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To reach for abstraction is a major but challenging goal in mathematics 
education: teachers struggle with finding ways how to foster abstraction in their 
classes. To shed light on this issue for the case of geometry education, we align 
theoretical perspectives on embodied learning and abstraction with practical 
perspectives from in-service teachers. We  focus on the teaching and learning 
of realistic geometry, not only because this domain is apt for sensori-motor 
action investigations, but also because abstraction in realistic geometry is under-
researched in relation to other domains of mathematics, and teachers’ knowledge 
of geometry and confidence in teaching it lag behind. The following research 
question will be  addressed: how can a theoretical embodied perspective on 
abstraction in geometry education in the higher grades of primary school inform 
current teacher practices? To answer this question, we  carried out a literature 
study and an interview study with in-service teachers (n = 6). As a result of the 
literature study, we consider embodied abstraction in geometry as a process of 
reflecting on, describing, explaining, and structuring of sensory-motor actions 
in the experienced world through developing and using mathematical artifacts. 
The results from the interview study show that teachers are potentially prepared 
for using aspects of embodied learning (e.g., manipulatives), but are not aware 
of the different aspects of enactment that may invite students’ abstraction. 
We  conclude that theories on embodiment and abstraction do not suffice to 
foster students’ abstraction process in geometry. Instead, teachers’ knowledge of 
embodied abstraction in geometry and how to foster this grows with experience 
in enactment, and with the discovery that cognition emerges to serve action.
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1. Introduction

Today’s geometry education in primary school is moving away from focusing on formal spaces 
and shapes toward a growing role for spatial reasoning and geometric problems encountered in 
daily life (Clements, 2003; Jones and Tzekaki, 2016; Doorman et al., 2020). In this education 
inspired by “realistic geometry” (De Moor, 1999), students interpret distances, shapes and angles, 
orient themselves on routes using digital maps in combination with a real-life view, and discover 
figures and constructions. While exploring spatial and geometric phenomena, such as projections, 
shadows, mirrored images and symmetries, students engage in problems with the goal of grasping 
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the underlying mathematical and geometrical concepts and structures. 
This process of understanding the structure of a mathematical concept 
is regarded as abstraction (Dreyfus, 2014). Although recognized as a key 
component of mathematical thinking (Drijvers, 2015), which has 
become increasingly important in primary education in recent years 
(Meijerink et al., 2009), teachers still struggle with the issue of how to 
foster abstraction in all their students (White et al., 2012).

Most contemporary theoretical perspectives on abstraction relate 
to the mathematical topics of numbers and algebra, leaving the field 
of geometry underexposed (Breive, 2022). Where the Van Hiele level 
theory of geometric understanding (Van Hiele, 1986) does relate to 
abstraction, its applications primarily relate to the abstraction of 
formal shapes, forms and solids. For a realistic geometry approach, a 
suitable theory on how abstraction can be fostered is lacking, as is 
knowledge about fruitful ways for teachers to incorporate such a 
theory in their teaching practices. As there is a danger of making 
students engage in abstraction without a concrete basis (White and 
Mitchelmore, 2010), teachers need to be able to invite students to take 
part in the process of abstraction and simultaneously maintain a 
strong link to the concrete situation. The question therefore arises how 
the process of abstraction in geometry can be brought about from 
such a concrete starting point.

In exploring the question of how abstraction in geometry 
education can be fostered, the theory of embodied cognition may 
provide a fruitful approach. Embodied cognition theory proposes that 
all cognition, including mathematic thinking skills, is rooted in bodily 
experience, i.e., in the actions and interaction of the body with the 
physical environment (Abrahamson and Lindgren, 2014). If 
we  consider that abstraction arises from the actions the learner 
undertakes, teachers need to be  able to acknowledge and elicit 
students interactions within the learning environment, which—in the 
case of realistic geometry—is a real-life geometric situation.

Research on the teaching and learning of geometry indicates that 
using manipulatives and physical manipulation is important for 
gaining geometrical understanding (Jones and Mooney, 2003; 
Clements et  al., 2018). However, using manipulatives does not 
automatically lead to abstraction (Simon, 2022). The role of the 
teacher in guiding students toward abstraction is therefore essential. 
Fostering students toward abstraction proves to be a challenge for 
many teachers (White et  al., 2012; Simon, 2022). For the case of 
geometry, this seems even more demanding, since teachers often lack 
sufficient knowledge of geometry for teaching (Jones and Tzekaki, 
2016; Clements et  al., 2018), and many of them feel insecure in 
teaching geometry (Kuzle, 2022). The challenge in teacher education, 
to prepare teachers for fostering abstraction arising from students 
physical manipulation, is not only to pay more attention to geometric 
knowledge, but also to focus on emerging perspectives in geometry 
education, such as embodied cognition (Jones and Tzekaki, 2016; 
Sinclair et al., 2016).

In this paper, we  aim to explore the first steps needed for an 
embodied abstraction approach to geometry in teacher education. To 
do so, we integrate two approaches in this study. First, we investigate 
the theoretical perspective of embodied cognition for abstraction in 
geometry education. Second, we investigate teachers’ experiences and 
needs in their teaching toward abstraction through realistic 
experiences. This is done through semi-structured interviews. The 
following research question will be addressed: how can a theoretical 
embodied perspective on abstraction in geometry education in the 

higher grades of primary school inform current teacher practices? In 
answering this question, we  hope to contribute to the teachers’ 
professional development in the fostering of abstraction in accordance 
with the embodied perspective.

2. Materials and methods

2.1. Theoretical perspective

To describe the theoretical perspective on the fostering of 
abstraction in geometry through the lens of embodiment, 
we  performed a narrative review in combination with a scoping 
review (Arksey and O’Malley, 2005). We started with the scoping 
review to identify the scope of the combined field of abstraction, 
realistic geometry and embodiment. The research question used for 
the scoping review reads, what theoretical perspectives on abstraction 
and embodiment in realistic geometry education are relevant for the 
teaching and learning practice of primary school teachers? To select 
relevant publications we performed databases searches in Scopus, Web 
of Science and Eric using a single query.1 The search was completed 
on December 18, 2020. The combined results were organized in 
Mendeley Desktop (reference management software) and checked for 
duplicates. This resulted in 84 articles. The first selection for exclusion 
was done based on criteria for title and journal/publisher. The second 
selection for inclusion, performed by the first author, was done by 
reviewing the abstracts of each remaining article. The resulting articles 
all deal with the three themes: geometry (or mathematics), abstraction 
and embodiment. However, none of these describe abstraction for the 
case of realistic geometry. This showed that more theoretical work was 
needed to describe an embodied approach to abstraction relevant for 
teaching geometry, and to support in-service teachers’ practice. For 
the narrative review relevant papers were selected by using the 
technique of snowballing on some key articles in the previous 
mentioned selection. Combined with ideas from realistic geometry 
education and relevant theories on embodiment and action-based 
approaches to abstraction, this allowed for a synthesis toward a 
description of abstraction from an embodied perspective applicable 
for geometry learning.

