
Frontiers in Education 01 frontiersin.org

Teacher learning to teach 
mathematics via reasoning and 
proving: a discursive analysis of 
lesson plans modifications
Merav Weingarden *† and Orly Buchbinder †

Department of Mathematics and Statistics, University of New Hampshire, Durham, NH, United States

Despite the importance of reasoning and proving in mathematics and 
mathematics education, little is known about how future teachers become 
proficient in integrating reasoning and proving in their teaching practices. In 
this article, we characterize this aspect of prospective secondary mathematics 
teachers’ (PSTs’) professional learning by drawing upon the commognitive 
theory. We offer a triple-layer conceptualization of (student) learning, teaching, 
and learning to teach mathematics via reasoning and proving by focusing on 
the discourses students participate in (learning), the opportunities for reasoning 
and proving afforded to them (teaching), and how PSTs design and enrich 
such opportunities (learning to teach). We explore PSTs’ pedagogical discourse 
anchored in the lesson plans they designed, enacted, and modified as part of their 
participation in a university-based course: Mathematical Reasoning and Proving 
for Secondary Teachers. We  identified four types of discursive modifications: 
structural, mathematical, reasoning-based, and logic-based. We  describe how 
the potential opportunities for reasoning and proving afforded to students by 
these lesson plans changed as a result of these modifications. Based on our 
triple-layered conceptualization we  illustrate how the lesson modifications 
and the resulting alterations to student learning opportunities can be  used to 
characterize PSTs’ professional learning. We discuss the affordances of theorizing 
teacher practices with the same theoretical lens (grounded in commognition) to 
inquire student learning and teacher learning, and how lesson plans, as a proxy 
of teaching practices, can be used as a methodological tool to better understand 
PSTs’ professional learning.
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1. Introduction

The critical role of reasoning and proving in mathematics and mathematics education is 
broadly recognized (e.g., NCTM, 2000, 2009, 2014; Harel and Sowder, 2007; National Governors’ 
Association Center for Best Practices and Council of Chief State School Officers, NGA and 
CCSSO, 2010; Hanna and de Villiers, 2012). Policy documents and national standards around 
the world emphasize the importance of students learning mathematics meaningfully, 
understanding the reasoning behind mathematical rules, procedures, and theorems, being able 
to prove basic results in geometry, justify their thinking, and evaluate and critique mathematical 
arguments (NCTM, 2000; AAMT, 2006; National Governors’ Association Center for Best 
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Practices and Council of Chief State School Officers, NGA and 
CCSSO, 2010). An underlying idea behind the emphasis on reasoning 
and proving is that these are the key processes by which mathematical 
knowledge is constructed and validated; therefore, they are important 
vehicles for learning and understanding mathematics. Hanna and 
Barbeau (2010) point out that in mathematics classrooms, proofs can 
be bearers of mathematical knowledge by conveying methods and 
strategies, and explaining why mathematical results are true. 
Buchbinder and McCrone (2022) refer to this perspective as teaching 
mathematics via reasoning and proving1 and explain: “changing the 
discourse from teaching proof toward proof-based teaching, puts 
student learning of mathematics in focus” (p. 4). This perspective puts 
forward a set of principles for guiding the classroom practice of 
secondary mathematics teachers: (1) Reasoning and proving must 
be  fully embedded in the existing mathematics curriculum; (2) 
Emphasis should be  made on deductive reasoning in knowledge 
production and validation, while (3) Using language, notation, and 
representations within the conceptual reach of the students.

Despite the general acknowledgment of the importance of 
reasoning and proving, in the United  States, proof often remains 
marginalized in mathematics classrooms. Reflecting on this 
phenomenon and the research on reasoning and proof over the last 
few decades, Stylianides et al. (2017) maintain that there is a vast body 
of knowledge on students’ difficulties with proving and teachers’ 
challenges in teaching it; there are also several theoretical frameworks 
explaining the origins of student challenges with proving. However, 
there is a significant knowledge gap on how teachers can successfully 
create learning environments that support student engagement with 
reasoning and proving. Further, there is little theoretical or practical 
knowledge on how to prepare teachers to enact this type of 
mathematics teaching or how teacher knowledge in this area grows 
and evolves. Consequently, there is also a shortage in the 
methodological tools that researchers can use to explore teachers’ 
professional growth.

Several researchers have proposed frameworks delineating various 
types of knowledge teachers need to teach mathematics via reasoning 
and proving (e.g., Stylianides, 2011; Lesseig, 2016). Buchbinder and 
McCrone (2020) proposed a framework: Mathematical Knowledge for 
Teaching Proof, which outlines the knowledge, dispositions, and 
practices teachers need to teach mathematics via reasoning and 
proving. The framework is grounded in the socio-cultural and situated 
perspectives on teacher learning (Lave and Wenger, 1991; Borko et al., 
2000), which conceptualize knowledge and learning as situated within 
physical and social contexts in which they develop through active 
participation in social practices. According to Lave and Wenger 
(1991), learning itself is a type of activity based on “situated negotiation 
and renegotiation of meaning in the world” (p. 51). The commognitive 
perspective (Sfard, 2008), on which we rely in this article, allowed us 
to further operationalize teachers’ learning as evolving participation 
in the social practices of integrating reasoning and proving in teaching 
mathematics. By the rigorous discursive-based conceptual tools 
commognition provides, we  step forward and conceptualize how 

1 Similar ideas were described in Reid’s (2011) Proof-Based Teaching and 

Ronis’ (2008) problem-solving teaching. See Buchbinder and McCrone (2022) 

for comparison of the frameworks.

professional learning toward reasoning and proving can 
be characterized and recognized in teacher practice.

The study reported herein is a part of larger, longitudinal research 
investigating beginning teachers’ learning to teach mathematics via 
reasoning and proving across several years and contexts: an 
undergraduate teacher education program, a year-long school-based 
internship, and two first years of teaching their own classroom. In this 
article, we examine PSTs’ professional learning in the context of the 
university-based capstone course2 Mathematical Reasoning and 
Proving for Secondary Teachers. The course was uniquely designed to 
provide PSTs opportunities to develop their learning toward teaching 
mathematics via reasoning and proving. Specifically, four times during 
the semester, the PSTs participated in the lesson planning-enacting-
reflecting cycle in which they designed and taught in local schools 
lessons that integrated activities requiring reasoning and proving. The 
PSTs recorded these lessons and reflected on them. At the end of the 
semester, they were asked to revise two out of four lesson plans and 
write an essay justifying their modifications. Building on the 
commognitive perspective, we offer a discursive operationalization of 
PSTs’ learning toward teaching mathematics via reasoning and 
proving. We aim to explore how PSTs’ professional learning manifests 
in their lesson plans – as a lens for their discourse. Thus, the data for 
this study is obtained from PSTs’ original and modified lesson plans.

We begin by situating our work and the focus of this study in the 
literature on lesson planning. Next, we  outline the theoretical 
perspective – commognition – and the Opportunities for Reasoning 
and Proving (ORP) Framework grounded in it. We  present our 
operationalization of teacher learning to teach mathematics via 
reasoning and proving as creating potentially richer and more ample 
ORP. We then illustrate how PSTs’ modifications to their lesson plans 
can indicate their professional growth.

2. Lesson planning

Lesson planning is a core task of teaching, and it is considered an 
important part of teachers’ pedagogical knowledge and practice 
(Hogan et al., 2003; Ball and Forzani, 2009; Zazkis et al., 2009). As 
such, teachers’ lesson plans have often been used as a key component 
in models of teacher professional learning. For example, Blömeke 
et al.’s (2008) model of teacher competence contains lesson planning 
– and lesson plans as the artifacts of this practice – as a situation-
specific skill, along with noticing and assessing student learning. 
While lesson planning can take multiple forms for in-service teachers, 
student teachers and novice teachers are typically required to write 
lesson plans. Assessment of lesson plans as a representation of lesson 
planning performance is commonly used in teacher education (e.g., 
Buchbinder and McCrone, 2020), as well as in the process of induction 
of novice teachers into the teaching profession (Taylan, 2018; König 
et al., 2021) and in awarding advanced certification for accomplished 
teachers, e.g., American National Board for Professional Teaching 

2 By capstone course, we mean a course offered toward the end of the 

teacher preparation program, which aims to serve as a concluding experience, 

linking academic training with the future professional occupation (Winsløw 

and Grønbæk, 2014).
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Standards (Silver et  al., 2009). In the process of lesson planning, 
teachers attend to multiple components, generally associated with 
three dimensions: content, social interactions, and time (Stigler and 
Miller, 2018). Along the content dimension, teachers analyze the 
mathematical subject matter and then select, adapt, and transform it 
into “teachable content” (Chevallard, 1989). They need to take into 
consideration the broader context of the instructional unit, curriculum 
objectives as well as local or national standards. In attending to the 
second dimension of lesson planning – social interactions, teachers 
consider their students’ prior knowledge and discursive practices and 
develop mathematical tasks that afford students the opportunities to 
engage in productive struggle (Warshauer, 2015). The teachers need 
to choose instructional strategies for enacting these tasks and 
supporting student learning (Watson and Ohtani, 2015). This includes 
attending to teacher actions for supporting student thinking and 
responding to student inquiries, instructional explanations, and 
approaches for facilitating group work (Fennema and Franke, 1992; 
Grossman and McDonald, 2008; Stein et  al., 2008; Taylan, 2018). 
These processes intend to ensure that the learning and teaching 
processes occur within students’ zone of proximal development 
(Vygotsky, 1978). The third dimension – time, requires each lesson to 
have a clearly defined structure, organized along a timeline, with 
appropriately phased activities, which students can easily recognize 
and follow (Ball and Forzani, 2009). This may include a warm-up, an 
individual activity, a whole class discussion, or a lesson summary. 
Such an extensive list of components indicates the inherent complexity 
of lesson planning. Hence the challenges facing PSTs and novice 
teachers in developing the practice of lesson planning are 
understandable. Studies have shown that expert and novice teachers 
use different processes when planning lessons. While expert teachers 
tend to pay more attention to student learning processes, can better 
anticipate student difficulties, and plan for contingencies, novice 
teachers apply less-adaptive, rigid instructional approaches (Berliner, 
2004; Contreras et al., 2020). In particular, these challenges apply to 
PSTs, who usually have limited access to mathematics classrooms 
(Grossman and McDonald, 2008; Stein et  al., 2008; Remillard 
et al., 2009).

