instrumental use of a model, by an 
actor or community for a purpose (Morgan and Morrison, 1999) 
reveals how it can be  a generative tool to mediate thought. 
Nührenbörger and Steinbring (2008) agree that the “theoretical 
ambiguity” of models and manipulatives—which “makes 
manipulatives suitable to all school levels, up to university, as a context 
where fundamental processes, as defining, conjecturing, arguing, and 
proving, are fostered” (Bartolini and Martignone, 2020).

2.2. A dual relation between mathematics 
and its experiential embodiments

In this context, MathViz offers a setting where, in service of 
processes of mathematical investigation and discovery, the 
construction of physical and virtual embodiments of emergent 
mathematical ideas can be generative. When a group of learners create 
or choose physical materials and models that then play an “anchoring, 
although not determining” (Brown, 1996, p.  121) role in their 
investigations, they can reveal how material models guide their own 
thinking and collaboration by infrastructurally or “architecturally” 
(Kaput, 1991) formatting their shared environment (cf. Greeno, 1994). 
In this way, the inquiry group can use embodiments of mathematical 
ideas to shape their communication and collective thinking. Here, the 
dual relation between mathematical ideas and their worldly 
embodiments becomes apparent, creating a bridge between modeling 
mathematics (where aspects of mathematics are expressed in tangible 
materials and experience), and modeling with mathematics (where 
essential aspects of the phenomenal world are expressed in 
mathematical constructs).

Freudenthal (2002) discusses both sides of this dual relation 
between the “noumenal” world of mathematics and the “phainomenal” 
world of experience. For him, models play an essential, “intermediary” 
role in the “process of mathematizing” (Freudenthal, 2002, p. 34). In 
turn, “mathematizing” is a conceptual process that applies broadly, to 
“the entire organizing activity of the mathematician, whether it affects 
mathematical content and expression, or more naive, intuitive, say 
lived experience, expressed in everyday language” (Freudenthal, 2002, 
p. 31). Mathematizing thus transforms the learner’s “reality” (p. 30), 
and in Freudenthal’s view, learners can only mathematize that which 
is experientially real to them. Gravemeijer and Terwel (2000) clarify 
that Freudenthal here views “reality” as including the whole of a 
person’s lived, embodied experiences and interpretive perspectives. 
Dienes (1960), designer of Dienes blocks, similarly describes the 
construction of mathematics as a “crystallizing” or “distilling” of 
experience and emphasizes the dynamic relation between an idea and 
its embodiments.

Within the mathematics-models-experience framework depicted 
in Figure  1, then, mathematizing in MathViz builds on forms of 
sensemaking in which MTLs create and use models and material 
embodiments to make the geometry of 2-manifolds experientially 
real. They work together to make geometric phenomena into a shared 
reality, which can then be mathematized and investigated; and their 
use of a variety of models deeply mediates this process.

3. Pedagogical framework

MathViz is designed for undergraduate and master’s level students 
in a teacher education program. The course has grown up in friendly 
soil, and I  owe the privilege of developing and offering it to the 
program’s commitment to blending specific disciplinary forms of 
inquiry with reflections on teaching and learning (cf. Hundley et al., 
2018). The course design itself has built upon prior work by eminent 
researchers in mathematics education such as Pat Thompson, Rogers 
Hall, and especially Rich Lehrer. And the approaches to geometry that 
MathViz embodies are inspired by the visionary perspectives of Papert 
(1980), Henderson (1996), Henderson and Taimina (2005, 2006), 
Lénárt (2010), and Taimina (2018).

I have taught MathViz for the past six years, refining and adapting 
it with each iteration, in order to amplify opportunities for students to 
draw upon their own perspectives and experiences as they make 
mathematics together. This expression (to make mathematics) comes 
from an opening discussion in the course, about the ambiguity of the 
Spanish verb “hacer,” in hacer matemáticas. A very different impression 
is created by “doing” versus “making” mathematics. In MathViz, 
we aim to amplify the “making mathematics” alternative, whenever 
possible. Making and modeling are intertwined as MTLs engage in 
embodied planar experiences at “walking scale” using surveyor’s 
ribbon and other props; “agent-based” computational environments 
from Snap! to NetLogo to physical robots; “dynamic geometry” 
environments such as GeoGebra; and physical models such as Lénárt 
Spheres and polydrons, along with constructions in paper, crocheted 
yarn, and other flexible media.

3.1. Conceptual map of the course

Early activities in the course explore the range of what Henderson 
and Taimina (2005) call the historical “strands” of geometry. Problems 
and inspirations arise from navigation, visual art, dance, architecture, 
and mechanical engineering. They revive students’ interest in 
fundamental questions (such as the problem of verifying “straight-
ness” of paths or parts of shapes) and they underscore the fundamental 
roles of perspective (e.g., the intrinsic perspective of turtle geometry) 
and context (e.g., cultural context, as highlighted by ethnomathematics 
(D’Ambrosio, 1985), or more local activity contexts such as 
choreography in multi-body dance). The fundamental mathematizing 
work required to articulate geometric structure across these diverse 
settings creates the need for students to construct or adapt models for 
particular purposes. Moreover, these early efforts raise important 
generative tensions that extend through the course: intrinsic-extrinsic; 
local–global; geometric-topological; and procedural-descriptive.

These initial activities engage with elementary phenomena, and 
the class soon generates findings and questions that reveal the 
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potential richness of inquiring seriously into such fundamentals. For 
example, on the first day of the course, the class uses surveyor’s ribbon 
and flags to mark off polygonal paths on the college lawn. As questions 
emerge, these walking-scale paths are re-represented and 
re-constructed using both Turtle Geometry and dynamic geometry 
environments. One of the findings that reliably emerges is a conjecture 
that Papert (1980) calls the “total turn angle theorem” and that 
Abelson and DiSessa (1986) refine as the “closed path theorem.” 
Indeed, many of the students discover that the turn angles of the closed 
paths they are creating all sum to 360 degrees. Arguments for why this 
should be true begin to emerge in debate, as also do some counter-
examples. Different classes respond to these counter-examples in 
different ways. For example, they may establish more explicit rules 
about how to measure turn angles, or they may restrict the set of paths 
covered by the emerging theorem (e.g., to “convex” paths). Later, when 
reading Lakatos’s Proofs and Refutations, students recognize analogs 
of the arguments they made in these early debates, now attributed to 
some of the most famous European mathematicians in history.

Moreover, as in Lakatos (1976), while attempting to formulate a 
proof that explains why (cf. De Villiers, 1998) the total turn angle is 
360 degrees, students generate innovative perspectives on the matter. 
For example, even after restricting to five-legged paths, the “monster” 
(Lakatos, 1976) pentagon shown in Figure 2B was produced, which 
had a total turn angle of 720 = 2 × 360. Constructing shapes in 
GeoGebra and then walking them as paths marked with tape, one 
student said she could “see” Figure 2B as a double loop, whereas the 
path of Figure 2A was a single loop. Elaborating her idea involved 
imagining “inflating” the shape of the path in a way that made the 
pointed vertices into smooth curves and revealed that the path in 
Figure 2B made two loops.

The unexpected depth of some of these initial explorations sets the 
stage for the class to appreciate the constructive role of definitions (cf. 
Kobiela and Lehrer, 2015) and the value of asking good questions (cf. 
Lehrer et al., 2013). In the course of these sessions, we introduce the 
convention of organizing ideas into “Notice,” “Wonder,” “Question,” 
and “Conjecture” statements. Meanwhile, analyzing finite and infinite 
structures on the plane (e.g., Euclidean constructions, isometry 
transformations and symmetries, tessellations, frieze patterns and 
wallpaper groups) helps to enrich the sense of the plane as a realm 
where rich mathematics can be made.