2.2. Teacher perspective

Information about teacher practice was obtained by performing 
an interview study on primary school teachers’ experiences with and 
opportunities for embodied abstraction in geometry. The purpose of 
this interview is twofold: first, to investigate teachers’ views on and 
knowledge of geometry teaching and learning, second, to investigate 
experiences and needs related to the process of abstraction in 
geometry. For this, our view on abstraction, as it emerged from the 
theoretical perspective, was used and presented as a definition.

The conducted interviews were semi-structured. The questions 
were arranged in groups with the following topics: (1) geometry 

1 Query: [TITLE-ABS-KEY (abstracti* OR abstractn*)] AND [TITLE-ABS-KEY 

(embodi* OR sensor*)] AND [TITLE-ABS-KEY (math* OR geom* OR spatia*)].
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education – including the topics (1a) acting, (1b) using manipulatives 
and (1c) verbalizing in relation to geometry; (2) knowledge of knowing 
why;2 (3) the process of abstraction; (4) abstraction related to a 
particular geometry problem, and (5) fostering abstraction. The six 
interviewees were teachers from four different partner schools of the 
University of Applied Sciences Utrecht. They taught Grades 3 (teacher 
A), 3 and 4 combined (B), 4 (E, D), 4, 5 and 6 combined (C) and 6 (F). 
Teachers B, C and F have 10 plus years’ experience in the upper grades 
of primary school; teachers A and E have two plus years’ experience, 
and teacher D has 1 year’s experience. Teacher C is an experienced 
Montessori teacher. Each interview lasted between 50 and 60 minutes 
and was audio recorded. The recording was transcribed verbatim using 
the Automatic Transcription of Dutch Speech Recognition website.3

To analyze the interview data, the transcripts were coded in 
ATLAS.ti, using a combination of a deductive and inductive approach 
and in collaboration with a second researcher. First, a coding scheme 
was made consisting of seven code categories: abstraction, geometry, 
knowing why, verbalizing, reflecting, acting and using manipulatives, 
and general teaching and learning. These categories were based on the 
interview structure as well as theory presented in this study. The 
category “general teaching and learning” was used because we foresaw 
that some quotations might be relevant and would not fit the other 
categories per se. The actual coding process was done via inductive 
coding (Saldana, 2009). Relevant quotations were selected by the first 
author and assigned a category. They were coded further via open 
coding in ATLAS.ti. The final coding scheme was made in cooperation 
with the second author. Quotations including their assigned codes 
were exported into an excel sheet. The second author commented on 
the codes and the allocations of the quotations. This process was 
repeated two times, after which agreement was achieved. The final 
coding scheme is presented in Table 1.

2 Knowledge related to understanding, explaining, formalizing, abstraction, 

analyzing, and giving overview (Meijerink et al., 2009, p. 6).

3 https://webservices.cls.ru.nl/asr_nl

3. Results

In this section, the results from the theoretical study and the 
interview study are outlined. The synthesis of these findings will 
be described in the discussion section, as well as opportunities and 
implications for teacher education.

3.1. Results from the theoretical 
perspective

In this subsection, we synthesize the most relevant perspectives 
on abstraction, geometry in primary education and embodied 
cognition. We end with defining abstraction in realistic geometry 
through the theoretical lens of embodied cognition.

3.1.1. Abstraction
The topic of abstraction has been extensively studied throughout 

the history of mathematics education, and has remained popular in 
the last two decades (Hershkowitz et  al., 2001; Ferrari, 2003; 
Mitchelmore and White, 2007; Nemirovsky et al., 2020). Most of these 
contemporary studies focus on abstraction related to the mathematical 
topics of numbers and algebra. Concerning the field of geometry, the 
field of realistic geometry remains underexposed.

Considering mathematics education, abstraction is described by 
Dreyfus (2014) as a process “by which learners attempt, succeed, or 
fail to reach an understanding of the structure of a concept or a 
strategy or a procedure” (p.  5). Since abstract concepts are often 
learned in isolation (White and Mitchelmore, 2010) “without engaging 
in the abstraction process” (p. 207), White and Mitchelmore suggest 
that the process of abstraction should keep a strong link between the 
mathematical concept and the experience from which it emerges. This 
approach to abstraction is influenced by Skemp (1987), who describes 
abstraction as an activity where students become aware of 
mathematical similarities through their experience, culminating into 
a concept. Denoting similarities is very similar to Piaget’s notion of 
empirical abstraction (Beth and Piaget, 1966). Empirical abstraction 
entails that common characteristics are perceived in different objects, 
generalizations are made accordingly and certain classes or concepts 

TABLE 1 Coding scheme with code categories and codes used.

Code category Codes used Examples of quotations and [code used]

Geometry Description, knowledge, textbooks, teaching method “There are a those (in my class) who see it immediately (on paper), 

they have that insight” [teaching method]

Abstraction Differentiation (meeting individual needs), experience, 

interpretation, process in geometry, conditions, asking questions

“I do not think doing things differently, but consciously” [process 

in geometry]

Knowing why Differentiation, experience and knowledge, interpretation, teaching 

and learning

“I do not think I teach this per se, but I do come back to it in the 

discussion of the task” [teaching and learning]

Verbalizing Differentiation, describing, thinking and explaining, teaching and 

learning

“If you can verbalize it well, you understand it really well” 

[thinking and explaining]

Reflecting Reflecting “I think reflecting is done to a lesser extent”

Acting and using 

manipulatives

Differentiation, teaching and learning, acting physically, acting 

mentally

“I think it would be better to do this more, but it (lessons) are too 

much textbook oriented” [acting physically]

General teaching and learning Differentiation, modeling, textbooks, investigative learning, 

collaboration, insight, miscellaneous

“The more concrete and easy it will be for the teacher, the faster 

they will do it” [miscellaneous]
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are established. However, in Mitchelmore and White’s view, abstraction 
differs from such a generalization idea. They claim that “abstraction 
creates a new mental object (a concept) whereas generalization 
extends the meaning of an existing concept” (Mitchelmore and White, 
2000, p. 212).

According to Piaget (1971), mathematical knowledge can 
be  established via abstraction in two possible ways: (1) from the 
objects that the learners acts upon and (2) from the actions itself. The 
first relates to empirical knowledge (on objects experienced) and is 
therefore regarded as empirical abstraction. The second possibility of 
abstraction relates to action, of which Piaget states “we can also take 
into account the action itself, or operation if you  will, since the 
transformation can be carried out mentally… abstraction is drawn not 
from the object that is acted upon, but from the action itself ” (p. 16). 
This type of abstraction is named reflective abstraction by Piaget. 
Where abstraction relates to the transfer between different hierarchical 
levels, the term reflective refers to the reorganization of thought on 
actions on these levels. Reflective abstraction, therefore, is based on 
the coordination of actions. An example of reflective abstraction is the 
discovery that the total number of objects in a set is unaffected by how 
the individual objects are counted. Cetin and Dubinsky (2017) 
describe reflective abstraction as the process by which new mental 
objects are formed via reflecting on actions on a lower level in order 
to reconstruct and integrate these on a higher level. In his later work, 
Piaget (1985) stated that reflective abstraction might be the mechanism 
by which all mathematical concepts can be constructed, and as such 
forms the basis for all mathematical thinking.