With lesson planning being an important and complex practice, 
teacher preparation programs extend significant efforts to helping 
PSTs develop proficiency with lesson and unit planning (König et al., 
2021). This may involve analyzing or critiquing lesson plans, 
modifying existing lesson plans, synthesizing across multiple plans, 
sequencing, and creating original lesson plans (Lim et  al., 2018). 
Teacher educators may also engage PSTs in enacting a part or even 
whole lesson with their peers, akin to microteaching or rehearsals 
(Lampert et al., 2013). However, in the context of university-based 
secondary teacher preparation programs, in particular, in the 
United States, PSTs seldom have an opportunity to enact full-length 
lessons in real classrooms prior to their student teaching experiences3 
(Tatto et al., 2009). The uniqueness of the capstone course designed by 
Buchbinder and McCrone (2020), which provided a context for the 

3 Secondary education programs around the world are commonly structured 

as consecutive periods of university-based coursework followed by a separate 

period of school-based preparation. At the elementary level, a concurrent 

university and school-based experience is more common (Tatto et al., 2009).

current study, is that over the course of one semester, PSTs participated 
in four cycles of planning a 50-min lesson, enacting it with school 
students, reflecting, and redesigning the lesson plan. The learning 
environment of the course aimed to advance PSTs’ professional 
learning toward teaching mathematics via reasoning and proving.

In this paper, we  aim to examine the development of PSTs’ 
teaching practices, as reflected in their lesson planning and the 
modifications they made to their lesson plans after they enacted the 
lesson and reflected on it. The modified lesson plans involved PSTs’ 
envisioned teaching actions and the potential learning opportunities 
with respect to reasoning and proving that can be offered to students. 
In this process, we rely on the robust conceptual tools of discursive 
learning theory, that of commognition, which allows conceptualizing 
learning as a change of discourse. Thus, we examine PSTs’ discourse, 
as reflected in the revisions they made to their lesson plans and their 
explanations for these modifications. We suggest these modifications 
and explanations to be indicators of PSTs’ professional learning.

3. Theoretical framework

3.1. Commognition: learning as becoming 
a sophisticated participant in discourse

The commognitive perspective (Sfard, 2008), similar to other 
socio-cultural theories, views learning as becoming a more proficient 
participant in the discourse of a particular community. This 
proficiency in discourse is often termed by commognitive studies as 
explorative participation, where learners’ participation gradually shifts 
from ritualistic to more goal-oriented (Lavie et al., 2019). This change 
in participation is captured by learners’ discourse, including their use 
of keywords, the routines they follow, the visual mediators used, and 
the narratives they produce. Most of the commognitive studies have 
focused on students’ mathematical discourse and the extent to which 
their communication about mathematical objects gradually changes 
over time (e.g., Lavie and Sfard, 2019; Zayyadi et al., 2019; Shinno and 
Fujita, 2021). Recently, some commognitive-based studies examined 
the teaching practices that can encourage students to participate more 
exploratively in mathematical discourse (e.g., Nardi et  al., 2014; 
Viirman, 2015; Nachlieli and Tabach, 2019; Weingarden et al., 2019). 
Also, there has been a growing interest in examining the learning 
process of teachers toward teaching for explorative participation 
(Thoma and Nardi, 2018; Heyd-Metzuyanim and Shabtay, 2019; 
Zayyadi et al., 2020; Christiansen et al., 2022). Some of these studies 
inquire into teachers’ pedagogical discourse and the extent to which 
teachers adopt or value learning and teaching actions aligned with 
such explorative participation (e.g., Heyd-Metzuyanim and Shabtay, 
2019; Nachlieli and Heyd-Metzuyanim, 2021). However, little is 
known about how changes in teachers’ pedagogical discourse and 
their expressed valuation of a particular set of teaching-learning 
actions are associated with changes in their teaching practices, 
specifically in the practices they encountered during their professional 
learning. In addition, there is a shortage of theoretical and 
methodological tools for examining changes in teachers’ pedagogical 
discourse and how these changes relate to their teaching practices and 
their professional learning around these practices.

In this study, we  step forward to contribute to these recent 
developments and extend this body of knowledge by relating the 
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change in teachers’ discourse to the development of their teaching 
practice. Specifically, we  are interested in conceptualizing future 
teachers’ professional learning toward integrating reasoning and 
proving in their mathematics classrooms by relying on the discursive-
based modifications they made to their original lesson plans after 
enacting and reflecting on these lessons. Teachers’ professional 
learning can thus be examined by the modifications they produced to 
their lesson plans and the potential opportunities for reasoning and 
proving embedded in these modifications.

To conceptualize teachers’ learning to teach mathematics via 
reasoning and proving, we  need to describe what is entailed in 
students’ learning mathematics via reasoning and proving, as well as 
which teaching practices can support this type of learning. We turn 
now to describe these conceptualizations in detail.

3.2. Learning mathematics via reasoning 
and proving

3.2.1. Participating in mathematical discourse
Learning mathematics, as described by Lavie and Sfard (2019), 

can be viewed as a “change in discourses,” where discourse consists of 
certain keywords, involved in the communication (e.g., triangles, 
numbers), routines, which are patterns of actions that learners follow 
while operating on the objects of discourse (e.g., combining like terms, 
graphing functions), visual mediators used to mediate communication 
(e.g., mathematical symbols, tables, graphs), and narratives produced 
by the participants of discourse (e.g., the graph of y x= −2 8 passes 
through a point 0 8, −( )). The narratives produced by the discourse’s 
participants can be divided into object-level and meta-level (Sfard, 
2007). The object-level narratives are produced on mathematical 
objects (e.g., the angles opposite to the legs of an isosceles triangle are 
congruent), whereas the meta-level narratives are “stories about the 
discourse itself [… and] about how mathematics is done” (Sfard, 2007, 
p. 574). Sfard and Kieran (2001) described meta-level narratives as 
meta-discursive utterances – discourse about discourse, that focus on 
discursive elements rather than on the objects of mathematics. The 
meta-discursive utterances concern the truth values of the utterances 
(“I know this is true because…”) and actions of the interlocutors (“I 
used a quadratic formula to solve this equation”).

Meta-discursive activity that focuses on the utterances themselves 
and their truth values, such as “how do you know this is true?” or 
“why can you say this?,” is largely related to reasoning and proving 
because it often requires the interlocutors to infer mathematical 
utterances from other mathematical utterances. For example, to 
generalize a pattern that they identified or to justify their argument. 
This relationship between the meta-discursive activity and reasoning 
and proving was investigated by Jeannotte and Kieran (2017), who 
developed a conceptual model of Mathematical Reasoning for School 
Mathematics. Based on the extensive review of literature on reasoning 
and proving, Jeannotte and Kieran defined mathematical reasoning 
processes as: “meta-discursive commognitive processes that derive 
narratives about objects or relations by exploring the relations between 
objects” (p.  9). The nine mathematical reasoning processes are: 
generalizing, conjecturing, identifying a pattern, comparing, 
classifying, validating, justifying, proving, and formal proving. For 
example, generalizing is “a process that infers narratives about a set of 
mathematical objects or a relation between objects of the set from a 

subset of this set” (Jeannotte and Kieran, 2017, p. 9). Justifying is “a 
mathematical reasoning process that, by searching for data, warrant, 
and backing, allows for modifying the epistemic value of a narrative” 
(Jeannotte and Kieran, 2017, p. 12). The notion of these mathematical 
reasoning processes has been broadly used by many researchers and 
mathematics educators, both to develop curricular materials (Ellis 
et  al., 2012; Arbaugh et  al., 2018) and to examine the processes 
underlying certain types of student mathematical activity (e.g., 
identifying patterns, making conjectures, providing non-proof 
arguments, and providing proofs) (Stylianides, 2009; Davis, 2012; 
Thompson et al., 2012; Otten et al., 2014).

3.2.2. Participating in meta-discourse about proof
In our previous study (Weingarden et al., 2022), we argued that in 

order for students to enact meta-discursive processes (e.g., 
mathematical reasoning processes such as validating and 
conjecturing), and to produce meta-level narratives (e.g., justification 
narratives such as “I know this is true because…”) students, often 
implicitly, follow logic-based principles and enact logic-based 
processes. Consider the following task: “Prove or refute the statement: 
‘A quadrilateral with two pairs of opposite congruent sides is a 
parallelogram’.” To complete this task, students need to participate in 
mathematical discourse: produce mathematical narratives about 
quadrilaterals, use keywords such as “parallelogram” and “congruent,” 
use visual mediators such as a figure of a parallelogram and symbolic 
notation (e.g., AB CD ), and follow mathematical routines such as 
drawing a quadrilateral with two pairs of opposite congruent sides. 
Since students are asked to prove or refute the statement, they also 
need to enact reasoning processes of proving, which are “mathematical 
reasoning process that, by searching for data, warrant, and backing, 
modifies the epistemic value of a narrative from likely to true” 
(Jeannotte and Kieran, 2017, p. 12). While modifying the epistemic 
value of mathematical narrative from likely to true or from likely to 
false, students, often unconsciously, follow principles like “a universal 
statement can be refuted by a counterexample” or “each proposition 
in the argument is endorsed based on those that preceded it.” These 
are examples of what Sfard (2007) defines as meta-level rules, which 
are principles that regulate the production of meta-level narratives. 
According to Sfard, these meta-level rules are “rarely made explicit 
and are usually learned from examples rather than from general verbal 
prescriptions” (Sfard, 2007, p. 575).

The implicitness of the meta-level rules is broadly recognized 
regarding proof and argumentation in the context of secondary school 
mathematics as well as the need to make these meta-level rules explicit 
and communicable among secondary teachers and students (Harel 
and Sowder, 2007; Buchbinder and McCrone, 2020; Cirillo and May, 
2020; Harel and Weber, 2020). This need is at the core of our efforts to 
conceptualize the meta-discourse about proof. This discourse is not 
about mathematical objects. Rather, the objects at the core of this 
discourse are logic-based objects related to the meta-level rules about 
proofs. This includes the logical structure of theorems (e.g., the form 
of an if-then statement ‘if A then B’), the types of proof (e.g., direct 
proof, proof by contradictions), roles of examples (e.g., 
counterexample, supportive examples), rules of logic (e.g., if A then B 
is different from if B then A), and the derived conclusions from 
different types of statements (e.g., existential statements vs. universal 
statements). The narratives produced in this discourse are thus, the 
meta-level rules, such as “a universal statement can be refuted by a 
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counterexample,” “a statement if ‘A then B’ is equivalent to ‘if not B 
then not A’.” The keywords used to communicate in meta-discourse 
about proof are logic-related terms such as “conditional statement,” 
“hypothesis,” “conclusion,” “truth value,” “contradiction,” and more, 
and the visual mediators of this discourse are, for example, A B→ , 
¬ →B A, ∀, ∃. The routines of this discourse are logic-based processes, 
such as writing a conditional statement in the if-then form, identifying 
the hypothesis and conclusion of a conditional statement, determining 
what is needed for a statement to be proved or disproved, and others.