In the second phase of the course, we move from the plane to 
other surfaces (2-manifolds), beginning with the sphere, and moving 

to the cylinder, to cones of various cone-angles, and to the hyperbolic 
plane, with briefer explorations of the flat torus and mobius strip. Our 
comparative approach highlights the interdependence between 
geometric phenomena and the ambient space. Moreover, the 
exigencies of different questions and arguments highlight the 
complementary virtues and limitations of different types of models. 
Most notably, students develop dialogic relations between physical 
and virtual models to support their investigations.

Students also find creative ways to adapt structures and operations 
identified on the plane, to make sense on and of the new surfaces. For 
instance, starting from tessellations in the plane, and removing the “no 
gaps” rule opens a connection to nets of polyhedra: the gaps between 
edges cause the shape to come out of the plane when the edges are 
brought together. Constructing these shapes and adapting the 
“inflating” idea above for closed paths suggests conjectures about 
relations between polyhedra and tessellations of the sphere. Then, 
thinking about this action as having a “reverse” direction, students 
considered removing the “no overlaps” rule of tessellations: now, 
bringing overlapping edges together produces ripply surfaces that can 
act as tessellations (and models) of the hyperbolic plane.

On each of the new surfaces, “familiar” results and objects from 
the plane are disrupted (e.g., “What is a square on the sphere?”). 
Sometimes generalizations are proposed in response (“We think a 
square is actually a regular quadrilateral – equal sides and angles. But 
on the sphere, the angles will not be 90 degrees!”), along with methods 
of creating them (“In our idea, square-ness is based on reflection and 
rotation symmetries. Create one by drawing the diagonals first, which 
capture these symmetries. They are perpendicular bisectors of each 
other, with the same length.”) These can in turn lead to puzzling new 
results (“We followed your rule and we made a bunch of concentric 
squares on the sphere. The angles can be as almost small as 90 degrees, 
but then when they get to be almost 180 degrees each, the square turns 
into a single straight line – the great circle at the ‘equator’”).

During this phase of the course, the class increasingly relies on 
their own “notice, wonder, question, conjecture” statements to fuel 
discussions. They develop experience with pursuing investigations 
inspired by their own, and their classmates’, idiosyncratic perspectives 
and noticing, and they become familiar with how to articulate their 
questions and conjectures in ways definite enough to be  pursued. 
Moreover, they find that these community-generated investigations can 
produce novel and exciting results. Class sessions become increasingly 
focused on this style of exploration, with the course structure merely 

FIGURE 2

(A): a pentagonal path with a total turn angle of 360 degrees. (B): a “monster” pentagon—a five-sided path with a total turn angle of 720 degrees.
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introducing new surfaces, suggesting broad directions, and ensuring 
that inquiry groups have visibility into each other’s emerging findings.

Because the studies of 2-manifolds are comparative, ideas and 
achievements from earlier in the course continually return, to 
be  revised or to provide inspiration for new conjectures and 
investigations. In addition, several other basic structures provide 
continuity over the semester. Every week, students create entries in a 
Learning Journal, which I read and respond to within two days. This 
supports students in developing a reflective writing space and gives 
me the feedback I need to tune aspects of the course. Second, each 
student devises and pursues a personal Mathematical Investigation in 
the second part of the course, following on a “mini-investigation” in 
the first part. These projects give students confidence that they can 
formulate and pursue rich mathematical investigations. Finally, 
collaborative inquiry groups are shuffled randomly for each session of 
the class; randomized grouping is both an instructional principle and 
an essential component in ensuring that emergent lines of investigation 
enrich each other rather than diverging over time.

4. Research questions

The MathViz course has been refined iteratively to support and 
study the collective learning of MTLs. It has offered an “existence proof” 
that MTLs can engage in making mathematics together as a community, 
and one of the salient features of the course has been how participants 
use models of various types to structure and communicate about 
collaborative investigations. Because MTLs in the course are encouraged 
to use their experiences as learners as a lens on their emerging 
conceptions of classroom teaching, the course provides a rich reflection 
space about how classroom groups might construct geometric ideas with 
models. The first research question for this study motivates interactional 
analyses of MTLs as they engage in notice/wonder/question/conjecture 
processes, constructing and articulating proofs of their findings:

How can we conceptualize the processes of making mathematics 
together in MathViz, with a focus on the MTLs’ collaborative creation 
and use of physical and computational models to structure their 
shared investigations?

While this study does not fully adopt a phenomenological 
approach to the MTLs experiences, it does recognize the importance 
of an “insider” perspective on the processes through which MTLs 
interactively construct both mathematics and their community of 
mathematical inquiry. A first step in understanding the dynamics of 
this setting is to capture “thick descriptions” (Geertz, 1973) of 
participants’ experiences. Thus, the second research question focuses 
on these experiences and how MathViz students see them as relevant:

How do students experience making mathematics together in 
MathViz, and how do they contextualize these experiences as an 
influential factor in their emerging identities both as mathematicians 
and mathematics educators?

5. Methods

5.1. Participants

One subset of MathViz students are pre-service undergraduate 
secondary mathematics teachers, who are also required to have a 

major in Mathematics. The double major creates a cultural divide 
between mathematics courses and education courses, which 
students frequently remark on. In the iteration of the course 
described here, undergraduates made up an unusually large 
proportion of the class: 7 of the 9 students. The other subset are 
students in one of two Master’s programs: one in Secondary 
Mathematics Education, and another in Learning and Design. 
Master’s students often have prior classroom teaching experience. 
(This was the case for both of the Master’s students in the class 
described here).

5.2. Data sources

Each iteration of MathViz has been conducted as a research study 
as well as a course. In the iteration analyzed here, all nine enrolled 
students in the course gave their consent for class sessions to 
be videorecorded and their work for the course to be used as research 
data. Data sources for this study included student-created artifacts and 
videos of class sessions.

5.2.1. Student-created artifacts
These consisted of digital captures of students’ productions during 

the course. Many of the course activities were technology-mediated, 
producing artifacts that supported and captured collaborations. In 
addition to environments designed by the author, these included 
Google Docs, Sheets, and Slides documents. Students’ Learning 
Journals also provided an account of their thinking over the course, 
which supported the second research question in particular.

5.2.2. Videos of class sessions
In each session after the first, a single stationary classroom camera 

was positioned at the back of the room, to capture the workspaces of 
student groups. This camera arrangement was chosen to minimize the 
intrusiveness of the recording to the students’ interactive investigations.

6. Findings

6.1. Investigations on cones

In responding to Research Question #1, I focus on the class’s two 
days’ engagement with cones, for several reasons. First, cones are 
sometimes omitted from investigations of 2-manifolds, because they 
are neither smooth nor homogeneous. The cone point is a singular 
point, which introduces much of the ‘exotic’ geometric phenomena of 
the surface. In fact, the local geometry of a cone away from its cone 
point is indistinguishable from that of the plane. Yet, the intrinsic 
perspective is valuable in surfacing and in investigating many of these 
exotic features.

Second, cones form a family of surfaces. By varying the cone 
angle, students identify categories of cones and make statements about 
what is possible across their different categories. Moreover, this family 
of cones includes the plane (which can be  seen as a cone with 
360-degree cone-angle), and it includes cones with greater than 
360-degree cone angles. To create cones with cone angle less than 360 
degrees, a sector is cut from the plane, causing the familiar conical 
shape to form. In contrast, for cones with cone angles greater than 360 
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degrees, a sector is spliced into the plane, causing the shape to “ripple” 
(see Figure 3).