The importance of action leading toward abstraction is also 
recognized by Sfard (1991). According to Sfard, the process of learning 
mathematical concepts (and subsequently the process of abstraction) 
starts with operations on (lower level) mathematical objects. Sfard 
describes three stages in the process of concept formation leading to 
abstraction: interiorization, condensation and reification. Reaching a 
higher level of operating occurs already at the interiorization stage. 
Interiorization suggests becoming familiar with a mathematical 
process by operating, e.g., counting or dividing. A process has been 
interiorized if it “can be carried out through (mental) representations” 
(p. 20). During the second stage, condensation, the structure of the 
process becomes apparent in its totality and “a person becomes more 
and more capable of thinking about a given process as a whole, 
without feeling an urge to go into details” (p. 19). Interiorization and 
condensation happen gradually according to Sfard, whereas reification 
is an ontological shift where “a process solidifies into an object, into a 
static structure” (p. 20). During reification, the notion of the process 
is fully grasped; process and concept are merged, which finalizes the 
process of abstraction.

Hershkowitz et al. (2001) consider abstraction as an activity of 
vertically reorganizing previously constructed mathematics into a new 
mathematical structure. This new structure is then represented “often 
in a more abstract or formal form than the original” (Hershkowitz 
et  al., 1996, p.  144). The term vertical originates from realistic 
mathematics education (RME) and refers to vertical mathematization. 
According to Freudenthal (1968), the focus in mathematics education 
should not be on mathematics itself (as a closed system) but on the 
process of mathematization. During mathematization a student 
re-invents mathematics by constructing mathematical relations from 
experienced problem situations and from there goes on to develop 
more formal mathematics (Freudenthal, 1991). Treffers (1987) 

describes two types of mathematization, horizontal and vertical; a 
distinction later adopted also by Freudenthal (1991). Within 
horizontal mathematization, “students come up with mathematical 
tools, which can help to organize and solve a problem located in a 
real-life situation” (Van den Heuvel-Panhuizen, 2001, p. 3), and during 
vertical mathematization, the focus is on “the process of reorganization 
within the mathematical system itself.” White and Mitchelmore (2010) 
recognize abstraction in both types of mathematization.

Considering the above, the theoretical views on abstraction 
emphasize (a) abstraction is a process, (b) that encompasses the 
developing of new mathematical concepts or structures, (c) that takes 
place through action, and (d) includes reaching a higher level of 
thinking and acting by reflecting.

3.1.2. Geometry
Geometry in primary education is a multifaceted field of 

mathematics. It encompasses the study of shapes and figures and deals 
with spatial phenomena and their relation to mathematical concepts. 
This diversity of activities is clearly described by Usiskin (1987), who 
discerns four major themes of geometry: (a) visualizing, drawing and 
constructing figures; (b) studying the spatial aspects of the physical 
world; (c) representing nonvisual mathematical concepts and 
relationships; and (d) standing as a formal mathematical system. 
Clements (2003) describes geometry in Grades pre-K to 12 as follows: 
“the study of spatial objects, relationships and transformations; their 
mathematization and formalization; and the axiomatic mathematical 
systems that have been constructed to represent them” (p. 2). This 
definition is particularly significant because of the mentioning of both 
spatial objects and relations, and the process of mathematization. As 
we have seen in the previous section, mathematization relates to (the 
process of) abstraction.

Traditionally, the focus in geometry education has been on 
Euclidian geometry, in which the study of two-dimensional figures 
and shapes plays a central role (Sinclair and Bruce, 2015). In their 
study on abstraction where gestures are used, Kim et al. (2011) focus 
on such geometric shapes. Modern approaches to geometry, however, 
show an increasing focus on spatial reasoning (Sinclair et al., 2016). 
Spatial reasoning is described by Sinclair et  al. as “the activity of 
imagining static or dynamic objects and acting on them (mentally 
rotating, stretching, etc.)” (p.  6) and can help a child to learn to 
understand basic geometric principles like: “boundedness, flatness, 
parallels, perpendiculars, curves, distance, and mapping” (p.  6). 
Clements et al. (2018) show the importance of spatial reasoning in 
claiming that “young children’s abilities to engage in geometric 
thought and spatial reasoning can support their overall mathematical 
and cognitive development” (p. 2). Contrary to what had long been a 
popular belief, Newcombe and Stieff (2012) show that spatial 
reasoning can be improved through education. The growing role of 
spatial reasoning in geometry education is also recognized in the five 
major trends that Sinclair and Bruce distinguish in contemporary 
research on geometry in primary school.

“(1) the role of spatial reasoning and its connection to school 
mathematics in general and school geometry in particular; (2) the 
function of drawing in the construction of geometric meaning; (3) 
the affordances of digital technologies in geometric and spatial 
reasoning; (4) the importance of transformational geometry in the 
curriculum (including symmetry as well as the isometries); and, 
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(5) extending primary school geometry from its typical passive 
emphasis on vocabulary (naming and sorting shapes by 
properties) to a more active meaning-making orientation to 
geometry (including composing/ decomposing, classifying, 
mapping and orienting, comparing and mentally manipulating 
two- and three-dimensional figures).” (Sinclair and Bruce, 2015, 
p. 320).

The aforementioned trends and activities resonate with the 
realistic geometry that emerged in the Netherlands in the twentieth 
century (De Moor, 1999). Since the 1970s, an intuitive approach to 
geometry (strongly related to spatial reasoning) began to develop, 
focusing on (reasoning about) activities with vision lines, vision 
angles, sighting, rays of light and with projecting, shadowing, and 
perspective (De Moor and Groen, 2012). This so-called vision 
geometry was inspired by Freudenthal’s ideas on realistic geometry 
(Freudenthal, 1973). Freudenthal states: “geometry is grasping space 
(…) that space in which the child lives, breathes and moves. The 
space that the child must learn to know, explore, conquer, in order to 
live, breathe and move better in it” (p.  403). Per Freudenthal, 
geometry should be meaningful and encompass problems, tasks and 
activities experienced in our direct surroundings, with the aim to 
learn about mathematical objects and concepts. He illustrated this 
approach with questions like “Why does a piece of paper fold along 
a straight line? Why does a rolled piece of paper become rigid? Why 
does a tied paper ribbon show a regular pentagon? And, how do 
shadows originate?” (Freudenthal, 1971, p.  6). Contemporary 
geometry educational programs in the Netherlands are inspired on 
this realistic geometry, and therefore largely based on spatial 
orientation, with little attention for the formal study of geometric 
shapes and figures (Gravemeijer et al., 2007).

In summary, we focus on realistic geometry, the study of realistic 
situations, with an emphasis on spatial reasoning and the discovery of 
geometric and mathematics concepts. We leave aside the more formal 
studies of shape and figures and consider geometry in this study as the 
wide-ranging domain of studying and structuring spatial objects and 
phenomena in the experienced world.