To conclude, from the commognitive perspective, learning 
mathematics via reasoning and proving can be defined as participating 
in two types of discourses. One is mathematical discourse while 
enacting reasoning processes, which we term mathematical reasoning 
discourse for short, and the second is participating in meta-discourse 
about proof or logic-based discourse (here, we use these two concepts 
interchangeably). Similar to mathematical discourse, where teachers 
can offer more or less opportunities for students to participate 
exploratively by enacting certain tasks or through certain teaching 
actions (e.g., Weingarden et al., 2019), also in meta-discourse about 
proof, teachers can offer different types of opportunities for learning 
mathematics via reasoning and proving.

3.3. Teaching mathematics via reasoning 
and proving as providing students with 
opportunities to participate in two 
discourses

In our previous study (Weingarden et al., 2022), we empirically 
identified four types of Opportunities for Reasoning and Proving (ORP) 
embedded in tasks designed by prospective teachers. The first type – 
limited ORP, involves tasks that focus solely on mathematical objects, 
such as “solve the following 10 equations: e.g., 2x-7 = 9.” Though it can 
be argued that solving any mathematical task can (and should) involve 
reasoning, this particular task involves limited ORP since students are 
not explicitly required to operate at the meta-discourse level nor to 
enact reasoning processes such as explaining why they can perform 
the same operations on both sides of the equation. The second type of 
ORP – reasoning-based mathematical ORP – appears in tasks that 
centered on a mathematical object, but in addition, in order to solve 
the task, students need to enact reasoning processes. For example, 
“explain why 2 3, −( ) is not a point on the line y x= +3 4.” This task 
offers students an opportunity to participate in mathematical 
reasoning discourse by enacting processes such as justifying and 
explaining around mathematical objects of linear equations and 
points. The third type – logic-based ORP – involves tasks characterized 
by logic-based objects and logic-based processes. For example, 
“identify hypothesis and conclusion in given statements and 
determine if the statements are existential or universal.” This task 
provides students with opportunities to participate in meta-discourse 
about proof. Importantly, in such a task, the mathematical content is 
in the background, while the object at the core of the task is the logical 
structure of mathematical statements. The fourth type – fully-
integrated ORP – appears in tasks that involve opportunities for 
participating in both the mathematical reasoning discourse and meta-
discourse about proof. For example, “come up with an example of a 
conditional statement that has to do with linear functions and 
equations and determine whether the statement is true or false.” The 

four types of ORP, summarized in Table 1, allow researchers, teachers, 
and teacher educators “to communicate about opportunities for 
reasoning and proving by operating with definite characteristics such 
as objects and processes, [which] may contribute to more explicit, and 
unambiguous communication” (Weingarden et al., 2022, p. 846).

In this study, we use the three latter types of ORP (reasoning-
based, logic-based, and fully-integrated) as a discursive-based 
commognitive theorization and operationalization of the principles 
of Teaching Mathematics via Reasoning and Proving (Buchbinder 
and McCrone, 2022). This theorization allows us to better 
communicate about and characterize the teaching practices included 
in teaching mathematics via reasoning and proving, and more 
importantly, to operationalize teachers’ professional learning around 
these practices. The first principle of incorporating reasoning and 
proving in the existing mathematics curriculum is operationalized 
by the reasoning-based ORP, which characterizes tasks that afford 
students to enact reasoning processes on mathematical objects from 
the school curriculum, and also by the fully-integrated ORP, which 
involves the reasoning-based ORP along with the logic-based 
ORP. The second principle of putting emphasis on deductive 
reasoning in knowledge production and validation can 
be operationalized by the logic-based ORP that affords students to 
participate in meta-discourse about proof. The third principle of 
using language, notation, and representations within the conceptual 
reach of the students can be viewed as a cross-cutting principle. It 
can be  operationalized by the discourse’s characteristics, both 
mathematical discourse and meta-discourse about proof, including 
the use of keywords (e.g., “slope,” “contradiction”), the narratives 
produced (“the slope of y x= +2 2  is 2,” “the converse of A B→  is 
B A→ ”), the visual artifacts that mediate communications (e.g., 
“y x= +2 2,” “A → B”), and the routines followed (e.g., “graphing the 
function,” “identifying hypothesis and conclusion of 
conditional statements”).

3.4. PSTs’ learning to teach mathematics via 
reasoning and proving

Based on the discursive-based commognitive conceptualizations 
of learning mathematics via reasoning and proving as participating 

TABLE 1 The four types of ORP in mathematical tasks.

Limited ORP

Object: Mathematical

Processes: Mathematical

Example: Solve and graph the equation: 

x2 + 4x-12 = 0

Reasoning-based mathematical ORP

Object: Mathematical

Processes: Mathematical + Reasoning

Example: Make a conjecture about the 

relationship between isosceles triangles 

and equilateral triangles and justify your 

thinking.

Logic-based ORP

Object: Logic-based

Processes: Logic-based

Example: Identify a hypothesis and a 

conclusion in a given statement.

Fully-integrated ORP

Object: Mathematical + Logic-based

Processes: Mathematical + Reasoning + 

Logic-based

Example: Write a conditional statement 

about linear functions and equations 

and determine whether the statement is 

true or false.
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both in meta-discourse about proof and in mathematical reasoning 
discourse; and based on the operationalization of teaching practices 
that could encourage such participation by different ORPs, we are 
interested in operationalizing and characterizing PSTs’ learning to 
create richer opportunities to such participation. We  suggest 
identifying changes in PSTs’ discourse that could serve as indicators 
of PSTs’ learning to teach mathematics via reasoning and proving. 
Toward this end, we aim to identify the discursive modifications in 
the lesson plans the PSTs designed during the course and revised at 
the end of the course. We endeavor to explore whether or how these 
modifications in the PSTs’ written discourse of their lesson plans 
can be translated to changes in opportunities provided to students 
to learn mathematics via reasoning and proving. Figure 1 visualizes 
our theoretical and methodological aspects of examining the 
development of PSTs’ practices toward teaching mathematics via 
reasoning and proving. The theoretical and conceptual stands 
we developed appear in blue. As described above, student learning 
via reasoning and proving can be advanced by specific teaching 
practices – opportunities for reasoning and proving embedded in 
instructional tasks (ORP). The development of teaching practices is 
reflected in the richer and better integrated ORP they provide to 
students. For examining, methodologically how PSTs’ practices 
were developed, we  suggest using PSTs’ lesson plans and the 
discursive modifications they made to their lesson plans as 
indicators of their learning to teach mathematics via reasoning and 
proving (represented in green cells in Figure 1).

Thus, our goal for this study is to illustrate the connection between 
these two layers – the theoretical and methodological. This entails 
showing how lesson plans can be used as a discursive methodological 
tool for examining teacher professional learning toward integrating 
reasoning and proving, conceptualized as a change in discourse and 
the potential ORP the teachers create. We  explore the following 
overarching question:

How can PSTs’ learning to teach mathematics via reasoning and 
proving be  characterized by their pedagogical discourse, as 
reflected in the modifications PSTs made to their lesson plans 
and the potential ORP provided to students by these  
modifications?

To respond to this question, we  operationalize the discursive 
modifications made and their related ORP. This operationalization 
was guided by the following two research questions:

 1. What types of discursive modifications can be identified in PSTs’ 
revised lesson plans?

 2. How do the discursive modifications relate to the types of 
discourses afforded to students to participate in and to the types of 
ORP provided to them?

4. Methods

4.1. Context: the capstone course 
Mathematical Reasoning and Proving for 
Secondary Teachers

The setting for this study was a larger research project conducted 
in a large, public, four-year university in the Northeast of the 
United States. The project developed and studied the capstone course, 
Mathematical Reasoning and Proving for Secondary Teachers 
(Buchbinder and McCrone, 2020, 2023). The course aimed to enhance 
PSTs’ knowledge, skills, and dispositions for teaching mathematics via 
reasoning and proving. The course includes four modules, each 
focused on one proof theme, i.e., a proof topic that was identified in 
the literature as posing persistent difficulties for students to learn and 
for teachers to teach. The four proof themes were: (1) direct proof and 
argument evaluation, (2) conditional statements, (3) quantification 
and the role of examples in proving, and (4) indirect reasoning. In 
each module, the PSTs first refreshed their own mathematical 
knowledge of the proof theme, learned about students’ conceptions 
and common difficulties pertaining to this theme, and examined 
connections between the university-level proof topic and the 
secondary school curriculum. A culminating experience in each 
module was a lesson planning-enactment-reflection cycle. Each PST 
was paired up with a schoolteacher from a local school for the 
duration of the entire semester. Four times during the semester – once 

FIGURE 1

PSTs’ lesson plans modifications as indicators of their learning to teach via reasoning and proving.
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in every module – the PST reached out to the teacher to inquire about 
the ongoing mathematical topic of the class. Then the PST designed a 
50-min-long lesson plan, which integrated the current proof theme 
with that mathematical topic. To support PSTs in this process, the 
instructor of the capstone course (the second author of this paper) 
devoted a two-hour class session to PSTs working in small groups, 
sharing their draft lesson plans and getting feedback and suggestions 
from their peers and the course instructor4. Next, the PSTs taught their 
lessons to small groups of students in their teachers’ classrooms. This 
occurred during regular class time; the PSTs taught a group of 
consenting students in a separate classroom while the rest of the class 
had a regular lesson with their teacher. The PSTs videorecorded their 
lessons using table-top 360-degree video cameras, which capture the 
PST and the students’ interactions during the lesson. Next, the PSTs 
watched the video of their lessons and reflected on it by writing a 
report (Buchbinder et al., 2021). This lesson planning-enactment-
reflection cycle was repeated four times during the semester, once for 
each proof theme. At the end of the semester, the PSTs were asked to 
revise two of the four lesson plans based on their experience teaching 
the lesson, with regard to what they learned in the course and the 
feedback they received from the course instructor and their peers.