Third, provocative analogies exist between cones with cone angle 
less than 360 and spheres on one hand; and between cones with cone 
angle greater than 360 and hyperbolic planes on the other. The cone 
point creates (in global properties of cones) analogs of some of the 
local geometric features of these homogeneous surfaces. In a sense, 
the cone point “concentrates” non-planar effects that are “distributed” 
over the whole surface of the sphere and hyperbolic plane. These 
analogies and the connections between local and global effects emerge 
in students’ insights, and they help to unite themes that have come up 
on each of the surfaces they have investigated earlier in the course.

Finally, the existence of a family of cones parameterized by cone 
angle creates a modeling challenge for students as they attempt to 
formulate and prove conjectures across the family. A variety of types 
of models and strategies for modeling cones exist, and putting these 
in conversation with one another activates some of the modeling 
practices that students have appropriated over the semester.

6.1.1. Models used in the cones investigation

6.1.1.1. Rigid plastic physical cones
These models are useful for getting a feel for the distinctive 

properties of cones with cone-angles less than 360 degrees. The 
firmness of the material permits students to use tests of straightness 
including stretching elastic between two points and laying a ribbon 
along paths between two points. Similarly, they can use patty paper to 
test the symmetries of paths conjectured to be straight. Finally, by 
fitting paper or parchment around a plastic cone and then unwrapping, 
students can ‘undo’ the construction operation to return to a flat 
sector, or an n-fold branched covering, of the conical shape.

6.1.1.2. Paper and parchment cones
These models are formed by cutting sectors out of large disks 

(for cone angles less than 360 degrees) or by adding in sectors (for 
cone angles greater than 360 degrees). They are extremely useful 
for exploring geometric behavior empirically across different cone 
angles, and for connecting findings on computational and physical 
models that operate in flat form (on a screen or on flat paper) with 
the look and feel of the surface in its conical shape. Often, 

converting to the folded conical shape is a necessary step for 
students to believe a result arrived at through manipulation of one 
of the computational models described below. When made of 
parchment, paper models can also convert an n-fold covering into 
a multi-layered conical shape, allowing markings on each ‘sheet’ 
of the cover to be visible through layers of parchment. Finally, 
paper models are also the only option that students in MathViz 
have for creating models of cones of cone angle greater than 
360 degrees.

6.1.1.3. Computational turtle geometry models
Using the NetLogo environment (Wilensky, 1999), I created a set 

of microworlds (Papert, 1980) that enable students to place intrinsic 
computational agents (‘turtles’) in a flattened, single-sheet 
representation of a cone with any cone angle less than 360 degrees. 
Using turtle geometry commands (forward, back, right, left) and 
drawing commands (pen down, pen up), students can create paths on 
virtual cones. The results can then be printed, allowing students to 
assemble the cone and see how the turtles’ path is in fact consistent 
with the cone’s geometry, as it exits one edge of the single-sheet and 
returns on the other. This computational environment permits rapid 
experimentation with many possible paths, enabling students to create 
illuminating examples. And printing also allows a student to share 
multiple copies of her constructions with a group, bridging to other 
paper models of cones.

6.1.1.4. Computational models of the n-fold covering
These GeoGebra documents allow students to experiment with 

dynamically configurable versions of the n-fold covering, to get 
familiar with its properties. For example, in an 85-degree cone, a 
4-fold covering is possible in the plane. Each point of the cone’s surface 
is represented four times, once in each ‘sheet’ of the covering space. 
The n-fold covering is typically used in flattened form, where students 
can use a straightedge to join copies of a point A with copies of a point 
B, to determine ways of connecting these two points in the cone with 
straight paths. Copying these to parchment paper, however, students 
can verify that when rolled into conical form, these paths are indeed 
straight, and thanks to the semi-transparency of the parchment, they 
can tell which of the paths between point copies are distinct and which 
are duplicates.

FIGURE 3

(A) A 450-degree cone is formed by “splicing” a 90-degree sector into a circular disk (a 360-degree cone). (B): when the sector is spliced in, the cone 
ripples. (C): the cone can be manipulated to flatten part of it. (In this configuration, one can see how interior corners of rooms are 450-degree cones).
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6.1.2. Student discourse in investigating 
properties of cones

During two 3-h class sessions, MathViz students grappled in 
groups with properties of geodesics (straight paths) and triangles or 
n-gons on cones of different cone angles. Analyses of their discourse 
will highlight three features:

 1. Students leveraged embodied and intrinsic experiences to 
stabilize and make sense of the geometric phenomena they 
observed across models.

 2. Students reasoned in a comparative way across the set of 
2-manifolds they had encountered in the course.

 3. Students made their own mathematics together, which they 
built systematically and grounded in emergent, 
shared understandings.

6.1.2.1. Leveraging embodied experiences to coordinate 
intrinsic and extrinsic perspectives

Students began their cones investigations by “messing about” (cf. 
Hawkins, 2002) with both physical and computational models, to get 
a sense of what could happen there. During this time, the class 
operated in what Goffman (1981) describes as an “open state of talk” 
(p. 143). Students were intensely engaged in manipulating models, but 
were nevertheless peripherally aware of each other’s activity. 
Occasionally, they communicated in bursts of dialog, but they did not 
seem to expect coherent arguments from each other at this stage. 
Themes were being developed, and it seemed there was a tacit 
agreement that the group was building a foundation that would only 
later be strong enough to support a demanding audience. In such 
settings, it was not always clear that interlocutors fully understood 
each other – rather, they were testing ideas that would recur later with 
greater confidence and attention to rigor.

For example, Jena, Clara, Teva, and Mike were at the same 
table, busily manipulating and reasoning about the relation 
between paper and plastic physical models and the one-sheet 
computational models. Mike asked Clara and Jena, also at the same 
table, how they knew the cone angle of the plastic models they were 
working with.1

Mike: How do you know the cone angle of these guys? Like, how 
do you know the degree…of [tapping the plastic model] this

Jena: Oh, of the…[gesturing with two forearms in a triangle]

Mike: Yeah. Guess? Guesswork?

Teva: No [inaudible] a way [holding up a paper model]. If you look 
at the… If you measure the circumference of a circle [tapping the 
cone point; twirling her index finger around the cone near the 
cone point], and then divide by the radius. Then it gives you a 
ratio that tells you the cone angle, in radians.

1 In the transcripts, gestures and other non-verbal communications are 

described in square brackets. Pseudonyms are used for MTLs throughout, while 

“CB” designates the author.

Mike: [1 second pause; blank expression] Wow!

Teva: Right, because when it’s flat [i.e., a plane] you  do the 
circumference divided by the radius, and you get, um, 2π

Mike: Oh, but that would depend on where you put the [pointing 
with a pencil tip at Teva’s cone]

Teva: No, because you’re taking the circumference and dividing 
by the radius, so the ratio, [sliding thumb and forefinger in a ring 
around the cone model] all the way down the cone…should be the 
same, cause…like anywhere on the plane, no matter how big the 
circle is, the ratio between the radius and the circumference is 2π?

Mike: Mm-hm

Teva: So it’s the same on the cone, the ratio of the radius and the 
circumference is always the cone angle.

Mike: Oh. I see your argument. But wouldn’t it be easier just to 
measure the base?

Teva: Um, well, a cone doesn’t have a base, but yes …

Mike: Well, like [pointing at the plastic cone model]

Jena: Wait, so the formula is … [picking up and touching the base]

Teva: But you don’t … [pointing at Jena’s model and the idea she 
infers from Jena’s gesture] you can’t measure the radius along the 
base. You have to [gesturing vertical-diagonally up and down 
repeatedly, indicating the ‘slant height’ up to the cone point] 
measure the radius as a geodesic; like a point on the base to the 
cone point.