3.1.2.1. Theories on teaching and learning geometry
As we  are not focusing on traditional formal aspects of 

geometry, we leave aside the theory of figural concepts (Fischbein, 
1993) and the theory of figural apprehension (Duval, 1998), and 
only briefly discuss the Van Hiele level model of geometrical 
thinking (Van Hiele, 1986). The Van Hiele model has been very 
influential in describing geometric understanding in terms of five 
consecutive levels. Geometrical thinking starts at the visual level, 
where figures are judged by appearance (in a holistic manner) only. 
At the second level, the descriptive level, properties of figures can 
be described (and analyzed) using language, not necessarily in a 
logical order. It then passes to informal deduction (also named 
abstraction), where properties are logically ordered using reasoning. 
At the formal deduction level, students are capable of delivering 
formal proofs, and at the last level, rigor, students understand the 
whole system of Euclidian geometry. The Van Hiele theory of 
geometric understanding does seem to relate to abstraction, but 
since it primarily applies to the properties and study of figures, 
we  do not consider the Van Hiele levels suitable for pursuing 
abstraction related to realistic geometry.

Characteristic for the teaching and learning of realistic 
mathematics is the concept of different levels of comprehension (Van 
den Heuvel-Panhuizen, 2001). The same holds for realistic geometry 
(Freudenthal, 1971; Goffree and Jansen, 1976; De Moor, 1999; 
Gravemeijer et al., 2007; Doorman et al., 2020). Goffree and Jansen 
describe four stages of teaching and learning geometry: observing, 
doing, thinking and seeing. After observing, a general orientation, the 
student acts and uses manipulatives applicable to the concrete 
situation. Comprehension grows during the third stage, thinking, that 
can be regarded as understanding according to De Moor (2000). In 
the last stage, seeing, “the insight between different phenomena can 
be raised to a higher level” (p. 86).

Reaching a higher level is also advocated by Gravemeijer et al. 
(2007). Central in their approach is the concept of mathematizing 
space (the modeling of geometrical experiences), a process stimulated 
through reflecting and mental imagination, whereby students explain 
problems using drawings, constructions and mathematical concepts. 
Eventually, “a higher abstraction level will be  reached” (p.  91). 
According to Doorman et al. (2020), at this stage “you make a model 
or a drawing to describe the phenomenon with geometrical means. 
Reasoning about these means will help you to develop mathematics 
and to understand the modeled phenomena” (p. 285).

The forming of concepts and structures is key in the process of 
abstraction. In describing learning processes in realistic geometry, 
Doorman and colleagues point to the creation of such structures, 
called “situation models,” that lead to formalization. Learners are first 
presented with explorative activities “through which they can further 
develop their geometrical intuitions” (p.  291). At this stage, 
preliminary structures of the geometric problem can emerge in the 
students’ reasoning. Next, mathematization is elicited by “focusing on 
the development of situation models like vision lines which bring the 
students from the informal to the more formal geometry” (p. 291). 
These models are built on the structures that emerge during the 
students’ reasoning.

The fostering of students’ reasoning and abstraction processes, 
related to realistic geometry problems also concerns the use of the 
right language. Both Freudenthal (1971) and Goffree (1992) emphasize 
the importance of language use and the teacher’s awareness thereof. 
Goffree describes three levels of language use. The demonstrative level, 
where language is used intuitively, the relational level, used in referring 
to movements related to certain positions or objects, and the 
functional level. Here, subjective elements are mostly discarded and a 
more formal (mathematical) terminology is used. Goffree points out 
that to develop mathematical discourse, a student should, when acting 
within a problem situation, be encouraged to use words on a 
functional level. Although these levels are not categorically 
implemented in geometry education, we expect that stimulating the 
use of higher levels of language could enhance students’ reasoning in 
geometry and therefore the process of abstraction.

In short, relevant theoretical views on the teaching and learning 
of geometry distinguish different levels of understanding (Van Hiele, 
1986), acting (Goffree and Jansen, 1976), language use (Goffree, 1992) 
and mathematising and modeling (Gravemeijer et al., 2007; Doorman 
et al., 2020).

Based on the above, the most important elements of teaching and 
learning realistic geometry in primary school are: (1) acting within 
“realistic” problem situations, (2) mental acting and reflecting on that 
acting, (3) verbalizing using mathematical related language and (4) 
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the forming of models and mathematical structures for the 
geometrical situation.

Concerning the process of abstraction in relation to the teaching 
and learning of geometry, the focus is on the discovery of mathematical 
structures in geometrical and spatial phenomena. This is done through 
a process of structuring and reflecting on students’ actions and 
experiences. This central role for action is highlighted in the 
theoretical lens of embodied cognition, which we describe in the 
next section.

3.1.3. Embodied cognition
Embodied cognition theory focuses on the interaction between 

the body and the environment, bringing forth the idea that cognition 
emerges from those interactions and is therefore not restricted to 
brain processes. Regarding an embodied cognition approach to 
mathematics and mathematics education, extensive research has been 
done in the last two and a half decades (Radford, 2009; Abrahamson 
and Sánchez-García, 2016; Mavilidi et al., 2018; Sinclair and de Freitas, 
2019). Embodied cognition is an umbrella term for many theories that 
present a variety of claims, from conservative to radical (Hutto and 
Abrahamson, 2022), regarding the relationship between cognition, the 
body and the environment (Wilson, 2002; Barsalou, 2008; Weisberg 
and Newcombe, 2017). In the next section, some of the these claims 
will be outlined and discussed in relation to abstraction and geometry.

3.1.3.1. Grounded cognition and the role of gestures
The core idea in embodied cognition theory is that action and 

engagement with the environment plays a fundamental part in 
cognitive processes. In conservative embodiment theories, as opposed 
to the strong embodiment stance, cognition is partially dependent on 
our interactions with the environment via the sensory and motor 
systems in which we  live. At the basis of mild embodiment is the 
theory of grounded cognition (Barsalou, 2008). Grounded theory 
rejects the computational view of the mind. The latter holds the idea 
that cognition comprises amodal mental representations (detached 
from the concrete world) that resemble some information units, such 
as formal notations and symbols organized in semantic networks. 
Barsalou states “it is unlikely that the brain contains amodal symbols” 
(p. 618). Instead, cognition is grounded in modal representations 
(including sensual and motoric information). Cognition is thus 
constituted perceptually, as sensory representations of physical stimuli 
are captured and stored. These perceptual representations can 
be reenacted even when the stimuli that shaped these units in actual 
experience are absent. In this way, even abstract mathematical 
knowledge of concepts, relations and structures can be  presented 
by reenactment.

Grounded cognition theory recognizes the possibility that 
cognition can be connected to sensuous experience in multiple ways, 
including “simulations, situated action, and on occasion, bodily states” 
(Barsalou, 2008, p. 619). Although grounded cognition does not deem 
the body necessary for cognition, it acknowledges the importance of 
actions (body-based and gestural) for cognition. Nathan et al. (2014) 
define body-based actions, performed to introduce abstract 
mathematical ideas as “grounding actions,” and conclude that these 
can indeed support mathematical reasoning and therefore abstraction.