The PSTs participating in the study were secondary mathematics 
education majors who took the course across the five years of the 
project5. By the time of their participation in the course, most PSTs 
were in the fourth (on rare occasions, third) year of their program, 
having successfully completed the majority of their mathematical 
coursework, which included a course on mathematical proof and 
other proof-intensive courses like geometry and/or abstract algebra. 
The PSTs also had previously completed at least one course in 
mathematics education where they learned lesson planning, among 
other teaching methods. However, this capstone course was the only 
one providing a structured clinical experience of teaching mathematics 
in real classrooms.

4.2. PSTs’ lesson plans and their 
modifications

The data for this study came from the lesson plans designed by 
PSTs as a part of course assignments collected between 2017 and 2021. 
Each lesson plan had the following parts: (a) background information 
on the mathematical topic of the lesson and the grade level, prior 
knowledge required for the lesson, lesson objectives, and related 
curriculum standards; (b) student materials and complete solutions, 
(c) implementation plan outlining different parts of the lesson, the 
time devoted to each part, and teacher-led explanation, (d) formative 
assessment questions for lesson summary and (e) anticipated student 
difficulties and planned ways to address them. Despite the required 
common structure, the lesson plans varied by the level of detail in each 
section and the overall format. Some lesson plans were very laconic, 

4 The instructor provided feedback on the mathematical correctness and 

clarity of the lesson plan but did not tell PSTs what content or activities to 

include in their lesson plans.

5 All PSTs who took the course agreed to have their data analyzed for this 

research.

while others were written almost as a scenario integrating planned 
teacher’s speech and anticipated students’ responses.

With the 44 PSTs who participated in the capstone course during 
the five years of the project, the resulting data corpus contained 88 
pairs of original and revised lesson plans. When submitting the 
revised lesson plans, the PSTs were asked to indicate the revisions they 
made by using colored font or highlight, and crossing off text they 
wish to eliminate, rather than deleting it. In addition, for each revised 
lesson plan, the PSTs wrote a short essay explaining the rationale 
behind their lesson modifications.

We used the data to identify changes in PSTs’ pedagogical 
discourse anchored in modified teaching routines, narratives, 
keywords, and visual mediators. Specifically, in relation to our research 
questions, we sought to identify the types of modifications the PSTs 
made to their lesson plans following the lessons’ enactment and 
reflection, and to illustrate how the identified modifications affected 
ORP afforded to students. Our focus in this paper is not to report on 
the statistical trends observed in the data, but to present a theoretical 
model, grounded in the commognitive perspective, and a related 
methodological approach for characterizing PSTs’ 
professional learning.

As a first step of the analysis, we identified all modifications made 
to the lesson plans by diligently comparing the original lesson plan to 
its revised version, using PSTs’ own identifiers (color coding) as an 
initial guide. The modifications included any text that was changed, 
added to, or excluded from the original lesson plan. These included 
modifications to the lesson narratives themselves – the revised tasks, 
objectives, scaffolding questions, visual mediators, introducing or 
replacing keywords (specifically, ones related to meta-discourse on 
proof), as well as changes to the overall structure of the lesson, order 
and time duration of the tasks. In addition to the lesson plan 
modifications, which could be objectively observed, we analyzed PSTs’ 
essays describing the rationale for their modifications, and how they 
envision the modified lesson unfold, if they were to teach it. These 
essays provided us with an additional lens to teachers’ pedagogical 
discourse around ORP afforded to students. The pedagogical 
narratives that PSTs produced in these essays helped us to explicate 
the change in their teaching routines rooted in the modifications.

In the second stage, we used a sample of 28 original and revised 
lesson plans to conduct an in-depth, comprehensive analysis to 
develop a coding scheme classifying the types of modifications to 
the lesson narratives. The identified changes were characterized 
discursively by considering the type of keywords and visual 
mediators used in the modifications, the object at the core of the 
modifications, and the processes (routines) the teacher or students 
might need to enact according to the modification made. For 
example, when the revised lesson plan included adding a 
presentation explicating and explaining what a counterexample is, 
the modification involved keywords and objects taken from meta-
discourse about proof (counterexample). The processes related to 
this modification – teacher explaining and explicating, are 
performed on a logic-based object, that of counterexample. When 
the PSTs, for example, indicated that they wanted to add more time 
to students’ activity to provide them more time to struggle with the 
task, we  identified the object at the core of this modification to 
be related to more structural aspects of the lesson, including social 
and pedagogical elements, rather than mathematical or logic-
related objects. Similarly, the keyword used in this type of 
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modification (e.g., time, struggle, student work) and the teacher’s 
processes related to it (e.g., provide more time, allow group work) 
are not directly related to mathematics or logic-related objects. 
PSTs, often, modified or added a visual mediator to their lesson plan 
(e.g., graph of a function, proof flowchart). These visual mediators 
were also analyzed based on the object at the core of the visual 
mediator and the processes students or the teacher need to perform 
based on the modified mediator. The process of coding the 
discursive elements of the modifications in 28 lesson plans reveals 
four types of modifications the PSTs made to their lesson plans: 
structural, mathematical, logic-based, and reasoning-based. 
We elaborate on those four types of modifications and exemplify 
each of them in the Results sections. Using the inductively 
developed categories, we examined the rest of the data corpus to 
verify that the modifications indeed fall within these four categories. 
This process led to refining and clarifying the description of the four 
categories of modifications; however, no new categories emerged. 
In addition, we identified compelling examples of modifications 
that effectively illustrate the characteristics of the categories of 
modifications we found in our in-depth analysis.

In addition to identifying the types of modification, based on 
their discursive characteristics, we  examined the types of ORP 
(limited, reasoning-based, logic-based, fully-integrated) in the 
original and revised lesson plans, to seek relationships between the 
types of ORP and types of modifications. Our goal in this stage of 
analysis was to capture the changes in PSTs’ discourse and to 
characterize them with respect to types of discourse afforded to 
students to participate in by these modifications. For example, 
whereas some of the changes provide students richer opportunities 
to participate in meta-discourse about proof (e.g., explicate the 
nature of counterexamples), other modifications involve providing 
students with richer opportunities to participate in mathematical 
reasoning discourse. Still, some modifications altered the type of 
ORP afforded to students, or even diminished it, as we will illustrate 
in the Results section.

In classifying the types of modifications, it was important to 
examine each modification on its own, but it was also important to 
keep track of all the changes in the lesson plan as a whole, so we could 
see how the different modifications related to each other and 
contributed to a bigger rationale for the whole revised lesson plan. 
Thus, in the third stage of our analysis, we enlarged our unit of analysis 
from a single modification to an entire lesson plan of one of the PSTs 
including multiple modifications. By this, we explored the types of 
ORP the PST provided to students by all lesson modifications 
collectively. In addition, we examined how the various modifications 
that appeared in different parts of the revised lesson plan 
(mathematical tasks, lesson objectives, discussion prompts, summative 
questions, and instructional explanations) related to each other and 
aimed to achieve a common goal.

5. Results

In this section, we first describe the types of modifications the 
PSTs made to their lesson plans, and by pointing out the modified 
routines, narratives, keywords, and visual mediators, we illustrate the 
opportunities for reasoning and proving afforded by them. Next, 
we show an example of modifications made to an entire lesson plan 

and the consequent changes in the ORP afforded to students. 
We  interpret the changes in PSTs’ pedagogical discourse around 
reasoning and proving as reflecting their professional growth.

5.1. Types of changes in lesson plans

As mentioned above, we identified four types of modifications 
PSTs made to their original lesson plans. These modifications were 
characterized discursively as structural, mathematical, reasoning-
based, and logic-based.

5.1.1. Structural modifications
The first type of modification in the PSTs’ lesson plans is 

characterized by modifications to the structural, pedagogical aspects 
of the lesson. These modifications relate to participation structures, 
such as students’ modes of participation, students’ interaction and 
their social activity, and to the lesson structure, such as allocating 
time to different activities, order of activities, supporting materials, 
and teaching strategies. These modifications are characterized by 
general pedagogical, social keywords (e.g., “students feel more 
comfortable sharing,” “have a discussion with the students,” “allow 
more time to discuss”) and reflect on teaching routines, intended to 
increase and support student engagement and improve the flow of 
the lesson. The discourse characteristics (narratives, keywords, 
routines) involved in this type of modification are not specific to 
student mathematical work nor the mathematical objects at the core 
of the discourse. Rather, they focus on improving the structural and 
pedagogical aspects of the lesson that aim to support and enable 
student engagement. This type of structural modification was very 
common in the PSTs’ revised lesson plans, as the following 
example shows.

5.1.1.1. Example: Laura’s case
Laura chose to revise her fourth lesson plan on graphing linear 

equations and indirect reasoning. The original lesson plan contained 
three activities. The first two: (1) a word problem about two runners 
competing in a race, asking students when one of them will overtake 
the other, and (2) a review task with practice problems on graphing 
linear equations. The first two activities provided only limited ORP 
since both the objects at the core of the task and the processes that 
need to be enacted to solve the task are mathematical (e.g., linear 
equation, graphing, formulating). The third activity contained three 
problems in which students were asked to use indirect reasoning to 
explain why a certain point cannot be a solution to a given system of 
linear equations (Figure 2). Specifically, the students were expected to 
assume the given point is a solution to the system, plug it into both 
equations, determine that the point does not satisfy both equations 
and thus reject the initial assumption.

Thus, in contrast to the first two activities, Activity 3 involves 
fully-integrated ORP. The objects at the core of this activity are systems 
of linear equations (mathematical) as well as indirect reasoning (logic-
based). Students were asked to use mathematical reasoning processes 
of justifying and explaining, and since they were invited to use a 
particular type of reasoning, they needed to enact logic-based 
processes related to indirect reasoning and its structure. Thus, students 
were expected to participate in two types of discourses – mathematical 
reasoning discourse and meta-discourse about proof.
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Despite considering this lesson plan as her “favorite,” after 
enacting the lesson, Laura decided to modify the plan. The changes 
she made to the lesson plan were structural: revising the timeline of 
the lesson, excluding Activity 2, and adding time to Activity 3. In 
addition, she changed the mode of student interaction with Activity 3 
by breaking a class into three groups, assigning each group one 
question from Figure 2 above, and devoting time to group work and 
the whole class discussion of student solutions.