This exchange highlighted the early state of students’ fluency and 
shared understanding of cones and of the features of the different 
models. Mike’s question arose as he looked up from some intensive 
work in cutting, constructing, and drawing on a paper printout from 
a computational model. A salient feature of his model (the 
proportion of the disk remaining after cutting, i.e., the cone angle) 
was invisible and unknown in the plastic model, raising a question 
about how he could connect across models. Meanwhile, Teva was 
exploring how an agent on a cone could intrinsically determine the 
cone-angle of its world, following a suggestion from the reading that 
the students had done before class. Understanding this method 
depended on interpreting key terms (circle, radius) in ways that 
relied on adopting an intrinsic perspective on the cone. Teva 
appeared to have stabilized this perspective, so that for her, the 
“circle” in question was a set of points on the cone at a given distance 
from the cone point (measured along a geodesic ‘generator’ on the 
cone). Teva additionally saw this as an extension of the situation on 
the plane.

However, these analogies were not yet helpful to Mike and Jena. 
The connection between the plane and the cone was not yet 
apparent to them, and the construct of a circle on the cone as a path 
that maintained a fixed distance from the cone point, was not yet 
stable. When Teva accepted Mike’s supposition that a circle of this 
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kind could be “the [circumference of the] base,” she was correct, but 
for Mike and Jena, who appeared still to be thinking extrinsically, 
the (entire) base was salient as a part of the model. Teva’s 
explanation was sound, but the other students were not yet ready to 
enter into her way of thinking. During these struggles to 
communicate, the heavy use of gesture in this sequence was 
remarkable, including Teva’s final gesture, which both engaged with 
and countermanded the gestures of Mike and Jena. This gestural 
richness indicates the ways that physical models were supporting 
emergent sensemaking about fundamental aspects of the cones’ 
geometry.

6.1.2.2. Reasoning in a comparative way across 
2-manifolds

At the other table, Dillon made an observation that would later 
have a shaping influence on other classmates’ investigations:

Dillon: The other thing I am pretty sure about is that all lines on 
the cone are exactly the same.

Olivia: … are the same… ?

Mike: [from the other table] … are insane!

Mike’s attunement here to a discussion that emerged elsewhere in 
the classroom is characteristic of the “open state of talk.” After 
laughing, Dillon continued, having secured Olivia’s attention.

Dillon: So on the cylinder, we had like turning lines [gesturing a 
helix winding upward]; vertical lines [gesturing by holding his 
forearm rigid vertically]; and circle lines [initially gesturing with 
rigid horizontal forearm, then changing to trace a horizontal circle 
with his index finger around the girth of the imaginary cylinder].

Olivia: Yeah.

Dillon: But on the sphere, and the plane, there’s just one type 
of line.

Olivia: Ok

Dillon: So, I think the cone is the same situation

Olivia: … as the sphere?

Dillon: … as the sphere, or the cylinder—sorry, the sphere or the 
plane. Because it’s like, on the branched covering of it, like you can 
only draw the line [gesturing a line, with a cutting motion] at 
some distance to the center

Olivia: Ok

Dillon: [repeating the cutting gesture] and no matter how you’re 
drawing it, like it’s the same thing. Because [making a rotating, 
steering wheel gesture] you can …

[1 second pause]

Dillon: [picking up a paper model of a cone] The cone has like a 
stretching map [pulling fingers down the cone from the cone 
point]? Where you can take a little cone, and stretch it [fumbling 
with the model] stretch it down.

[0.5 second pause]

Dillon: And that’ll like bring a line, OUT from the center.

CB: It’s zooming in, right?

Dillon: Yeah. It’s, it’s a similarity. So, vaguely. Yah.

Olivia: [.5 second pause] Hm … ok

Dillon: So, what that means is that if we understand how ONE 
geodesic works, we understand how ALL of them work … On a 
certain cone angle.

Olivia: Ok! [1 second pause] Because…

Dillon: because

Olivia: because you can just stretch it

Dillon: yeah, you can stretch it

Olivia: So, if it doesn’t cross, on one model … if you could like 
make it longer, it will cross.

As with the prior conversation, Dillon’s explanation was heavily 
augmented with elaborate gestures, as he  enacted different 
manifestations of straight paths across different surfaces (spheres 
and cylinders) and across different models of the cone. His 
argument from the n-fold cover focused on the limited degrees of 
freedom (i.e., apparently one, actually zero) that we have in drawing 
a straight path; and his “similarity” mapping of small cone models 
to larger cone models emphasized the infinite extent of the 
mathematical cone. Though Olivia may not yet have initially 
grasped the nuance of this explanation, in her final response, she 
connected Dillon’s proposition to the problem she had been 
discussing with the group – namely, that geodesic paths on small 
cone models might not reveal all of their self-intersection behavior 
before they exited the physical model.

6.1.2.3. Making their own mathematics, grounded in 
shared understandings and definitions

After an initial share-out, where groups surfaced what they 
“noticed” and “wondered” about, the class established a shared 
Google Sheet for empirical findings relating cone angle, “number of 
self-intersections” a geodesic could have on that cone; “number of 
leaves in a planar n-fold covering,” and “minimum number of lines 
required to form an n-gon,” allowing the class to benefit from 
separate investigations and constructions with models. Then 
students reconfigured themselves into groups, to dive deeper into 
particular questions. At the end of the session, they came together 
to share their results.
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6.1.2.3.1. Self-intersections
Dillon and Teva pursued the question of the number of self-

intersections of a geodesic, depending on the cone angle. This 
investigation depended on Dillon’s insight about all geodesics being 
the same, which Teva appeared to have fully absorbed. The two 
presented their findings as a statement in radians. Dillon said, “If the 
cone angle equals π/N, then a geodesic has (N-1) [self] intersections.” 
Moreover, he  explained that they thought this value was a 
“threshold,” saying “if you have got anything smaller; if you cut off 
some small amount of it [writing “π/N – epsilon”], it has N [self] 
intersections.”

The class requested examples, which they then saw agreed with 
the empirical data in the Google sheet. For instance, for N = 1, the 
180-degree cone had the noticeable feature that geodesics created 
parallel rays [zero self-intersections] as they passed around the cone 
point. For any cone with angle less than 180 degrees (“180-epsilon”), 
these rays were not be parallel and would ultimately intersect (one 
self-intersection).

After this empirical grounding, Teva explained how she had 
thought about the conjecture, based on a physical manipulation she 
did with the paper model:

Teva: The other thing to … in terms of a way to think about this 
is … um, we know that right at 90 degrees, there’s one intersection, 
right? So if you  take [picking up paper model] a cone that’s 90 
degrees… This is not an exact representation, but it’s like sort of a 
way that I was thinking about it, which I think sort of helps in some 
ways conceptually justify this? But if you take an 90-degree cone and 
then you  bend it over to make a 45-degree cone [crushing the 
90-degree cone as in Figure 4B, then forming the half-angle cone]…. 
If we know a geodesic intersects itself once on a 90-degree cone, if 
you then [gesturing with her arms imitating the sides of the cone 
model] fold it around, there’s one intersection with 2 lines. Each of 
these two are sort of their own geodesic, that are going to intersect 
again, so that is where the three comes from. Cause there is 
one intersection already on the 90-degree cone, and then when 
you  sort of wrap it around again, each of the lines …that make 
this intersection—intersect themselves—which gives us two 
more intersections.

In terms of Teva’s and Dillon’s formula, if we grant that there are 
N-1 self-intersections in a cone of angle 180/N, Teva’s folding suggests 
2(N-1) + 1 self-intersections in a cone of angle 180/2 N. That is, 
2 N-2 + 1 = 2 N-1 self-intersections, as desired. The class discussed how 
this approach gave support for the conjecture (in powers of 2 for N, 
given the result for N = 1 (180) and N = 2 (90)). Mike noted this was 
“like induction” but concrete because it was grounded in Teva’s 
folding demonstration.