Goldin-Meadow and Beilock (2010) propose that gestures can 
bridge action and abstract thought. Not only do gestures reflect the 
actor’s thinking, they give feedback and can alter that thinking. Alibali 

and Nathan (2012) argue that certain types of gestures, used when 
communicating about mathematical concepts, show that mathematical 
cognition “is based in perception and action, and it is grounded in the 
physical environment” (p.  251). They distinguish three types of 
gestures: pointing gestures, representational gestures and metaphoric 
gestures. Pointing gestures are used to indicate “objects, locations, or 
inscriptions in the physical environment” (p. 252) and are often used 
alongside speech. They “reflect the grounding of cognition in the 
physical environment” (p. 277). Representational gestures are gestures 
that “depict semantic content….via handshape or motion trajectory” 
(p.  252). They communicate mental simulations of a learner’s 
perceptions and actions related to mathematical knowledge. An 
example is the movement of one’s hand that depicts the changing slope 
of a mountain road. Processes related to mathematical thinking that 
can be noticed in students’ and teachers’ representational gestures 
might involve “simulations of actions on mathematical objects, 
simulations of visual images of mathematical ideas or inscriptions, 
and simulations of the real-world situations that mathematical 
problems address” (p. 274). The third type of gestures Alibali and 
Nathan describe is metaphoric gestures. These strongly relate to 
conceptual metaphors, described in detail by Lakoff and Núñez 
(2000). An example of a metaphoric gesture is a body-based action of 
physically taking steps on an imaginary straight line while 
communicating corresponding numbers. Such a gesture provides the 
conceptual metaphor of numbers as locations in space.

According to Nathan and Walkington (2017), gestures can 
be  considered an expression of mathematical reasoning. In their 
theory of grounded and embodied mathematical cognition, Nathan and 
Walkington point out the necessity of the coordination between 
dynamic gestures and language. Dynamic gestures reflect motion-
based transformations of mathematical objects. When carefully 
coordinated, dynamic gestures and language could together serve as 
a mediator of mathematical thinking, enabling students to formulate 
“an insightful and explicable chain of reasoning that constitutes a 
mathematical proof that is both externally valid and internally 
meaningful” (p. 8).

Hayes and Kraemer (2017) claim that abstract concepts in 
mathematics are better understood “when they are initially grounded 
in hands-on learning activities” (p.  10). Concepts are considered 
abstract when they refer to the emergent properties resulting from 
interaction with concrete materials. Understanding these abstract 
concepts, from a grounded cognition view, requires comprehending a 
relationship between the experienced concrete materials. However, no 
details are described on what type of sensory-motor activities is best 
suited for their proposed approach.

One of the rare studies on embodiment that include an 
experimental and quantitative approach is the one by Ng and Ye 
(2022). In their work, over 100 11–12-year-old students explored the 
properties of prisms and pyramids through making these solids with 
a 3D printing pen. The pre-posttest results show a significant 
improvement, with a large effect size (d = 1.121, p < 0.001). The analysis 
of the qualitative data suggest that the embodied activities with the 3D 
printing pen might explain this learning outcome. The topic of 
abstraction, however, is not addressed in this study.

The above shows that as per embodied cognition views, based on 
grounded cognition theory, situated body-based actions and various 
types of gestures can spark and display mathematical understanding 
and help structuring the environment in a geometrical way. Although 
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the grounding of abstract concepts (via sensory-motor representation) 
can facilitate abstraction (Hayes and Kraemer, 2017), we hesitate to 
say whether these actions alone might be enough for engaging in and 
continuing the process of abstraction.

3.1.3.2. Strong embodiment
The strong embodied cognition stance has its origin in ecological 

psychology, theory of dynamic systems and enactivism (Chemero, 
2009; Abrahamson and Sánchez-García, 2016). Strong views on 
embodiment deny any ideas of mental representations and the faculty 
of computing (Hutto and Abrahamson, 2022). Although strong 
embodiment has often gained criticism, in the sense that without 
mental representation it would be  impossible to explain “real” 
cognition including thinking and planning, some scholars present 
ways that cognition can be modeled in such a radical way (Wilson and 
Golonka, 2013; Abrahamson and Sánchez-García, 2016; Sanches de 
Oliveira et al., 2021).

Wilson and Golonka (2013) argue that, since the perceptual world 
is very rich, perceptual information needs no further internal 
enrichment and thus no representation. Instead, all elements in the 
environment that might support complex behavior, as well as “the 
information that might serve to tie them together” (p. 11), should 
be  considered in embodied research. To understand how these 
environmental characteristics are coupled with specific behavior, 
Wilson and Golonka suggest to consider four questions regarding 
embodied tasks. First, what is the task to be solved? Second, what are 
the resources that a person has access to in order to solve the task? 
Third, how can these resources be assembled to solve the task? And 
last, does this person assemble and use these resources? Considering 
these questions with regard to education, researchers could 
understand a close relation between the environment and the person’s 
interaction with it. More strongly, in Wilson and Golonka’s view, it is 
paramount to place embodiment at the center of the learner’s solution 
of a given task. Considering our focus on realistic geometry, this is 
something we agree with.

Wilson (2002) describes six views on embodied cognition, 
some of which indicate a radical embodiment conviction. The first 
reads: cognition is situated. As discussed in the above, this applies 
to realistic geometry, where tasks can be considered as situated 
cognition tasks. The second view on embodiment reads: cognition 
is time-pressured. Since situated tasks in realistic geometry take 
place in real time, coping with time pressure is a logical 
consequence. An important factor of time pressure in a task that 
demands continuous action is that “there may simply not be time 
to build up a full-blown mental model of the environment, from 
which to derive a plan of action” (p. 628). This is an important 
aspect to consider for the case of realistic geometry. The third view 
reads: we offload cognitive work onto the environment. In other 
words, artifacts and manipulatives do the work we  otherwise 
would be doing in our heads. This certainly applies for the case of 
realistic geometry, where mathematical tools in the environment 
are used. Regarding such tasks, Wilson states: “the advantage is 
that by doing actual, physical manipulation, rather than computing 
a solution in our heads, we save cognitive work” (p. 629). Wilson’s 
fourth view reads: the environment is part of the cognitive system. 
This is certainly the most radical claim. Wilson describes this in 
more detail as: “the forces that drive cognitive activity do not reside 
solely inside the head of the individual, but instead are distributed 

across the individual and the situation as they interact” (p. 630). 
The idea that forces that drive cognition do not reside solely in the 
head, is inherent to the whole embodied cognition spectrum. The 
second part is problematic, according to Wilson. However, 
according to Clark (2012), our daily lives gives ample evidence that 
we can see our cognition as extended to the world. For example, 
we find it easier to offload cognition by storing telephone numbers 
and future events in our smartphone memory and calendar, instead 
of remembering them by heart. Not only do we offload cognition, 
but due to our dependency on certain tools in daily life (for 
example a knife to cut food with) we can argue that such a tool 
becomes part of our cognitive system (Shvarts et  al., 2021). 
Therefore, to understand mathematical cognition, we must study 
the situation as a unified system of artifacts and the body. Wilson’s 
fifth view reads: cognition is for action; sometimes phrased as 
“cognition serves action.” Cognition evolves in service of action 
and is therefore based on action. Ultimately, this would mean that 
the only way we can come to know and understand is through our 
need for particular action. Certain actions thus drive the 
development of our cognition. This view is central in the ideas of 
Nemirovsky and Ferrara (2009). On the matter of grasping 
conceptual and mathematical knowledge, they say: “whatever 
we  can recognize as rational, rule-based, or inferential, is fully 
embedded in our bodily actions” (p.  3). Regarding realistic 
geometry, the tasks where cognition is guided by action could be a 
fruitful starting point for eliciting an abstraction process. The last 
of the six views reads: off-line cognition is body-based. Wilson 
states: “even when decoupled from the environment, the activity of 
the mind is grounded in mechanisms that evolved for interaction 
with the environment—that is, mechanisms of sensory processing 
and motor control” (p.  626). So, even when the artifacts and 
mathematical tools are not physically present, the knowledge 
gained from these artifacts still involves the sensory-motor control 
processes which were active during the performance with 
these artifacts.