Justifying the modifications to the lesson plan, Laura suggested 
that Activity 2 was intended to be  a “quick review, but in 
implementation, it took longer than expected and really did not 
help students in achieving my objectives.” Moreover, she mentioned 
that there was little time left for the indirect reasoning activity. So, 
in the revised lesson plan, Laura wanted to allocate more time to it. 
She wrote: “I decided that I really liked my original third activity 
and thought it was valuable in implementation even though it was 
a little rushed.” Her pedagogical narratives [e.g., “it (Activity 2) took 
longer than expected”], as well as her keywords (e.g., “little time,” 
“took longer,” “quick review”) and routines (“achieving my 
objectives,” implementing Activity 3 “even though it was a little 
rushed”), focused on the pedagogical aspect of the lesson and the 
lesson’s structure, pertaining to time management and mode of 
engagement with the tasks. While Activity 3 with the fully-
integrated ORP was present in the original lesson plan, the time 
allotted to it, as Laura described, made it unrealistic to fulfill its 
potential. By excluding tasks with limited ORP (Activity 2), adding 
more time to tasks with fully-integrated ORP (Activity 3), and 
restructuring the mode of student interaction with the activity 
(assigning different tasks to different groups), Laura increased 
students’ opportunities to engage with reasoning and proving, 
specifically with fully-integrated ORP, which received more time 
and prominence in the revised lesson plan.

5.1.2. Mathematical modifications
The second type of modification focuses solely on the 

mathematical objects at the core of the lesson grounded in the school 
curriculum and on the mathematical routines the teacher or students 
are expected to follow. This includes modifications in which PSTs 
changed the mathematical tasks, elaborated mathematical content, 
and added explanations or questions intended to clarify 
mathematical ideas or connections between them. These changes 
can be  viewed as modifications aimed at changing students’ 
mathematical discourse. In contrast to the structural modifications 
that indirectly affect students’ mathematical work by changing 
general pedagogical, and structural aspects of the lesson, the 
mathematical modifications relate to specific mathematical objects 

and processes. The teaching routines, as well as the keywords used, 
and the visual mediators utilized, are specifically related to the 
mathematical object. The mathematical modifications were less 
common in our analysis than the structural modifications.

The following two examples illustrate mathematical modifications. 
Whereas the first case – Nate’s case, depicts mathematical 
modifications that led to richer ORP, the second case – Molly’s case, is 
an example of mathematical modifications that can diminish the ORP 
provided to students.

5.1.2.1. Example 1: Nate’s case
Nate designed an activity in which he had students discover the 

extended Pythagorean theorem, which states that areas of any similar 
shapes constructed on the sides of a right triangle satisfy the 
relationship a b c2 2 2+ = , where a b,  are the length of the legs, and c
is the length of the hypotenuse of the right triangle. In the original 
lesson plan, Nate relied on students’ prior knowledge of the 
Pythagorean theorem and had students explore areas of rectangles, 
equilateral triangles, and semi-circles constructed on the sides of a 
right triangle (Figure 3). These calculations were supposed to set the 
stage for observing the pattern and generalizing the Pythagorean 
Theorem across the cases.

During lesson enactment, Nate discovered that algebraic 
manipulations with multiple parameters were difficult for students. The 
technical complexity of algebraic manipulations prevented students 
from engaging with the mathematical reasoning processes of identifying 
patterns and generalizing. In the revised lesson plan, Nate introduced 
many changes, some of which we categorized as mathematical in nature 
(Figure 4). First, to ease students into the task, he introduced an example 
of a simple calculation of areas of rectangles constructed on the sides of 
a right triangle with given numeric values. This was followed by an 
example of the same shapes but with parameters instead of numbers. 
The second modification was that Nate changed the order of 
explorations of semi-circles and equilateral triangles, moving the 
exploration of semi-circles immediately after rectangles since this case 
is easier in terms of algebraic manipulations than the one with 
equilateral triangles. The third modification included providing 
numeric values for the sides of an equilateral triangle and asking 
students to calculate the lengths of the altitudes as a first step of the 
exploration. This modification allowed students to practice applying the 
Pythagorean Theorem to find the length of the altitudes of the 
equilateral triangles prior to calculating their areas. These calculations 
served as a basis for a generalized case of equilateral triangles, with 
parameters instead of numbers, which was left for homework.

Nate provides his rationale behind the modifications, supporting 
our categorization. He wrote:

FIGURE 2

Indirect reasoning and systems of equations task.
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… The original conjecture stays in the worksheet but the next 
problem about the area of rectangles changes slightly. In the 
original worksheet, this problem started generalized and I was 
made aware that doing this problem with actual numbers and 
then generalize it will help students understand the algebra of 
the next problems. The next problem is the original generalized 
rectangle problem to translate their work with real numbers to 
generalization. I then moved the area of semi circles before the 
area of equilateral triangles, because […] it is easier than the 
problem of equilateral triangles. To mitigate the issues with the 
area of equilateral triangles, I provided the altitude and values 
for the base and hypotenuse. This gives them [students] 
concrete numbers to work with instead of generalized values. 
Hopefully this will make the problem easier to understand 
and comprehend.

Nate’s modifications to the lesson plan are mathematical in nature. 
He distinguishes between the “worksheet” – the mathematical task, 
and the rest of the lesson plan. The objects at the core of the 
modifications and the routines are mathematical: introducing numeric 
examples and changing the order of the tasks to simplify calculations 
and algebraic manipulations. The aim of these changes and the 
rationale for changing the order of the tasks, as described by Nate, is 
to scaffold students’ participation toward enacting mathematical 
reasoning processes (“help students understand algebra,” “mitigate 
issues with areas”) and allow students to analyze similarities and 
differences between the cases to identify patterns and make 
conjectures (“doing this problem with actual numbers and then 
generalize,” “translate their work with numbers to generalization”). By 
this, the mathematical changes in the content of the lesson increased 

students’ opportunities to eventually participate in mathematical 
reasoning discourse.

We move now to describe Molly’s case, in which, similar to Nate’s 
case, mathematical modifications were identified, but these 
modifications did not result in increasing students’ opportunities for 
reasoning and proving.

5.1.2.2. Example 2: Molly’s case
In one of the tasks developed by Molly for middle school geometry 

class, students were given a chart reminding them of two ways to 
classify triangles: by sides or by angles, along with definitions of 
various types of triangles and their sketches (Figure 5).

The task for students was to find relationships between different 
types of triangles and write them as conjectures; for example, all 
isosceles triangles are equilateral, or if a triangle is obtuse, then it is 
not equilateral. Next, students had to prove or disprove their 
conjectures. This task is characterized by fully-integrated ORP since 
it requires students to engage in mathematical reasoning processes of 
pattern identification and conjecturing, as well as in logic-based 
processes of formulating true mathematical statements on 
mathematical objects. In the revised lesson plan, Molly removed the 
table depicted in Figure  5 and substituted it with a table without 
images of triangles, only with definitions (Figure 6).

When explaining the reason for changing the figure, Molly wrote 
that she found Figure 5 online and inserted it into her lesson without 
critically evaluating it: “At the time, I wanted a nice visual to help the 
students, but I realize now that we cannot trust all the information on 
the internet.” After enacting the lesson and receiving feedback on it, 
Molly realized that the diagram that she originally used “can 
be misleading and can cause confusion.” For example, the scalene 

FIGURE 3

Sequence of explorations in the original lesson plan.

FIGURE 4

Sequence of explorations in the revised lesson plan.
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triangle in Figure 5 looks right, and both the acute and obtuse triangles 
look isosceles, which is not always true. As Molly described, the use 
of such a “misleading” figure led her to “work a little harder and try to 
find a better diagram for students.”

As for the ORP in the revised task, in the revised figure (Figure 6), 
in contrast to the original figure (Figure  5), all the relationships 
between triangle types were already explicitly summarized for 
students. Thus, students were not required to find the relationship, 
generalize it and determine if their conjecture is true or false. Rather, 
they were only required to formulate mathematical statements in 
proper logical forms. Molly wrote that she “will show the students this 
picture to help them construct conditional statements.” Thus, the 
object and processes at the core of the task are no longer mathematical 
at the middle school curriculum level – types of triangles and finding 
the relationships between them. Instead, the revised object-processes 
are logical – formulating conditional statements from the given 
information. Thus, the ORP changed, or more precisely diminished, 
to logic-based only. Molly also noticed the differences between the 
figures and their mathematical affordances. She argued that the 
modified figure (Figure 6) “is better because it shows what happens 
when you  “crossover” different triangles.” However, since all the 
relationships are already represented in the figure, this modification 

takes away students’ opportunities to engage with reasoning processes 
on mathematical objects, such as pattern identification, 
generalizations, and conjecturing (e.g., there exists a right triangle 
which is also an isosceles triangle, or there is no right triangle that is 
also equilateral triangle).

It can be argued that having a more mathematically precise and 
less ambiguous figure for students to analyze is an improvement; or 
that there may be  pedagogical advantages for intentionally using 
imprecise figures. While we  agree with both ideas, there is no 
indication in Molly’s work that she considered these issues. In terms 
of the ORP afforded to students, by this mathematical modification of 
changing the visual mediator of the types of triangles, the ORP of the 
task were diminished from fully-integrated ORP, which includes 
opportunities to participate both in mathematical reasoning and 
logic-based discourse, to logic-based ORP only, which includes only 
opportunities to participate in logic-based discourse.

5.1.3. Reasoning-based modifications
The reasoning-based modifications are characterized by 

narratives, routines, keyword and visual mediators that focus on the 
reasoning processes students need to enact, such as justifying, 
conjecturing, validating, or proving. The reasoning-based 
modifications include, for example, the teaching routine of asking 
more scaffolding questions or revising the existing questions during 
classroom discussions toward providing students more 
opportunities to enact reasoning processes. This type of 
modification also includes changes to the mathematical tasks that 
appear in the lesson plan, which often involve changes in the 
mathematical objects and sometimes even in the mathematical 
processes of the task. But what makes these modifications 
reasoning-based rather than just mathematical is that the main 
change was made to the mathematical reasoning processes which 
students need to enact. These reasoning-based modifications were 
intended to increase student engagement with additional reasoning 
processes enacted on mathematical objects. Thus, in most cases, the 
reasoning-based modifications led to richer reasoning-based ORP, 
as described in the following examples. The first example is taken 
from Nate’s lesson plan within Geometry curriculum, whereas the 
second example is taken from Phil’s Algebra’s lesson plan. Our aim 
in providing two examples is to illustrate how reasoning processes 
can be integrated in both Geometry and Algebra.