6.1.2.3.2. Strange triangles
Mike then shared results from his solo inquiry investigating 

turtle-geometry paths on a 75-degree cone. He had found that a single 
straight path could create a “triangle,” whose interior angles were 75, 
75, and 30 degrees (see Figure 5A). After making one such figure in a 
computational model, he was surprised to find that when he launched 
turtles in random directions, a triangle was always created with 
interior angles 75, 75, 30.

Mike then realized that his figure was a paradox: it was formed by 
one straight path, it had two distinct vertices, but it had three distinct 
‘interior’ angles. Was it a triangle? From the perspective of a turtle 
geometry path, it was a triangular figure created by a movement that 
had no turns. As Mike had said earlier to me, to make the figure “you 
are…you just keep walking, there is no turning, you  just keep 
walking!” In presenting to the class, Mike also shared a manipulation 
of the single sheet model he devised, shown in Figures 5B,C. Cutting 
off a sector from the right edge of the model, he transferred this to the 
left side, thereby shifting the location of the “seam.” This action 
corresponded to rotating one’s perspective on the rolled-up model. 
He shared how to do this and showed how it changed the way several 
geodesics on small cones looked.

6.1.2.3.3. Another definition of triangle
Olivia, Jena, and Tracy shared that they had also explored 

triangles. However, they defined a triangle (and an n-gon in general) 
differently from Mike. Whereas Mike focused on (interior) angles, 
Olivia, Jena, and Tracy said that for them, a triangle was based on a 
configuration of three distinct points. So, they required that a triangle 
have three vertices (and thus, for them, Mike’s Figure 5 was not a 

FIGURE 4

Teva’s manipulation of a self-intersection on a 90-degree cone (A). Crushing the cone and forming a 45-degree cone from the visible half (B), Teva 
claims that the one self-intersection on the 90-degree cone produces three on the 45-degree cone. The circle, triangle, and square annotations on 
(C) show the locations of the self-intersections that Teva claims will occur.
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triangle but a 2-gon, formed by a single geodesic). In their 
investigation, they generated a large number of empirical examples for 
cones of different cone angles.

Olivia: We struggled really a lot ah with ah figuring out how to like 
visualize the line intersecting itself multiple times, but we  basically 
determined at that—if you look at the cone data….—we filled out the 
sections named, column E and column G. Um, and have determined 
that, at 45 degrees there’s three – we have not done 22.5 yet, but um. 90, 
less than 90 but greater than 45 seems to be 2, there’s 2 intersections, 
self-intersections, but you still need to have 2 lines [to create a triangle] 
because even though it may seem like a triangle is created, that is not the 
case, it is actually a 2-gon. And it looks like a triangle, but one of the two 
corners of the triangle have the same vertex, so it is a 2-gon, instead of a 
3-gon, which was kind of confusing at first.

After the class processed the different implicit or explicit 
definitions of “triangle” that different groups had adopted, I reminded 
the group of Mike’s shape (Figure 5):

CB: Mike had a one-sided, two verticed—two-vertexed—three-
angled, “triangle,” whose interior angles added up to 180…

Mike: … with a turn angle of zero …

CB: With a turn angle of zero, because it was one line…

Olivia: That’s fantastic.

Class: [laughter]

Mike: Now

CB: … which was a definition-killer.

The group’s investigations on Day 1 thus covered important 
ground and incorporated a variety of styles of engaging with physical 
and computational models. (The groups of students not mentioned 
above were exploring tessellations of the cone and how to inscribe a 
cone in a sphere.) These investigations had also de-settled definitions 
and increased the students’ sense that strange but quantifiable 
phenomena could occur on cones.

6.1.2.4. Mathematics-making discourse on Day 2
In the next class session, students chose between investigating cones 

of cone-angle greater than 360 degrees, or beginning to work with 
hyperbolic planes. This analysis will follow the four students— Teva, 
Olivia, Mike, and Tracy—who elected to explore cones. They were 
seated further from the camera, unfortunately, and so the conversation 
of the five hyperbolic modelers sometimes made their discourse 
inaudible. In particular, Tracy’s voice could rarely be heard. While the 
prior section focused on moments of insight, connection, and 
interaction, this section traces the unfolding arc of these four students’ 
inquiry as they discerned patterns in their findings and then formed and 
iteratively refined their quantitative conjectures about n-gons on cones.

The first strange phenomenon that the group noticed on cones 
with large cone angles was that there were pairs of points that could 
not be connected with a straight path. As the group explored what to 
make of this strange property, Teva made some tentative statements 
about how a turn on a path can only ‘account for’ 180 degrees. Soon 
thereafter, she made a connection to polygons, saying:

Teva: I don’t think it’s possible to make a triangle on a cone whose 
cone angle is greater than 540

Olivia: Wait, can you explain that again?

Teva: Well it’s the idea is that you can’t connect two points where 
you have to turn more than 180 degrees.

Olivia: Right

Teva: I just feel that there is some connection, with like three sides 
and just three times 180 if you can make a triangle on it?

Olivia: Mmm!

Mike suggested that they investigate this impossibility by 
approaching it from below:

Mike: I  wonder if we  get a 450 cone, and then like draw a 
boundary condition triangle, and then argue that if it goes over 
540, then one of the sides – you can’t draw it?

FIGURE 5

(A) One of the figures Mike was studying. (B,C): Mike’s transformation of the paper model of a 75-degree cone, cutting off a sector from the right and 
transferring it to the left, to shift the seam.
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After some time working on this proposition, Teva wondered, “So 
maybe a quadrilateral is always possible around the cone point?” This 
triggered some resistance in her classmates. She then mused:

Teva: Well, no! I wonder if, I wonder if like, ok you can’t make a 
triangle around the cone point if the angle is 3x360, er, 3x180. [.5 
second pause] So maybe you  can’t make a squ- quadrilateral 
around it if it’s 4x180.

Olivia endorsed this conjecture by sharing her experience of 
drawing sides across sections of a large cone that she and Tracy had 
constructed. In that case it was easy to draw the fourth side, but she 
reasoned that if more and more material were in the cone, it would get 
harder and harder to do so. Olivia and Tracy then set out to make a 
720 cone and test the emergent conjecture.

I asked them to state this conjecture; they improved it to say that 
a quadrilateral is impossible if the cone angle is greater than or equal to 
720. Mike then attempted to generalize:

Mike: Maybe, Teva’s argument is that, like, you  can’t draw an 
N-gon if the cone angle is more than 180 times N

Teva: Yeah-exactly. Or equal to.

I then asked if there was any connection to the smaller cone-angle 
cones they investigated the prior week. Reviewing their data, they 
recalled that on a 180-degree cone, the geodesic was parallel to itself, 
but if the cone angle were just a little smaller, like 179, it would self-
intersect. Coordinating with their generalized conjecture, they 
interpreted this as saying:

If the cone angle is 180 or more, you can’t draw a 1-gon

If the cone angle is 360 or more, you can’t draw a 2-gon.

An implicit, related conjecture was also that if a cone was under 
the threshold cone angle, the n-gon in question was possible. 
Absorbing their working (but still implicit) definition from this week 
and its tension with her explicit definition from the prior week, 
Olivia asked:

Olivia: So, how do you draw a 2-gon on a 180?

Mike: It’s two lines, on the thing

Olivia: Oh- that’s how we’re defining it?

Teva: And you can create an enclosed space, with a finite area, 
using two lines.

Olivia: Are we calling it a 2-gon based on the number of [inaudible 
– vertices?]

Teva: …on the number of lines. To make a figure with 
finite area.

The group spent the next 30 min deep in model-based inquiry, 
investigating the conjecture they had articulated. This appeared to 

be an important period for assimilating and becoming comfortable 
with what they had discovered. Throughout this time, Olivia and 
Tracy invested a large amount of effort in constructing paper cones of 
various cone angles, and then drawing and measuring angles of 
polygonal paths on them. This empirical grounding gave the four-
student group the advantage of being able to discern patterns in data 
and check emerging conjectures against concrete cases. The value of 
this work appeared as the group generated its second and 
stronger conjecture.