While not recognizing any representation in cognition (modal or 
amodal), strong embodiment cognitive theory does accept possible 
facilitation that motor action and perception activities can offer in 
embodied learning. One way is through the emergence of attentional 
anchors (Abrahamson and Sánchez-García, 2016) that could help in 
structuring the environment. An attentional anchor is a real or imaged 
structure, that “lies at the intermediate level of interaction between 
subject and environment” (p. 218). The power of such attentional 
anchors lies in the affordance they facilitate concerning the motor 
actions from which they originate. For example, in placing two objects 
in a reflective symmetry position on two sides of a drawn line, an 
imagined line between the two objects can help steering towards 
correct position. As an attentional anchor can function as a tool for 
guiding further actions, it could be  helpful in structuring the 
environment in a mathematical way and therefore spark an 
abstraction process.

Particularly important for abstraction from an embodied 
perspective on realistic geometry is the role of artifacts and models. 
Artifacts are at the core of discovering new mathematical structures. 
Sanches de Oliveira et  al. (2021) describe a way of thinking 
(artifactualism) where the creation and use of models play a crucial 
role. Models are to be  understood as “artifacts that serve action-
guiding purposes” (p. 131). The mathematical structures that emerge 
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in embodied actions are expressed through and incorporated into 
models. These models, or artifacts, further guide the thinking process. 
They trigger perception of relevant mathematical structures again and 
again. Those artifacts create a lens for the learner that allows for seeing 
spatial reality structured in a new way (Shvarts et al., 2022).

To conclude, from a strong perspective on embodiment, 
abstraction lies in structuring the actual surroundings and phenomena 
in a mathematically relevant way. This might be done via the triggering 
of certain attentional anchors, together with the use of models and 
other artifacts (Sanches de Oliveira et al., 2021). Focusing on geometry 
education, specifically designed environments could then facilitate the 
actions through which such attentional anchors, models and artifacts 
emerge or are hinted at by teacher. From a grounded perspective on 
embodiment, bodily actions such as gestures, accompany the process 
of mathematization in the mind. From a strong perspective, they 
become the mechanisms of the actual fulfillment of the abstraction, 
namely, the transformation of the environment into 
mathematical structure.

Together with the questions suggested by Wilson and Golonka 
(2013) and Wilson’s (2002) views on embodiment, the most important 
considerations for a strong perspective on embodied in relation to 
abstraction in geometry are: (1) the central role for embodiment in 
the given problem situation of realistic geometry and a close 
(integrated) relation between the environment, a learner and the 
specific mathematical content, (2) tasks should be based on situated 
actions that are time-pressured, (3) tools (manipulatives) are 
purposefully used in such a way that they offload cognition and may 
become part of the cognitive system, (4) cognition serves action, i.e., 
cognition evolves in service of action, (5) propagate the emergence of 
attentional anchors and artifacts that drive cognition and perception.

3.1.4. Concluding the theoretical perspective on 
an embodied approach to abstraction in 
geometry

To summarize the above, an abstraction process in geometry 
concerns a discovery of geometrical (or mathematical) structures in 
spatial phenomena. This is done through a process of acting on and 
structuring the environment and reflecting on these actions. The 
embodiment perspective on abstraction, outlined above, accentuates 
the role of action in this process. During the process of abstraction, 
actions within the geometrical environment (that might include 
manipulatives) play a central role in such a way that they determine 
the perception of environment and consequently further actions in the 
situation. These required actions trigger the understanding (cognition) 
related to that problem. The understanding is further propelled by 
structuring the environment that manifests as emergence of 
attentional anchors, which are further expressed though mathematical 
models and artifacts, including verbal expressions and symbols. So, 
while acting within the problem situation, such structures and 
attentional anchors will emerge to the student. These structures, when 
noticed and expressed, then become artifacts and can be  used in 
further reasoning, thus they transform the environment into a more 
mathematical one. Reflecting on the performed actions and relating 
them to the discovered structures eventually results in the 
understanding of a geometrical concept.

The above leads us to consider abstraction in geometry from an 
embodied perspective as a process of reflecting on, describing, 

explaining, and structuring sensory-motor actions in the experienced 
world through developing and using mathematical artifacts.

3.2. Results from the practical perspective

In this section, we present the results from the semi-structured 
interviews. For understandability and practicality the last word of 
the definition of abstraction (presented in the previous section) has 
been changed from artifacts to words. Because of the interview 
being semi-structured, the dataset consists of a broad variety (in 
length and content) of descriptive answers. After coding the 
interviews, quotes are analyzed further in relation to the research 
question and the definition of abstraction. Since we are searching 
for teachers’ views and needs related to abstraction compatible 
with embodied cognition theory, the analysis resulted in five 
themes: (1) geometry, (2) acting and the use of materials and 
manipulatives, (3) abstraction, (4) teachers’ views on students 
engaging in the process of abstraction and (5) teachers’ needs. 
Corresponding quotes were grouped in quotation sheets from 
which the most interesting findings are presented below in tables 
and summary conclusions per theme. How the findings can help 
answer the research question will be part of the discussion section.

3.2.1. Geometry education
When asked about what they consider to be geometry in primary 

school, all teachers showed they have knowledge of the geometry 
curriculum. Teacher A for example says: “building plans and front and 
helicopter view, as if a fly hangs above it.” What stands out is that four 
out of six teachers mention spatial insight in their answer, which 
shows they tend to relate geometry to a specific skill rather than to 
certain topics. Frequently mentioned tasks and topics are: shapes and 
figures (3x), building and constructing with manipulatives (2x), 
spatial orientation (2x), front, side and helicopter view (2x), relating 
two and three dimensions to each other (2x), maps, nets and building 
plans and perspective (1x). These tasks and topics correspond to the 
(realistic) geometry curriculum in primary school in the Netherlands. 
It is therefore fair to say that the interviewees are well acquainted with 
this curriculum.