5.1.3.1. Example 1: Nate’s case
Returning to Nate’s activity with the extension of the Pythagorean 

Theorem (Figure 4), recall that he intended the exploration of cases 
with different shapes constructed on the sides of a right triangle would 
generate calculations that students could generalize and come up with 
a conjecture. In the revised lesson plan, before asking students to write 
a conjecture generalizing their observations, Nate included an 
additional task in which students were expected to work in groups to 
create their own case of shapes constructed on the sides of a right 
triangle, calculate their areas and see if the pattern of extended 
Pythagorean Theorem still holds. In this question, Nate intentionally 
did not specify that the shapes need to be  similar, i.e., have 
proportional sides. He  anticipated that some students might 
overgeneralize the examples examined so far without noticing that the 
shapes must be  similar. By adding this question, Nate expected 
students to discover counterexamples – non-similar shapes – and then 

FIGURE 5

Ways to classify triangles (from Molly’s original lesson plan) 
(Copyright https://assignmentpoint.com/).

FIGURE 6

Summary of triangles’ relationships (from Molly’s revised lesson plan) 
(Copyright basic-mathematics.com).
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have students examine what is common in cases where the conjecture 
holds. This way, students could identify that the similarity of shapes 
constructed on the sides of a right triangle is a necessary condition for 
the conjecture to hold. Nate explained the changes to the lesson plan 
by writing:

I added a question in which the students will take the time to 
create their own example, this gives them time to try and find a 
counterexample and to explore other ideas not presented directly 
to them. All the problems [cases examined so far] showed the 
conjecture would work, and I expected students to know that 
there would be a counterexample. Then I ask them to look at the 
examples that worked and try and find the common thread of 
similar shapes. This is a new question that supplements the 
question before to really help them understand the coincidence in 
the worksheet and to think critically about the work they have 
been doing.

The object at the core of the modification – the new tasks Nate 
designed, are mathematical objects (shapes, algebraic expressions), 
and the processes students are expected to enact are both mathematical 
(writing an equation, calculating) and reasoning (generating examples 
and counterexamples, identifying patterns, generalizing and writing a 
conjecture). Nate’s teaching routines, as reflected in the revised lesson 
plan, focused on encouraging students to enact reasoning processes: 
“to create their own example and find counterexample,” “to explore 
other ideas not presented,” “find the common thread of similar 
shapes,” and “think critically about their work.” As a result of these 
changes, the revised lesson plan involves richer opportunities for 
students to participate in mathematical reasoning discourse. These 
opportunities are also reflected in Nate’s usage of keywords such as 
“explore,” “create,” “example,” and “counterexample,” and in his 
narratives focused on the importance of encouraging students to 
create examples and counterexamples, generalize, conjecture, and 
think critically.

5.1.3.2. Example 2: Phil’s case
Phil developed a 9th-grade Algebra lesson devoted to the 

distributive property. In the original lesson plan, Phil intended to 
introduce the formula representing the distributive property and to 
show how it can be  represented with an area model (Figure  7). 
He  wrote: “I’ll first show the general notation for the distributive 
property: a b c ab ac+( ) = + . Then I’ll explore the distributive 
property using visual demonstration with rectangles area. Show how 
the visual relates to the mathematical notation, using the example 
4 10x +( ).” Next, Phil wanted students to practice applying the 

distributive property using the area model (Figure 8 shows one out of 
four such exercises).

This task has limited ORP, since both the object of the task and the 
processes that students need to enact are school-based mathematical 
(distributive property, integers, calculations, area representations). 
Reflecting on the lesson, Phil was concerned with the fact that students 
had little ownership over their mathematical knowledge when the 
formula was simply presented to them. Phil wrote: “I felt that it would 
be much better to have students explore the distributive property on 
their own through working with the worksheet, rather than just give 
it to them on the board like I did.” Phil also was concerned with 
students “modeling distributive property expressions with 
subtraction.” He wrote that “it was hard for students to look at area as 
a negative.”

In the revised lesson plan, Phil designed a new activity where 
students were given colored chips: green representing positive 
numbers and red for negative numbers. First, the students were 
asked to use the chips to represent three pairs of expressions, such 
as 3·(2) + 3·(−1) and 3·(2–1), related to two parts of the distributive 
property. This task was followed by a set of questions:

 1. What did you have to do differently for the subtraction example?
 2. What do you notice in common for all the examples?
 3. Is there a general way you can write this pattern?
 4. Create your own distribution problem with four numbers and 

represent it with your chips. Example: 3·(2 + 1 + 2).
 5. Does the pattern work with four numbers? Will it continue to 

work with even more?

This example again illustrates reasoning-based modification. 
Note that the mathematical objects of the modified activity remain 
the same as in the original one: integers and the distributive property. 
Also, in both original and modified tasks, students needed to work 
with representations and visual mediators. The main modification 
concerns the nature of the processes that students need to enact 
while solving the task. Whereas the original task had students 
writing a mathematical sentence representing the area model of the 
distributive property, the modified task calls for different types of 
reasoning processes, such as pattern identification, conjecturing, 
generalizing, and justifying. These types of processes were absent 
from the original task but are at the core of the modified one. 
Therefore, Phil’s reasoning-based modification changed the ORP of 
the task from limited to reasoning-based ORP. In addition, Phil’s 
pedagogical narratives and teaching routines, similar to those of 
Nate, focused on encouraging students to enact reasoning processes: 
“explore the distributive property on their own” by “noticing what is 
common” across examples, finding “a general way to write a pattern,” 
and pondering of this would be true with “more numbers.” Phil’s 
pedagogical discourse, including teaching routines such as “explore,” 
“noticing,” and “write a pattern,” supports the richer ORP provided 
by the task Phil revised.

5.1.4. Logic-based modifications
This category of changes is characterized by modifications to the 

logic-based discourse of the lesson. These changes included making 
the logic-based objects and processes of the lesson plan explicit to 
students, for example, by modifying teacher explanations, introducing 
logic-based vocabulary, adding questions that require students to 

FIGURE 7

Excerpts from Phil’s tasks in the original lesson plan: area model 
illustration of distributive property.
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enact logic-based processes like identifying a type of quantifier or 
unpacking the logical structure of a statement. Other changes included 
adding discussion prompts requiring students to reflect on the type of 
reasoning they used to solve the provided tasks, making the logical 
structure of this reasoning explicit and formalized. These types of 
changes are characterized by modifications to the logic-based objects 
and processes pertaining to the lesson plan and therefore intended to 
modify students’ participation in logic-based discourse.

5.1.4.1. Example: Zoe’s case
Zoe’s lesson for 8th-grade students intended to combine 

solving  simple equations with quantification and the role of 
examples  in  proving them. The students were given seven 
equations (e.g.,  2 2 3 5 4 3x x− −( ) − = − , 2 2 3 1 2 6m m+ − −( ) = ( ) , 

2 1
4 6

2
8y y

+( ) + +
= ), which they had to solve and sort according to 

the number of solutions: no solutions, one solution, and infinitely 
many solutions. Then students had to determine whether the following 
statements were true or false and explain their reasoning. The 
statements were: (a) An equation always has a solution, (b) There 
exists an equation with an infinite number of solutions. Zoe wrote in 
her original lesson plan that she expected students to “come up with a 
counterexample to prove the first sentence false and a supporting 
example to prove the second sentence true.” She also planned to ask 
them why a counterexample is enough to prove the first statement 
false and why a supporting example is enough to prove the second 
statement true. However, the lesson plan included no written 
explanation about how exactly Zoe planned to introduce students to 
the roles of examples in proving and disproving quantified statements.

After enacting the lesson and reflecting on it, Zoe noticed that in 
the original lesson plan, the proof-related ideas were introduced only 
at the end of the lesson: “the role of examples in proving was only 
introduced in the end […] catching students by surprise,” with “not 
thinking about this idea of proofs throughout the lesson.” Hence, in 
the revised lesson plan, Zoe added, at the very beginning of the lesson 
an introduction to the topic of the role of examples using familiar, 
non-mathematical context. Zoe wrote an explicit description of how 
she would introduce students to the topic of the roles of examples 
in proving:

To introduce the topic of the role of examples in proving, I can ask 
them questions about when examples are enough to prove 
something. I will begin by saying “All cars are red” and asking the 

students if they can prove me right or wrong. The goal is that the 
students can respond with an example of a car that is not red, 
which would disprove my statement. I could also say, “there exists 
a dog with brown fur” and ask the students if they can prove that 
statement. The students should be  able to come up with an 
example of a dog with brown fur, which would prove the 
statement. This could lead to a discussion about using examples 
in proving and when an example is sufficient in proving 
and disproving.

When justifying her lesson modifications, Zoe explained that 
“when the students are asked to use examples to prove or disprove 
different statements about equations, they should already have some 
ideas of how to do this,” and the inclusion of the explicit explanation 
“ties the lesson together.” Zoe also expressed hope that the 
introductory discussion would aid student understanding and that 
she “can bring students back to our discussion if they are 
still struggling.”

Characterizing the change made to Zoe’s lesson, the object at the 
core of the change is logic-based. The mathematical task remained 
unchanged, as well as the logic-based tasks of validating and justifying 
the truth-value of quantified statements. When enacting the lesson, 
Zoe discovered that students struggled to determine if the given 
mathematical statements were true or false, to justify their thinking, 
and, in general, to participate in the discussion around this task. This 
was because students were missing the relevant keywords (e.g., a 
counterexample), the endorsed narratives (e.g., “when examples are 
enough to prove something?”), and the processes of meta-discourse 
about proof, particularly those that related to the role of examples in 
proving or disproving statements [e.g., using examples of solved 
equations as examples or counterexamples of the quantified statements 
(a) and (b)]. The focus of Zoe’s modifications was on introducing 
logic-based vocabulary and modeling the logic-based processes 
related to the form and structure of validating and justifying. In 
summary, the logic-based modifications in the revised lesson plan 
enhanced students’ opportunities to participate in logic-based 
discourse. These enhanced opportunities are also reflected in Zoe’s 
pedagogical discourse. Zoe’s teaching routines and her pedagogical 
narrative point to the explicit manner by which she planned to engage 
students in logic-based discourse (e.g., “ask what their solution is and 
what they think it means;” and if students wrongly assume that all 
equations have solutions, Zoe would orient them to their calculations 
to “see that there are some examples of equations with no solutions”).