Teva: My other argument – I  would say that as we  approach 
180xN for the cone angle – for example, as we approach 540 – a 
triangle’s angles are going to get closer and closer to 0.

Olivia: Yeah

Teva: So for any … the sum of the angles, get closer and closer to 
0 … as we approach 180 x N. So, a quadrilateral, as we get closer 
and closer to 540, where it’s non-existent.

Teva’s idea here leveraged representational imagination (Brady, 
2018) to envision possible constructions across cones. Beginning from 
a particular path on a specific cone, she imagined retracing it while 
the underlying space varied. She held an N-sided figure in her mind, 
and imagined this figure on a series of cones with increasing cone-
angle. Mike clarified his understanding:

Mike: So, is there a relationship between interior angle sums and 
the cone angle?

Teva: YES, there has to be [pause]. So now I’m thinking – the 
smaller the cone angle, the larger the sums of the interior angles 
of an n-gon.

Here, Teva saw an implication of her idea, which is that when the 
cone angle decreased, it caused a closed path’s angles to increase. Yet, 
was this only a qualitative relation?

Teva: I don’t know whether there’s a mathematical relation …

Mike: Let’s do some guesswork – just throwing stuff out. If it’s a 
270, then a… Then every triangle has interior 180? Right? It adds 
to the 360. – as the angle increases… Dump all of ‘em on the cone 
angle, and then we’re left with zero.

Mike proposed that they conjecture a quantitative relation by 
guessing, generalizing from cases they knew. His initial thinking was 
confused, but it intrigued Teva:

Teva: That’s interesting. Right, so I wonder. [pause] Right now 
what we just said is that as we approach 180xN the sum of the 
interior angles of an n-gon must approach 0. [pause]. But 
now – you’re saying the sum of the angles of the n-gon is equal 
to 180N minus the cone-angle. [pause] That would 
be an interesting.

Mike grasped that this would extend the finding they had 
developed in the first half of the class:
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Mike: If that’s true, then this [pointing to board] is a corollary.

Olivia then reiterated, and brought in evidence from the 
concrete cases she and Tracy had been constructing.

Olivia: So, your cone angle, plus the sum of the interior angles of 
an n-gon IS 180xN? ‘Cause you just said … So, let’s try it on this 
one. So, we know that the [sum of the] interior angles is 92 …

Teva: [inaudible] … and your thing [cone angle] is 360 + 
270 = 630.

Mike: It’s a quadrilateral

Teva: And 180 x 4 = 720…. So it DOES work in that case!

Mike: Rounding to 90 degrees. Uh-huh! It’s not a proof, but it’s 
an example.

Teva decided to capture the conjecture in the class Google Doc:

Teva: I’m going to type it in here. As we approach a cone angle of 
180 times N from below …

Mike: The [Teva’s Surname] Theorem

Teva: …the sum of the interior angles of an n-gon will approach 
zero. And the idea is that the sum of the interior angles of an 
n-gon that includes the cone point is equal to 180*N minus the 
cone angle.

The group then turned to further testing:

Teva: It works with that one [pointing to Olivia’s paper model]. Did 
you measure on this one yet [pointing to one of Tracy’s constructions]?

Tracy: sum is… 20 + 30 + 40… Ok yah. This [the cone angle] 
was 450.

Teva: The total angle sum of the triangle was 90.180*n = 
540 – so ….

Mike: WOW!

They continued to try examples to verify the conjecture in 
particular cases, and they also explored different ways of looking at 
the insight. Apparently inspired by generalizing a known fact about 
the triangle on the plane, Teva thought aloud:

Teva: A corollary—anything that’s a multiple of 360, the interior 
angles around the cone point would sum to 180… so, for 360x1, 
a triangle has interior 180. For 720, a 5-gon has interior 180.

Olivia: So, this was a … 5-gon on a 720 cone.

Teva: A 5-gon on a 720, the angles will add up to 180. If the cone 
angle is 180N, then for a N+1 gon, the interior angles will add 
up to 180.

Mike: I think there’s something — I think there’s some even-odd 
going on.

Teva: Any cone angle 180N, the sum of the interior angles … of 
an N+1 gon will be 180.

Mike: Yes yees—sorry. 720 … times 4, so a pentagon …

Mike: The plane is 2 * 180. Therefore, a 2+1 gon … triangle… has 
interior angles 180!

Mike recognized that this conversation was another way of 
drawing out implications of the main conjecture, and he saw how it 
could be expanded beyond the domain they had explored to this 
point – back to cones of cone-angle less than 360 degrees.

Mike: So if our theory is correct, this would all be true. [pause] 
And that would also mean that a 2-gon in a 180 cone would have 
interior angle 180…

Olivia: … which makes sense! Because remember they [the two 
ends of a geodesic] are parallel.

Mike: Right? Like this guy? [picks up the unfolded paper model 
from the prior class].

Teva: And you  would just connect it [i.e., the drawing a line 
between the two parallel rays would make a 2-gon, with 2 
supplementary angles].

Mike: OOH!!!

Upon making this extension and connection to the prior week’s 
work, Mike was unable to contain his enthusiasm and jumped up 
from his seat.

Teva: But we have to check it. I think we’re right about

Mike: … except for when N is zero. Like you can’t …

Mike recognized that the formula makes sense for only positive 
integers N. But now that the 2-gon had been incorporated, there were 
also opportunities to explore 1-gons (geodesics and their self-
intersections), where the formula also held. For instance, on a 
90-degree cone, a geodesic self-intersects at 90 degrees. For this 1-gon, 
180*1–90 = 90. They continued to connect existing data to their 
conjecture – for example, a triangle on a 495-degree cone, that they 
created by splicing a 135-degree sector into a disk, had interior angles 
summing to 45 degrees.

Although the group had already touched on cones of cone-angle 
less than 360 degrees above, with the 180-degree cone, this was still a 
novel area.

Olivia: That’s really cool!

Teva: The only thing, it is not so helpful with is when we get less 
than 180 as the cone angle. Then you can make any n-gon, and we do 
not know about the… WELL, I wonder …
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Mike: Like we should …

Teva: Like if I made a 3-gon on a 180, then it should sum up to 
360. I assume, but maybe it doesn’t hold, but that it would also 
work for like… ‘cause we were just looking at triangles whose 
angles sum up to less than 180 because we  were looking at 
[cones > 360]. But I  assume it would also hold if it’s more 
than 180.

After a while longer working with the models, Olivia raised a 
related question about the turn angles (or “exterior angles”) of the 
shapes they have been constructing:

Olivia: I wonder what the exterior angles would do ….

Olivia tested with the 495-degree cone that they had 
analyzed earlier.

Olivia: The turn angles on the 495 [360+135] cone, add up to 492.

Teva: It WOULD makes sense that the turn angles would add up 
to the cone angle!

This finding, too, was closely connected with the main conjecture, 
and it also made a link with the first theorem that the students ever 
formulated in the course – namely, for the plane [360-degree cone] the 
total turn angle of a [non-self-intersecting] polygonal path is 
360 degrees.

The final leap that the group made in this session occurred as 
Olivia, Teva, Tracy, and Mike presented their findings to the class. This 
exchange was lost to the video record, as the camera’s battery died, but 
the other group asked whether their conjecture could be extended to 
the cylinder. One of the students proposed that the cylinder might 
be thought of as a kind of “degenerate” cone with cone angle 0. A 
“monster” (Lakatos, 1976) that the class had discovered earlier, on the 
cylinder, was a “triangle” that circumnavigated the cylinder (see 
Figure 6).