3.2.2. Using materials and manipulatives
The use of manipulatives as a didactical instrument in geometry 

by teachers paints a versatile picture. All teachers had experience in 
letting students act and work with manipulatives during geometry 
lessons; some do this as often as possible (A and B) and others do it 
seldom (C, D, E, and F). Teacher A is convinced that students learn 
more through experiencing and working with manipulatives and also 
that they are able to show the solution by using materials. She says: 
“when I let students use manipulatives, I ask them to show how they 
act and think, then it will work. But finding words is difficult for 
them.” Teacher B uses materials to invite students to physically 
experience a phenomenon. Teacher D says that acting can help 
students greatly to discover on their own level and to try finding out. 
And teacher F states that acting helps students to solve a problem, 
more than just working on paper, which she calls volatile. In summary, 
benefits of acting and using manipulatives mentioned by teachers are: 
it helps students to see the problem concretely, to experience, to 

https://doi.org/10.3389/feduc.2023.1162681
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Boonstra et al. 10.3389/feduc.2023.1162681

Frontiers in Education 09 frontiersin.org

remember, to try out, to discover and to gain insight. While teachers 
A, D, and F are convinced that acting and working with materials 
helps students’ reasoning in geometry (teacher A sees acting as a 
preliminary stage for solving problems on paper), all teachers 
primarily use manipulatives with a supportive objective in mind. The 
general belief is that when a problem on paper is experienced as 
difficult, it becomes easier to solve when manipulatives are used. This 
might be influenced by mathematics textbooks, where geometry 
problems are generally presented to be solved mentally or on paper, 
without acting or using manipulatives. Only when a student struggles 
with such problem, are manipulatives used to “lift” the problem to a 
three-dimensional and thus more realistic situation. Teacher C 
describes materials used in this way as differentiative material. In 
conclusion, a coherent vision on the use of manipulatives is missing. 
On the plus side, teachers are convinced of the importance of 
manipulatives and use them in a variety of tasks, albeit not as 
frequently as they want to due to an emphasis on textbooks (paper) 
problems. On the downside, purposely using acting and manipulatives, 
other than in a supportive way, is rare.

3.2.3. Abstraction
Table 2 shows the interpretations and reactions that teachers 

gave before and after the definition of abstraction was presented 
during the interview. The table clearly shows that most teachers 
recognize some aspects of the process of abstraction in their 
teaching practice and the way their students learn. It also shows that 
teachers do not purposefully foster the abstraction process. As 

teacher A and F express: “it happens unconsciously” (A) and “it 
simply does occur” (F).

3.2.4. Teachers’ views on students engaging in 
abstraction

Five out of the six interviewed teachers are convinced that each 
student will be  able to proceed in the process of abstraction as 
presented in the interviews. Differences in students engaging in this 
process are related to: learning capacities, intrinsic behavior (curiosity, 
urge to discover), being able to consider multiple possible answers, 
being able to cope with large open problems, and having spatial 
abilities. Teacher E is convinced that some students lack the ability to 
reflect and structure. Being able to verbalize is generally seen by the 
interviewees as an indication of the capability of understanding the 
problem and solution. Teacher B says: “if you are able to express it, 
then you understand.” Verbalizing is also seen by most teachers as the 
biggest challenge for students engaging in the process of abstraction. 
This is because of a lack of vocabulary of mathematical and 
geometrical words. To learn to use this vocabulary, teacher D proposes 
to let students work on the process of abstraction not occasionally, but 
for several weeks in a row. Teacher F raises an important point 
regarding our study. She first suggests bringing in the mathematical 
words (concepts) herself, but then corrects herself. “I would let the 
student express it in his own words. Because if I would teach them a 
concept, I would teach them something abstract.” She means teaching 
something abstract without context. This resonates with the 
observations made by White and Mitchelmore (2010), that abstract 

TABLE 2 Teachers’ conceptions and ideas about abstraction before and after the definition is presented.

Teachers before 
and after the 
definition of 
abstraction is 
presented

Conception and idea about abstraction

A before Relates abstraction to extraction; a teacher extracts words (knowledge) from the students to let them proceed to higher levels

A after Abstraction happens mostly without awareness of it in classrooms situation. Teacher A gave an example where describing, explaining and 

reflecting occur, but did not relate this to structuring

B before “Abstraction is when students are able to think for themselves: ‘oh, with this problem I am going to do this’”

B after Not just doing, but also explaining what and why. Verbalizing and reflecting. What did you see, what was hard, what easy? Teacher B is aware of 

the importance of raising appropriate questions and wonders what type of questions will trigger students, and which will not

C before “At a certain point they (students) see things mentally, without needing it to be present in front of them concretely.” Teacher C relates 

abstraction to the solutions some students give which she herself finds hard to understand. She says: “I think by myself, how can they see and 

know this to be right. Also, it is hard for them to explain, they just see, just know”

C after “Yes, naturally acting comes prior to this,” referring to what she said in the above in relation to the definition. She doubts whether reflecting 

plays such a prominent part in her lessons

D before Abstraction is about making methods your own, making it manageable. Also, about having insights and making things visible

D after Thinks of abstraction in her lessons as making concepts concrete, visible and tangible. She recognizes the processes of acting, verbalizing and 

reflecting. She could pay more attention to reflecting and verbalizing in order for students to be sure that they know what they do, and to phrase 

it more mathematical. Wants to make abstraction accessible by showing that mathematical concepts can reside in ordinary things

E before Thinks about abstraction as related to the didactical levels concrete, model-oriented and abstract thinking

E after Says she does not have a good enough perception of abstraction but does give an accurate example of abstraction in the teaching and learning of 

fractions

F before Relates abstraction to taking a problem to its core, its simpler form

F after Expresses that abstraction (in the way suggested in the definition) does occur
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concepts are often learned in isolation. Teacher F recognizes this 
pitfall and expresses her conviction, that students learn best by doing.

3.2.5. Teachers’ needs in fostering abstraction in 
geometry

Table  3 shows teachers’ needs for fostering the process of 
abstraction. Although a versatile image emerges from this table, 
some results stand out. First, all teachers are in need of a better 
understanding of the abstraction process. Questions raised are: 
what does this process consist of? And how can this be fostered? 
Secondly, an urgent need expressed by all but one teacher is being 
able to ask the right questions in fostering the process of 
abstraction. This shows that teachers relate the fostering of 
abstraction to a teaching process where asking questions plays a 
central role. Thirdly, one in two teachers mentioned being aware of 
the process as an important teaching need. This shows that teachers 
believe that possibilities for abstraction are present, but lack the 
knowledge how to recognize and elicit this. Furthermore, two out 
of six teachers expressed a lack of mathematical and geometrical 
content knowledge for fostering abstraction.

4. Conclusion and discussion

This study investigates how developing theoretical perspectives 
may inform teachers practices concerning abstraction in geometry 
education. We described a theoretical viewpoint on the fostering 
of abstraction in geometry through the lens of embodied cognition 
as well as teachers’ ideas, experiences and needs concerning an 
embodied approach to abstraction in geometry. In this section 
conclusions and implications of the theoretical views in relation to 
the practical perspectives are shared.

4.1. Conclusions on teaching geometry

Concerning geometry education, we found from literature that 
modern approaches to geometry in primary school emphasize spatial 
reasoning, with less emphasis on the formal study of shapes and solids. 
Inspired by the characteristics of realistic geometry that have gained 
importance in recent years, we consider geometry as the wide-ranging 
domain of studying and structuring spatial objects and phenomena in 

TABLE 3 Teachers’ needs for fostering abstraction.

Need Specific Teacher

Raising questions to facilitate 

abstraction

What type of questions are needed? What is the right question (for starting the process)? What are questions 

focused on starting abstraction?

A

Questions (not further explained) B, F

In need of guidelines for asking questions C

What questions will promote higher order thinking? D

How to make students verbalize 

their thinking process?