FIGURE 8

Excerpts from Phil’s tasks in the original lesson plan: sample exercise (Copyright Homeschoolmath.net).
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5.2. Illustration of changes to the entire 
lesson plan

So far, we have described and illustrated categories of specific 
changes in the lesson plans. A single lesson plan may contain one or a 
few types of modifications, which collectively affect the learning 
opportunities provided to students and the types of discourses 
students can participate in. To better understand this phenomenon, it 
is important to analyze a lesson as a whole, considering not just the 
individual changes but also how these changes, collectively, interact 
with and complement each other. We  illustrate this by analyzing 
Diane’s 9th-grade Algebra lesson plan.

5.2.1. Diane’s original lesson plan
This lesson intended to integrate the proof theme of indirect 

reasoning (and prove by contradiction) with the mathematical topic 
of the quotient rule of exponents. The lesson involved four 
components: introduction, individual student work, class discussion, 
and summary. The introduction focused on the collective recall of key 
vocabulary terms such as base and exponent and the meaning of 
natural number exponents as repeated multiplication. The individual 
work contained an exploration activity in which students were 
supposed to discover the quotient rule by observing and generalizing 
a pattern of calculations. The students were to fill out a table (Figure 9) 

and come up with the quotient rule: x
x

x
m

n
m n= − . The task’s directions 

to students were: “The table is going to help you figure out a general 
rule about simplifying exponents that can be used when we are solving 
equations that have exponents in them. Work on your own to look for 
a pattern in the examples and try and make a more general rule.”

The plan for the whole-class discussion contained two parts. First, 
“go over the worksheet and ask students to present their ideas of the 
generalized rule they created in the last row of the table.” The second 
part involved “Indirect Reasoning Activity,” which presented students 
with a set of questions about the quotient rule, whose solutions may 
involve indirect reasoning (Figure  10). For example, to answer 
question 6 (the first question in Figure 10), students may substitute 
x = 8 into the equation, use the quotient rule to obtain a false 
statement 4 4

6 3= , and conclude that x = 8 cannot be a solution. The 
mode of engagement was a whole class discussion, with students 

getting a few minutes of individual thinking time for each question 
and then justifying their answers to the class.

To summarize the lesson, Diane planned to “have a conversation 
about how sometimes we have to show why things are not true, and 
we can use contradictions to do this.” However, she did not intend to 
explicitly introduce the concept of indirect reasoning, asserting that 
“using the words ‘indirect reasoning’ is not going to be particularly 
helpful” to the students.

5.2.2. Diane’s modified lesson plan
Following the lesson enactment and reflection, at the end of the 

course, Diane introduced several types of changes to her original 
lesson plan. In what follows, we describe the modifications, and then 
we show how, collectively, these modifications lead to richer ORP in 
the lesson plan.

5.2.2.1. Structural modifications
To increase and support students’ active participation, Diane 

introduced an intermediate check of student work as they completed 
the first three rows of the table in Figure 9. This pedagogical change 
was intended, according to Diane’s explanation, to make students 
more comfortable and confident in the outcomes of their calculations 
and set the stage for pattern identification and generalization. Another 
structural modification, that focused on the structure of students’ 
participation, was explicitly reminding students about expectations 
for active engagement and sharing ideas. Justifying this modification 
Diane wrote: “This will make the lessons go smoother and more 
enjoyable for everyone involved. Emphasize that they (students) are 
not being graded, so there is really no pressure, and I would love to 
hear what they are thinking.”

5.2.2.2. Reasoning-based modifications
A different type of modification – reasoning-based modification, 

was the introduction of a slide with questions scaffolding students 
generalizing activity and their discovery of the quotient rule of 
exponents (Figure 11). The aim of the slide, as Dinae described, was 
for students “to start thinking of the general rule that will come 
from the expression in the bottom row of the table.” The intended 
reasoning processes of the first exploratory activity were for 
students to identify a pattern, notice how the values of the 
exponents change, and generalize the pattern they identified to any 
number and exponent. The processes remained unchanged between 
the original and revised version of the lesson. However, the way the 
original task was set up did not elicit the intended engagement of 
students with these processes. By adding this slide, Diane made the 
reasoning processes more explicit and provided scaffolding for 
students’ thinking.

5.2.2.3. Logic-based modifications
The third type of change in Diane’s lesson was during the Indirect 

Reasoning Activity and pertained to logic-based modification. In the 
original lesson plan, students were expected to solve questions about 
why certain values of variables are impossible by identifying 
contradictions resulting when these values are used. The lesson 
summary was supposed to contain a discussion of the usefulness of 
this type of reasoning. While Diane was aware that students are 
engaged with indirect reasoning, this remained implicit for the 

FIGURE 9

Diane’s original task.
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students. As she described in her essay: “I never specifically said ‘we 
are going to be using indirect reasoning’, nor did I ever have them 
complete an indirect proof.” As a result, students were missing the 
keywords and endorsed narratives of logic-based discourse and 
struggled to participate in the discussion. In the revised lesson, Diane 
decided to explicitly address the logic-related objects and processes. 
Right before the Indirect Reasoning Activity, she added a slide, which 
intended to help her navigate discussions about indirect reasoning and 
the nature of contradiction in mathematics. The slides contained two 
discussion questions: What is a contradiction? And why might 
we  want to find a contradiction? Diane motivated this change by 
writing: “I would like to place more emphasis on the fact that we are 
finding contradictions as the reasoning that some of these equations 
cannot work. We will discuss what a contradiction is and what it tells 
us in mathematics.” The object at the core of this modification is logic-
based: the nature of contradiction and its application. Although it is 
discussed in the context of exponents, these questions are meta-
mathematical, anchored in logic-based discourse.

5.2.2.4. Mathematical and logic-based modifications
Another modification, characterized by a logic-based and 

mathematical modification, appeared when Diane modified the 
wording of the mathematical questions in the Indirect Reasoning 
Activity. The original questions only prompted students to “be ready 
to explain why you chose the answer that you did” without explicitly 
connecting student responses to indirect reasoning and proof by 
contradiction. In the revised lesson plan, each question was 
accompanied by an explicit prompt to “explain what is the 

contradiction here?” When students were asked to solve the second 
question in Figure 10 – “Determine what values of x, in general, would 

make 4
4

4

4

8

2 5
>

x
 false. And why?” – Diane added a discussion question: 

“What contradiction would these values lead to?” These modifications 
focus on both the logic-based object of contradiction and the 
mathematical object of exponent expressions in these questions. As 
opposed to the former modification – asking students what a 
contradiction is, which we  categorized as solely logic-based 
modification, this modification – requiring students to identify the 
contradiction, also required students to operate on mathematical 
objects (exponent expressions) while engaging with logic-based 
processes (applying indirect reasoning).

The two latter types of modifications were also identified in 
Diane’s modified lesson summary. Similar to the logic-based 
modification mentioned above, Diane explicitly introduced the notion 
of indirect reasoning (Figure  12, slide 27), and akin to the 
mathematical and logic-based modification, she made indirect 
reasoning underlying students’ answers to the mathematical questions 
explicit to them (Figure 12, slides 28–30). Diane’s rationale for making 
these modifications to the lesson summary was:

To conclude the lesson, we will talk about how the students were 
using indirect reasoning. I am going to take a few of the answers 
that students submitted to previous questions that show great 
examples of indirect reasoning and put them on a slide.

As opposed to the original lesson plan, rather than expecting 
students to learn “indirectly” about the nature and logical structure of 
indirect reasoning, Diane introduced changes that make these 
non-trivial logical elements explicit to students and connect them to 
their mathematical narratives.

5.3. The ORP afforded by Diane’s 
modifications

Diane’s original lesson plan contained opportunities for students 
to enact mathematical processes, such as calculating and solving, on 
mathematical objects: exponential expressions. The lesson also 
involved some opportunities to enact mathematical reasoning 
processes, such as identifying patterns, generalizing, and justifying 
when discovering the quotient rule and when justifying solutions to 
questions in the Indirect Reasoning Activity. The logical aspects of 

FIGURE 10

Sample questions from the indirect reasoning activity.

FIGURE 11

Scaffolding questions for discovering the quotient rule.
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indirect reasoning were intentionally implicit in Diane’s original 
lesson plan, as she considered them unnecessary, meaning that the 
original lesson did not involve explicit opportunities to participate in 
logic-based discourse.

After enacting and reflecting on the lesson, Diane’s goal in 
modifying the lesson was “to try and better incorporate the Indirect 
Reasoning proof theme throughout the lesson.” Her revised lesson 
plan involved all four types of modifications: structural, mathematical, 
reasoning, and logic-based. Collectively, these modifications provided 
students with increased opportunities to participate both in 
mathematical reasoning discourse and in meta-discourse about proof. 
For example, Diane’s structural modifications described above, were 
intended to increase access to opportunities to participate in 
mathematical reasoning discourse and decrease social costs associated 
with this participation. As for encouraging students to participate in 
mathematical reasoning discourse, the reasoning-based modifications 
Diane made to her lesson plan increased support and scaffolding for 
students to enact mathematical reasoning processes when discovering 
the quotient rule (Figure 11). Students were encouraged to identify 
patterns and generalize while enacting mathematical processes 
(substituting and computing) on mathematical objects (exponential 
expressions) and producing mathematical narratives (e.g., 6 34 4≠ ). 
Thus, students were provided richer opportunities to participate in 
mathematical reasoning discourse.

Importantly, Diane’s logic-based modifications introduced new 
opportunities for students to participate in logic-based discourse on 
contradiction and indirect reasoning during the Indirect Reasoning 
Activity and the lesson discussion (Figure 12). These opportunities 

manifested in her modifications related to making the non-trivial 
logical elements of the lesson (e.g., contradiction, indirect reasoning) 
explicit to students. In addition, in her mathematical modifications, 
Diane also connected these logical elements to the mathematical 
narratives students produced. Thus, as a whole, Diane’s modifications 
generated fully-integrated ORPs, which collectively afford more ample 
and richer opportunities for students to participate both in 
mathematical reasoning discourse and logic-based discourse.

These fully-integrated ORPs are also reflected in Diane’s 
pedagogical narratives and teaching routines focused on the 
importance of explicating the logical elements (e.g., “place more 
emphasis on the fact that we are finding contradictions”), connecting 
them to mathematics (e.g., “ask students to explain what is the 
contradiction here”), and encouraging students to reason (e.g., “help 
them to start thinking of a general rule”). The fully-integrated ORP 
generated in her revised lesson plan, together with her modifications 
– reflecting her teaching routines – and her justification to these 
modifications – her pedagogical narratives – indicate Diane’s 
professional learning to teach mathematics via reasoning and proving.