In light of the present discussion, this could be a candidate for 
applying the Theorem. The interior angles of this “monster” triangle” 
were: 120, 300, 120, which produced an angle sum of 540. The class 
was delighted to find that this did in fact equal 180*3 minus the ‘cone 
angle’ (if taken to be 0)!

6.1.3. Summary of the cones investigations
Across these two sessions, MTLs built upon features of cones and 

their models that were salient to them—whether because they were 
puzzling and distinctive or because they suggested connections with 
phenomena characteristic of other surfaces (e.g., spheres or 
cylinders). In the first session, they began with open explorations, in 
which they struggled to balance intrinsic and extrinsic perspectives 
and to understand the affordances and limitations of different model 
types. In the course of that session, they recognized that the 
distinctive forms of symmetry of the cone (rotation and dilation 
about the cone point) allowed for manipulations of physical models 
(e.g., Mike’s technique for shifting the seam), and enabled drawings 
that initially appeared as particular cases to be understood as general 
(e.g., Dillon’s “there is just one type of line”). Gestural expression and 
analogies with prior investigations supported the practical 
dissemination of these insights among the group. In the second 
session, the group explored polygons enclosing the cone point—
leveraging Dillon’s insight about geodesics to make general existence 
and non-existence statements, as well as quantitative claims about 
angle sums of such polygons. Having simplified the problem on a 
cone with given cone angle, they were free to consider how their 
claims varied as the cone angle varied. They used definitions flexibly 
and powerfully (e.g., their shifting definition of n-gon), and they 
generated parameterized systems of claims, which ended in unifying 
not only cones of all angles, but also the cylinder as a “degenerate” 
case. In pursuing this investigation, they leveraged each other’s 
distinctive perspectives (e.g., Teva’s intrinsic sense; Mike’s willingness 
to brainstorm; Olivia’s and Tracy’s persistent construction and 
measurement of cases), to refine, expand, and prove their claims.

6.2. Impact of a semester of MathViz 
investigations

Students’ learning journals provided insight into how they 
experienced the course and how it impacted their emerging identities 
as mathematics teachers, addressing Research Question 2. To give 
voice to all of the students in this iteration of MathViz, I draw upon 
the class’s final journal entries, in which they reflected on the course 
as a whole. I  identified three themes across their entries, each 
described in a section below.

6.2.1. The empowering experience of extended, 
collective, and student-driven investigations

Nina described how the investigations of the course helped her to 
appreciate her own ability to think creatively in mathematics, and to 
recognize the role of such thinking in learning:

Continuously asking ‘why’ questions, I  learned how to form 
wonders, brainstorm ways to investigate, and answer my own 
questions with my own findings. Through this, I found out that math 
can be very creative and self-driven. … The best part of being creative 
with math was that the results were always unexpected. It was more 
than just not knowing the answer to my own question. Sometimes, 
I was confused by my own questions. Sometimes, I was wondering if 
my questions had any substance or novelty. Sometimes, the answer 
was given to me and I did not understand how it was derived. All of 
these experiences were frustrating and challenging, but at the same 
time, they were captivating and encouraging.

300°

120° 120°

FIGURE 6

A “triangular” turtle path on an “unrolled” version of the cylinder. 
(To create the cylinder, “glue” the left and right edges.) This path 
produces “interior” angles (measured above the path) of 120, 
300, 120.

https://doi.org/10.3389/feduc.2023.1165228
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Brady 10.3389/feduc.2023.1165228

Frontiers in Education 14 frontiersin.org

As Nina’s comments suggest, it took some time for students to 
become comfortable with the MathViz approach. Jena mentioned how 
the enthusiastic response of a visitor to the class helped her to 
appreciate the class’s achievements:

It was really reinforcing to realize from an outside perspective 
having Bharath [Sriraman] come and participate in our class what 
interesting and out of the box thinking we are doing in this class….It 
made me realize how conceptual the learning we  were doing 
really was.

Similarly, Olivia, who had expressed skepticism about the course’s 
approach early on, came to a strong sense that not only had she 
achieved valuable endpoints of inquiry, but also that the questions and 
conjectures she generated on the way themselves had value. She said 
of her math investigation, “I am  really proud of my findings 
and conjectures.”

The positive affect in these reflections suggests that while making 
mathematics together, they also shifted their images of themselves as 
agentic participants in mathematical practices who were capable of 
making genuine mathematical discoveries. Consistent with the work 
of developing mathematical identities, students noted how much they 
appreciated the supportiveness of their classmates. For example, Nell 
wrote, “Something else that I love is how well-accepted all responses 
are. There is never any negativity in the room and everyone is always 
very supportive of one another.” Clara also wrote:

Our classroom environment specifically gave all of us space to 
grow individually & productively. Yes, we were all on the same path, 
but more open-ended assignments (like this learning journal) gave us 
room to go take detours and side routes. Following our own interests 
not only kept us continually connected to the material, but definitely 
increased our capacity to learn. All of this is really because you gave 
us space to ask questions. Adapting the class to our interests & notions 
was complicated, but showed us that our inquiries & curiosities matter 
& math is so big that we have room to spread out within it. I hope to 
be able to do this someday as a teacher.

Reflecting on her experience over the semester, Jena recalled 
working with Dillon, using polydrons to build polyhedra and envision 
tessellations of spheres (“we struggled to build a perfect sphere and 
felt quite thrilled when we succeeded at the end of class.”) And she 
remembered when she and Nell “thought of using sunlight for the 
purpose of reflection” in a physical model, saying “we found such a 
cool approach” to study that isometry transformation. Finally, she 
recalled “mathematical debates between Olivia, Clara, and I about 
what makes a triangle a true triangle” (across different surfaces). 
About these images of making mathematics, Jena said: “These 
sounded like they were heading nowhere at the moment, but looking 
back, they were all precious explorations. As a class, I truly think that 
we broadened our perspective on math. I very much enjoyed our 
growth and struggles!” Finally, Teva wrote:

This course has given me the opportunity to engage with math in 
a new way and has prompted me to think more broadly about what 
math is. Being a student in this class also reminded me of my love for 
math.... The second part of the course really gave me the opportunity 
to think about and experience what it means to create math. It was 
new for me to have the opportunity to come up with math conjectures 
and then share them with my peers as a mathematical discovery.

Concrete experiences of making mathematics together gave 
students new perspectives on the nature of mathematics and on what 
a math classroom could be like. These new images featured a sense 

that all students were capable of creativity and mathematical 
innovation: for instance, Dillon said, “I’ve never been sure that a math 
classroom can facilitate genuine exploration for everyone in the class, 
but I think you are pulling this off.”

6.2.2. Contrasting images of mathematics 
compared to those garnered in a Math Major

As suggested above, MathViz contrasted with students’ prior 
experiences of mathematics as students. Registering this contrast is 
important, as it underscores the challenges involved for MTLs in 
fashioning images of mathematics as open and inviting and of 
themselves as capable makers of mathematics. Along these lines, Teva 
wrote, “Despite having majored in math in college, I never had the 
opportunity to participate in ‘making’ math. Math was always 
presented to me as something that was already established, and 
I viewed it as a set of rules to be followed to come to a correct answer.” 
She now questioned this as a model for her teaching:

Because I enjoyed math, I did not have any issues with the way 
math was presented to me and my resulting relationship with it as 
someone “doing” something that was already established. However, it 
was clear to me that my peers (when I was a student) and many of my 
students (when I was a teacher) were not okay with this relationship 
with math and found learning math unengaging and irrelevant to 
their lives. I think reframing math as something that students can 
create has the potential to make it much more meaningful to the 
students. ….[I] hope that I’ll be  able to give my students the 
empowering experience of being able to ‘make’ math by investigating, 
discovering, and conjecturing about math topics that we  cover 
in class.