Not further explained A, D

Knowledge of the process of 

abstraction

What knowledge of the process of abstraction is needed as to explain and identify this in a lesson series? A

Knowledge (not further explained) B, C

What knowledge on the order of the process of abstraction is needed? B

Insight in the process of abstraction is needed for being able to recognize where children are in the process C

Supporting students’ 

abstraction process

How to train students in their acting and verbalizing during the process? D

Knowing how to guide students toward insight E

How can you guide the process? F

How to foster student skills in the process of abstraction? B

How to find a balance between guiding students in the process and letting them discover? B, C

Which instruction can I offer when students do not grasp it? E

How to take along students for whom the process goes too fast? F

Becoming conscious of the 

abstraction process

Not further explained A, B, C

Material and manipulatives What materials and manipulatives do you use as a teacher? B

Time Being able to work on abstraction for six consecutive weeks D

Knowledge of mathematics and 

geometry

Knowledge of geometric phenomena, to know how to explain these. Cooperation between teachers would help 

them gaining knowledge of geometry

D

Knowing mathematical concepts, notions and words F

Learning goals How to formulate learning goals related to abstraction? Input from an expert on this is needed E, F

Preparing lessons Teacher manual, additional to existing textbooks, with information on geometry and mathematics and how to 

prepare lessons in abstraction. The more concrete and easier for the teacher, the sooner they will use it

F
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the experienced world. From the interview study, we learned that the 
ideas and beliefs teachers shared, match with the principles of realistic 
geometry. We  also learned that, although many teachers are 
experienced in using manipulatives (and acting) to provide help to the 
student, this does not mean they purposely use manipulatives and 
acting to guide students’ reasoning. A plausible cause for this is the 
fact that textbooks tasks are usually not designed to be solved using 
manipulatives, at least in the Netherlands. From this practical 
perspective, combined with the theoretical ideas of realistic geometry, 
we believe it is necessary to create opportunities to train teachers in 
using manipulatives and acting to support students reasoning and 
abstraction in geometry.

4.2. Conclusions on abstraction

Abstraction in geometry is a process in which structures of a 
geometric phenomenon are discovered, with an emphasis on acting. 
Piaget (1971) describes the process where abstraction is drawn from 
actions (physical or mental) as reflective abstraction. Reflection on 
these actions helps students to reach a higher level of understanding 
and in forming new structures. This process is similar to 
mathematization, where a student is invited to progress from initial 
discovered structures toward more formal mathematics. Taking into 
account the relevance of embodied action, abstraction is defined as 
a process of reflecting on, describing, explaining and structuring of 
sensory-motor actions in the experienced world through developing 
and using mathematical artifacts (in the definition used in the 
interviews, artifacts was replaced with words). As a whole, the 
process of abstraction was not recognized by teachers in their own 
practice. Elements of abstraction by students (verbalizing, acting and 
reflecting) are, however, familiar to most teachers. The majority of 
respondents trust their students to be capable in engaging in the 
process of abstraction, albeit without having concrete ideas (and 
appropriate knowledge) of how to foster this. Consciously fostering 
abstraction requires a transformation in their teaching practice. 
Taking into account these practical perspectives and the theory-
driven definition of abstraction, we believe teachers need to notice 
that students’ reflections and descriptions are in service of students’ 
(structuring) actions. When familiarity is gained with idiosyncratic 
ways of reflecting, describing and acting, teachers will be  better 
equipped to guide and support students during this process 
of abstraction.

4.3. Conclusions on embodiment

The theoretical lens of embodied cognition brought to light new 
ways in which a learning environment on geometry can be organized 
to act as a fruitful situation for fostering abstraction. Certain types of 
gestures do not only expose mathematical understanding, but can also 
support mathematical understanding. Stronger views on embodied 
cognition testify that the only way we  can come to know and 
understand is through the need for particular action. Consequently, 
the process of abstraction comes from and is sparked by certain 
(required) actions. With regards to geometry, this implies that actions 
are to be elicited to start the process of mathematically structuring a 
geometric phenomenon (abstraction). What type of actions should 

be  elicited to foster abstraction depends largely on the type of 
geometry problems to which the abstraction process applies. Future 
research could focus on the development of such typical designs. The 
second important factor that the theory on embodiment brings to the 
fore is the role of artifacts as tools in the process of abstraction. It is 
assumed that when engaging in the process of abstraction, new 
attentional anchors are formed by the student. When students are led 
to use these attentional anchors to serve and guide their further 
actions, these attentional anchors are expressed as artifacts or tools 
that help to structure the reality in a mathematical way. Using artifacts 
in this way asks for teachers to be able to use and communicate about 
them, and to recognize their students’ use. Next to a thorough 
mathematical understanding, this requires the teacher to develop new 
ways of communicating. More study is needed to investigate fruitful 
ways of training such communication related to specific geometry 
problems in the classroom. Regarding the embodied approach in 
general, three out of six teachers are convinced that purposeful acting 
can indeed be used in such a way that the mathematics of a geometrical 
phenomenon can be discovered. Some teachers believed their students 
would have difficulty in finding the correct words to accompany 
their reasoning.

From the literature study we learned that abstraction is related to 
the discovery of mathematically relevant structures. The practical 
perspective showed that teachers experience challenges in fostering 
abstraction. Also, teachers are not certain if students are able to 
discover mathematical structures. Considering the embodied 
viewpoint, teachers therefore would benefit from appropriate skills in 
supporting action-based discoveries. Experience with such embodied 
activities can help teachers to see that any student can come to 
discover new structures through enactment.

4.4. Concluding remarks: implications for 
teacher professional development

The aim of this study is to explore the first steps needed for an 
embodied abstraction approach to geometry in teacher education. An 
apparent limitation to this study is the small number of interviewees. 
Although the practical perspective would have benefitted from a 
larger population with respect to generalization of teachers beliefs and 
needs, we found the perspectives raised by the teachers extensive and 
the implications with the presented theory informative.

Considering the implications of the theoretical perspective in 
relation to teachers’ perspectives as written in the above, some 
suggestions for in-service teacher education and teacher professional 
development can be made. Although theory does provide us with 
valuable insights, the fostering of abstraction from an embodied 
perspective cannot be trained from theory alone. Firstly, because the 
very nature of an embodiment approach to learning geometry is the 
acknowledgement of idiosyncratic bodily actions and interactions, 
which very much contradicts standard teaching practice (Alberto 
et al., 2022). Secondly, because different geometry problems bring 
different mathematical models and artifacts and require different 
(inter)actions. Key for learning to foster abstraction in geometry from 
an embodied perspective is for teachers to learn to facilitate and 
acknowledge learners’ unique bodily interactions and recognizes these 
as productive for further mathematical description. Further research 
is necessary to study how these objectives might be obtained. Future 
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studies could aim to design expert-guided training arrangements, 
based on hypothetical teaching-learning trajectories (Bakker and Van 
Eerde, 2015), during which teachers practice and experience 
themselves and reflect on those experiences. The proposed ways for 
eliciting multi-modal behavior (Flood et al., 2020) and multi-modal 
revoicing (Flood, 2018) could be subject for such training. We also 
suggest making use of a wide variety of realistic geometry problems 
during this training, to learn about the diversity of artifacts and 
attentional anchors and ways these are used for structuring 
toward abstraction.
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