6. Discussion

This article is part of a long-term study that aims to advance 
teachers’ professional learning toward integrating reasoning and 
proving in teaching mathematics and to examine how this learning 
develops over time (Buchbinder and McCrone, 2020, 2023). The 
capstone course designed in the larger study is a semester-long 

FIGURE 12

Summary questions explicating indirect reasoning.
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intervention aimed to promote PSTs’ professional competence for 
teaching mathematics via reasoning and proving. A literature review 
reveals limited theoretical and methodological tools for capturing and 
characterizing how teachers’ practices specific to reasoning and 
proving evolve (Stylianides et  al., 2017; Depaepe et  al., 2020). To 
address these challenges, we  developed a conceptualization that 
involves a triple-layered characterization of student learning, teaching, 
and learning to teach mathematics via reasoning and proving. One of 
the key premises of our conceptualization is that teachers’ professional 
growth is intrinsically linked to their classroom experimentation, 
including the learning opportunities they provide to students and 
student learning processes, and reflection on the consequences of this 
experimentation (Clarke and Hollingsworth, 2002). We expanded 
Buchbinder et al. (2021) earlier conceptualization of principles for 
teaching mathematics via reasoning and proving and operationalized 
them using the commognitive perspective (Sfard, 2008). The 
commognitive perspective, with its robust tools for characterizing 
discourses in terms of objects, processes, keywords, and visual 
mediators, allowed us to operationalize each of the three layers of the 
model (Figure 13) and strengthen the theoretical connections between 
the layers. Specifically, our model describes which type of student 
learning PSTs were expected to promote in their classrooms – learning 
mathematics via reasoning and proving, which type of teaching 
practices they should enact to promote it – teaching mathematics via 
reasoning and proving, and how PSTs’ own learning can be cast in 
similar terms.

Student learning mathematics via reasoning and proving is 
conceptualized by participating in two types of discourses: 
mathematical reasoning discourse and meta-discourse about proof (or 
logic-based discourse). Teaching mathematics via reasoning and 
proving entails providing opportunities for students to participate in 
the two types of discourses by providing reasoning-based, logic-based 
and fully-integrated ORP. Consequently, PSTs’ learning to teach 
mathematics via reasoning and proving is conceptualized as a change 
in their pedagogical discourse. This change is captured by the 
modifications they made to their lesson plans, which reflect on their 
teaching routines, their use of keywords and visual mediators, and the 

pedagogical narratives used to justify these modifications. The 
modifications the PSTs made and their pedagogical narratives, ideally, 
lead to richer, more integrated, and more ample ORP afforded 
to students.

We operationalized our framework methodologically by focusing 
on PSTs’ lesson plans as a proxy for their teaching practice (e.g., 
Blömeke et al., 2008) and utilized commognition to capture changes 
in PSTs’ practices related to teaching mathematics via reasoning and 
proving by examining the modifications they made to their lesson 
plans as a lens to their pedagogical discourse. With respect to the types 
of modifications made to the lesson plans (the first research question), 
our analysis revealed four types of modifications: structural, 
mathematical, reasoning-based, and logic-based. Structural 
modifications reflect changes to the pedagogical, structural aspects of 
a lesson, like timing, order of activities, supportive materials, and to 
the structure of students’ participation and to their interactions. 
Mathematical modifications aim to affect student mathematical 
discourse by making changes to the mathematical content of the 
lesson. Reasoning-based modifications intend to increase student 
engagement with mathematical reasoning processes, either by making 
the existing processes more explicit or by adding new prompts 
requiring students to enact reasoning processes, such as conjecturing, 
generalizing, validating, and justifying. The logic-based modifications 
are specifically aimed to explicate the logic-based objects and 
processes and increase student engagement with them.

Answering the second research question, we illustrated how each 
of these modifications in the revised lesson plan could alter the 
opportunities for reasoning and proving (ORP) afforded to students. 
Whereas most modifications provided richer ORP for students, 
we found some modifications that diminished or changed the nature 
of the ORP provided to students compared to the original lesson plan. 
For example, Zoe’s logic-based modifications – adding explications, 
definitions, and examples, which are related to logic-based objects 
(e.g., types of examples, the meaning of “always, sometimes, never 
true”), resulted in richer opportunities provided to students to 
participate in meta-discourse about proof. Nate’s mathematical and 
reasoning-based modifications, e.g., adding numeric examples before 

FIGURE 13

Triple-layer characterization of learning, teaching, and learning to teach mathematics via reasoning and proving.
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algebraic manipulations and adding questions requiring reasoning 
processes, increased students’ opportunities to participate in 
mathematical reasoning discourse. In contrast, Molly’s mathematical 
modification of changing the figure with the types of triangles to the 
figure that included the relationships that students were originally 
expected to notice. This modification altered the ORP afforded to 
students from fully-integrated to logic-related. Although students 
were still expected to apply logic-based processes (formulating 
conditional statements), Molly’s modification led to diminishing the 
tasks’ ORP, since it excluded the reasoning-based processes of 
classifying, comparing, generalizing, and conjecturing. The extended 
example of Diane’s lesson shows how considering all the modifications 
made to the entire lesson plan allowed us to characterize more 
holistically the ORP afforded to students. Collectively, the various 
modifications Diane made to her lesson plan resulted in richer, fully-
integrated ORP.

We further connected the modifications PSTs made to their lesson 
plans and the increased (or altered ORP) afforded to students by these 
modifications to change in PSTs’ practices around reasoning and 
proving by identifying changes in their pedagogical discourse (our 
overarching research question). The analysis of Diane’s case illustrates 
how the discursive modifications and the ORP afforded by them, as 
well as the pedagogical narratives she produced when justifying these 
modifications, can indicate Diane’s evolving professional learning to 
teach mathematics via reasoning and proving – under the theoretical 
conceptualization outlined above. Similar indicators of other PSTs’ 
professional learning in the form of modified ORP are evident in the 
local revisions to the lesson plans and the related PSTs’ rationale for 
these revisions.

7. Contributions, implications, and 
future directions

Our goal in this paper, as described above, was to present the 
theoretical conceptualization and the related methodological 
approach for capturing how teachers learn to teach mathematics via 
reasoning and proving. One of the strengths of our conceptualization 
is relating teachers’ pedagogical growth to modified teaching (in our 
case – the envisioned teaching reflected in the modified lesson plan) 
and to student learning (in our data – the opportunities for student 
learning embedded in the lesson plan). In particular, teacher 
pedagogical growth is characterized as PSTs’ modified pedagogical 
discourse, reflected in the modifications to the lesson plans, and the 
modified, ideally, richer ORP afforded to students. The second 
strength of our approach is the reliance on the robust conceptual 
tools of commognition (Sfard, 2008) and its discursive 
conceptualization of learning. Hence, all three components of our 
framework – student learning, teaching, and teacher learning – are 
described in unified discursive elements such as keywords, routines, 
and visual mediators. Hence, our study contributes to the recent 
applications of the commognitive perspective, and other discursive 
perspectives for studying and advancing teacher learning (e.g., 
Thoma and Nardi, 2018; Zayyadi et al., 2020; Christiansen et al., 
2022; Österling, 2022).

Our study contributes to the inquiry of teacher learning, 
specifically around integrating reasoning and proving. It is known that 
teachers have a central role in advancing student engagement with 

reasoning and proving. Yet, how teachers learn to teach mathematics 
via reasoning and proving remains an under researched topic (Nardi 
and Knuth, 2017; Stylianides et al., 2017; Buchbinder and McCrone, 
2022). Capturing the development in teachers’ practice is challenging, 
in particular, in the context of a university teacher preparation 
program, where PSTs’ classroom teaching experiences are often short 
and limited (e.g., Jacobson, 2017). By using lesson plan modifications 
as a proxy for teacher practice, our study contributes to the body of 
knowledge exploring methodological approaches for capturing 
development of teacher pedagogical expertise (Depaepe et al., 2020). 
While lesson plans have been previously used to capture teachers’ 
knowledge and practices (e.g., Taylan, 2018; König et al., 2021), this 
study shows how teacher learning can be captured by attending to the 
discursive elements and characteristics of the lesson plan. This can 
be  an invaluable asset for researchers aiming at examining PSTs’ 
professional learning in situations where access to classrooms 
is limited.

Our theoretical conceptualization and methodological approach 
can be used to gauge empirical patterns in the PSTs’ data. For example, 
the PSTs in our study modified their lesson plans in various ways, 
including different amounts of modifications, different types of 
modifications, and different types of ORP provided by these 
modifications. While analyzing the data, we observed clear differences 
between PST practical learning in the form of modified 
ORP. Examining each PST’s professional learning is beyond the scope 
of this paper, but we believe it is possible due to our theoretical and 
methodological work performed in this study. Quantifying the 
modifications and analyzing changes within and between participants 
may be useful in future studies for evaluating the extent of professional 
learning of a particular teacher or group of teachers.

It is important to note that our analysis of both the original and 
the modified lesson plans focused on the ORP embedded in these 
plans, as written by the PSTs, i.e., the intended curriculum, in Stein 
et al. (2007) terms. Examining the actual ORP provided to students in 
the enacted lessons is beyond the scope of our analysis, and our focus 
was on the potential ORP in both the original and revised lesson plans. 
However, this analysis can step forward to examine the modifications 
made to the lesson plan in the enacted lessons, and to compare the 
potential ORP as appeared in the lesson plan (intended curriculum) 
to the actual ORP provided to students during the enacted lesson. 
We began exploring this direction in our ongoing work that focuses 
on classroom discourse and the extent to which teachers provide 
students with various ORP in mathematics classrooms (Weingarden 
and Buchbinder, 2023).

Our analysis may be extended beyond the context of our study to 
professional development settings with practicing teachers or 
supervised teaching experiences. In regular school teaching settings, 
it is not often that teachers have time to deeply reflect on the enacted 
lessons and carefully modify their lesson plans. It may even take a full 
school year before a teacher has a chance to teach the same lesson 
again. However, teachers often need to write and/or modify lesson 
plans in the context of professional development programs, when 
being evaluated, or when seeking promotion (Silver et al., 2009; König 
et al., 2021). Our framework could be used in such circumstances and 
settings and provide clear and precise criteria for identifying and 
capturing teacher learning. In addition, the reliance on written 
artifacts, such as lesson plans, opens the possibilities for scaling up 
data collection and analysis, as opposed to costly and time-consuming 
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observations (Blömeke et al., 2008). Future studies can explore these 
applications of our theorization.
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