Similarly, Tracy drew a contrast with her other math classes, on 
the topics of authentic teamwork, the diversity of mathematical 
inquiry, and making connections between math and other topics:

All my other math classes are standard lecture style, with 
professors telling me information that I have to memorize. In this 
course we had to figure most information out ourselves, which I really 
enjoyed. I  really got to understand and experience the teamwork 
required in math that I do not really experience in my other classes. 
...This class really made me view geometry and math in a whole 
different view, especially seeing how ideas from this class [were] made 
into very different math investigations for each person. It was 
interesting to see different views of mathematics and how it is 
everywhere, even in topics and subjects that do not seem related to 
math at all.

6.2.3. Nina’s contrast focused on her sense of 
agency

Instead of being told exactly what to learn and memorize, I felt 
like a pioneer in control of the journey. Continuously asking ‘why’ 
questions, I  learned how to form wonders, brainstorm ways to 
investigate, and answer my own questions with my own findings. 
Through this, I  found out that math can be  very creative and 
self-driven.

Finally, Dillon said he felt that “all…math majors should have a 
course like this in their major.” And he remarked that “It is funny that 
I’m getting this in a Math Ed class though.” This suggested that the 
value he found in MathViz was intrinsic to the making of mathematics, 
and not exclusively centered in pedagogical matters. Indeed, across the 
group, these comments suggest that students did not simply enjoy 
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MathViz as a course, but that they appreciated it as an opportunity to 
construct “a whole different view” of mathematics—one where the 
theorems were not “already established” facts that students simply 
need to “memorize” and where a learner is “a pioneer in control of 
the journey.”

6.2.4. Students’ sense of the value of 
technology-enabled models for their own future 
teaching

Teachers in the US face significant logistical barriers in integrating 
technology in their classrooms. When MathViz students reflected on 
the role of computational models in their future classrooms, they were 
thus in part signaling the value they attributed to using models in 
making mathematics. Teva made connections between her experiences 
using technologies as a student in MathViz and her plans for 
future teaching:

The beginning of the course introduced me to technology that 
could be used in a math classroom, and … examples of what its 
implementation could look like. I’m excited about the possibility of 
using some of the technology as an exploratory environment in math 
classrooms, especially since most technology I used when teaching 
was just to get students to practice & more like animated worksheets. 
The first part of the course opened up for me the large sea of 
possibilities for which technology can be used when teaching math.

For Nina, too, technology-supported models and environments 
helped to substantiate a coherent alternative approach to mathematics:

Moving on from Scratch to Turtle Geometry, the hands-on 
coding allowed me to be  more interactive and creative. Then, as 
we  transitioned to transformations, I  began to drift away from 
hanging onto things I knew to questioning the most fundamental 
elements, such as ‘What is a line?’ ‘What is a straight line?’ ‘What is a 
curve?’ It was such a notable transition. In the meantime we also had 
fun while doing this.

Jena reflected that “It was certainly useful to use both physical 
models that we could cut, manipulate and visualize in our hands as 
well as the virtual model on both GeoGebra and turtle programming.” 
She also felt that this diversity of media could be responsive to student 
diversity: “I think that as technology becomes more advanced and 
more integrated into classrooms it is important as their teacher to 
be accustomed to different forms of learning. Some students will love 
the new technology and others will only be able to visualize it with 
physical models.”

Finally, Clara wrote about the value she saw in “placing the 
responsibility of technology on students” She remarked that,

We were able to learn such valuable lessons with our computers 
to a depth we  could not have reached on paper. Thinking about 
teaching high school math, 3D visualization software can help my 
students continue their learning. Especially for more visual learners, 
technology might make more sense. Moreover, if I want students to 
take more ownership over their math, the inclusion of computers 
might open up a space for their exploration. Overall, seeing computers 
as a tool—with a specific use for a specific time and place is beneficial 
to a productive classroom with engaged learners.

These views of computational modeling tools as supporting 
students in exploring questions, inquiring into fundamentals, and 
taking ownership of their learning are coherent with MTLs’ experiences 
of mathematical investigations in which they saw models across 
modalities as supports for all students in making mathematics together.

7. Discussion and conclusions

The MathViz course offers a proof of concept for a proposition 
central to a broader debate about the nature of STEM: namely, that 
mathematical creativity and the experience of making mathematics 
are essential features of mathematical practice, to be experienced by 
all participants, rather than only a select few. The course offered Math 
majors in the university’s Secondary Education program a new view 
of mathematics learning and teaching that they found useful in 
conceptualizing their future teaching practice. While it is problematic 
that not all MTLs have such experiences within their mathematics 
major, it is encouraging that an education course could support a 
change in students’ conceptions (cf. Liljedahl, 2005, on the impact of 
experiences of discovery in math).

It is worth recognizing that not all philosophers of science and 
mathematics have held the view that epistemic creativity is accessible 
to everyone, even within the professional sphere. Indeed, Kuhn’s (1970) 
famous distinction between “revolutionary” science (which occurs 
infrequently) and the “puzzle solving” of “normal science” (which 
occurs regularly), can implicitly limit the experience of disciplinary 
creativity to the infrequent eruptions of exceptional contributors. At 
the level of epistemology, this view focuses the study of scientific 
discovery on the psychology of genius rather than on the logic of 
discovery (Lakatos, 1976) or of the collective practices that characterize 
“epistemic cultures” (Knorr Cetina, 1999).

Within mathematics, too, the view that creativity might be  a 
property of the few has been widely held. Henderson (1996) describes 
a dispute between two famous mathematicians on this subject. René 
Thom, the renowned topologist, argued in a 1971 paper about the 
importance of cultivating “intuition” in all mathematics students, and 
in particular in the curricula of public schools (Thom, 1971). In a 
rebuttal, Jean Dieudonné wrote:

I am convinced that, since 1700, 90 per cent of the new methods 
and concepts introduced in mathematics were imagined by four or 
five men in the eighteenth century, about thirty in the nineteenth, 
and certainly not more than a hundred since the beginning of our 
century. These creative scientists are distinguished by a vivid 
imagination coupled with a deep understanding of the material they 
study. This combination deserves to be  called “intuition.” 
(Dieudonné, 1973, p. 16, qtd in Henderson, 1996; emphasis added).

Given this, Dieudonné argued that mathematics teaching will 
be entrusted to merely “adequately educated” teachers, who “will not 
be gifted with the exceptional ‘intuition’ of the creators” (16).

In contrast to Dieudonné’s elitist view, Lakatos’s (1976) perspective 
on the “logic of discovery” places emphasis on collective and discursive 
interactions as the source of innovation and creative power. Refining the 
views of his mentor, Karl Popper (1963), Lakatos paints a picture of 
mathematical work that features bold conjectures made by ordinary 
participants, along with a communal, discursive process of “proving,” 
which foregrounds collective efforts at “improving” these fallible 
conjectures. There are also signals that a turn to collective, collaborative 
inquiry is actually occurring within professional mathematics. Fields 
Medal winner Timothy Gowers envisioned and supported the successful 
pursuit of “massively collaborative mathematics” (Gowers and Nielsen, 
2009) in the Polymath projects, which resulted in the proofs of six 
theorems over five years. More broadly, Grossman (2002) documented 
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a substantial and accelerating trend toward co-authorship in the 
MathSciNet Mathematical Reviews database.

Mathematics education can contribute to the epistemological 
debate on collaboration and mathematical creativity by developing 
effective instructional designs that honor the creative power of all 
individuals and groups and, most importantly, give them concrete 
experiences of the thrill of “making” mathematics together. And we can 
contribute to the design of environments that foster inclusive 
mathematical collaboration by supporting and studying such activity in 
classrooms that involve MTLs, whose role as both learners and 
emerging teachers positions them as valued informants on the processes 
involved in creating and participating in communities of inquiry.
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