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Mathematical modelling addresses numerous demands of modern mathematics 
education: The learning of mathematics is directly linked to reality and hence 
to real objects. At the same time, these tasks are very challenging for students, 
especially when their own solution process needs to be validated and refined. 
Studies even show that some students do not validate their results at all. Recent 
research has shown that digital tools can enhance the support of modelling 
activities in different ways. In this paper, we take the modelling step of validation 
into a deeper account and explore the potential of MathCityMap, a digital tool 
for outdoor mathematics education. Hereby, its automatic solution validation by 
means of a predefined interval and assessment of the result’s quality are taken 
into consideration. The modelling activities of secondary school students are 
compared on a quantitative and qualitative level – half of the students working 
with the MathCityMap app and half of them solving the tasks without any digital 
support. Based on the quantitative results, we can see that the app functionalities 
for elaborative feedback are used to varying degrees: While student groups 
frequently access the hints, the sample solution is hardly accessed. Moreover, 
our analysis can show the value of corrective app feedback. Student groups that 
used the app solved a comparable number of problems, but failed significantly 
less often than student groups that worked on math trails without the app. 
The qualitative results show that in particular the solution validation forces the 
students to proceed with a second run in the modelling cycle if a result is valued 
as wrong in the app. In addition, it helps the students to assess their own result 
in terms of its correctness. Based on the combined results, we draw conclusions 
about the app usage in mathematical modelling tasks.
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1. Introduction

1.1. Validation in mathematical modelling

Mathematical modelling activities derive from tasks in which reality and mathematics come 
together in form of a problem taken from reality which should be solved using mathematics. 
Particularly because of its indispensable relation to reality, modelling problems are distinct from 
the classical inner-mathematical problem (Blum and Leiss, 2007). According to Blum and Leiss 
(2007), modelling problems involve seven modelling steps that are arranged in a cycle: To solve 
a modelling problem, students (1) understand the problem, (2) simplify it by selecting important 
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information, (3) mathematize the problem and transfer it into the 
world of mathematics, (4) work on it mathematically, (5) interpret the 
gained result and transfer it back to reality, (6) validate the result, (7) 
present the result (Blum and Leiss, 2007; cf. Figure 1).

The modelling cycle idealizes the actual student work on 
modelling problems. From the research of Borromeo Ferri (2010), it 
is known that numerous students do not work through the cycle step 
by step, but instead skip steps, jump from one step to another or go 
back to previous steps. Still, the modelling cycle helps educators to 
observe and categorize challenges and problems that students 
encounter while working on a modelling problem. The following 
empirical examples report challenges related to the particular steps of 
the modelling cycle (Table 1).

The scope of this article is to examine the role of the validation 
step in more detail. The validation step is described as checking 
gained results and that it “connects the real results back to the 
situation model” (Hankeln, 2020, p.  278). It becomes clear that 
students must have reached a result first in order to be able to start 
this step at all. In that case, students have to critically reflect their 
previously made modelling activities and identify possible 
weaknesses in their own approach, e.g., question their model, 
simplifications and calculations. Especially when the modelling 
activity is judged as not successful, the students might accept that a 
second try is necessary (Hankeln, 2020). “Hence, this step needs 
more reflection from a meta-perspective than any other step of the 
modelling cycle. Therefore, the validating competency is also 
intertwined with students’ abilities in self-regulation and self-
evaluation as well as with their abilities to monitor their work.” 
(Hankeln, 2020, p. 278). In the following, the role of feedback is 
discussed in more detail as a possible guidance of students in their 
validation processes in mathematical modelling.

1.2. Validation through feedback

In a paper still relevant today, feedback is defined as “information 
about the gap between the actual level and the reference level of a 
system parameter which is used to alter the gap in some way” 
(Ramaprasad, 1983, p. 4). It is seen as a teacher’s key instrument for 

formative assessment, although it can also be carried out by other 
agents, e.g., peers or the learners themselves (Narciss et  al., 2014; 
Wiliam and Thompson, 2017).

Hattie and Timperley (2007) highlight that feedback can focus 
four levels:

 • Feedback on the task level delivers information about how well a 
student performed on a task. In particular, a statement about the 
tasks’ correctness is given. For this reason, it is also called 
corrective feedback.

 • Feedback on the process level contains information on how the 
student performed on a task. Thus, it includes the processing of 
the task and the used strategies instead of solely focusing on the 
final product or solution.

 • Feedback on self-regulation gives information on a student’s skill 
used for task processing or needed for the work on further tasks. 
Thus, it includes information on self-monitoring, directing and 
regulation of actions.

 • Feedback on a self-level is related to personal characteristics 
without relation to the task.

Regarding the task and process level, one can define formative 
feedback as “information communicated to the learner that is intended 
to modify his or her thinking or behavior for the purpose of improving 
learning” (Shute, 2008, p. 154). Hereby, a verification and elaboration 
function of feedback can be distinguished: Verification focus on the 
correctness of the answer and can be accomplished for example by 
stating the correct solution (“knowledge of correct result”), further 
attempts (“repeat-until-correct”) or error flagging (“location of 
mistakes”) (Shute, 2008). In terms of Hattie and Timperley (2007), the 
verification function focusses the task level. Elaborated feedback 
explains why the student’s answer is incorrect (Shute, 2008). Thus, it 
does not only focus on the task level but also on the process level (cf. 
Hattie and Timperley, 2007). This can include additional information 
on the treated topic, strategic hints and the identification of 
misconceptions (Shute, 2008). Tutoring feedback is seen as the most 
elaborated form of feedback, combining verification feedback with 
error flagging and strategic hints, respectively, mastery learning 
strategies (Shute, 2008; Narciss et al., 2014).

FIGURE 1

Modelling cycle according to Blum and Leiss (2007).
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Despite which kind of feedback is given, there is a consensus that 
the feedback needs to activate the learner, i.e., leading to an active 
engagement with the given feedback (Shute, 2008; Black and Wiliam, 
2009; Havnes et  al., 2012). In other words, the feedback must 
be provided in such a way that the students are willing to seek and deal 
with the feedback information (Hattie and Timperley, 2007).

1.3. Digital feedback

Already in the mid-1980’s, Anderson et  al. (1985) stated that 
computer programmes “for intelligent tutoring are being developed to 
provide the student with the same instructional advantage that a 
sophisticated human tutor can provide” (p. 456). Hereby, intelligent 
tutoring systems provide instruction in the problem solving context, 
appropriate assistance based on the student’s needs and immediate 
feedback on errors (Corbett et al., 1997).

The development and implementation of intelligent tutoring 
systems is still relevant today. New approaches are characterized by 
adaptive, interactive and self-paced learning environments 
(Steenbergen-Hu and Cooper, 2013). New approaches aim to integrate 
artificial intelligence (Mousavinasab et  al., 2021) or personalized 
feedback (see for example Pai et al., 2021). However, what previous 
and recent approaches have in common, is the aim to reduce the 
cognitive load of the students by appropriate guidance and assistance 
(cf. Corbett et al., 1997): since the capacity to process information is 
limited according to the cognitive load theory (Tuovinen and Sweller, 
1999), feedback should be given in such a way that the students have 
enough free capacities to deal with the received feedback. This 
assumption is taken up in the guided feedback hypothesis: elaborative 
feedback including plausible explanation for the discovery made tend 
to be more effective than purely verification feedback (Moreno, 2004). 
State of the Art.

In their meta-analysis, Hattie and Timperley (2007) report the 
average effect size of feedback on students’ achievement in general to 
be  0.79. This is twice the average effect size shown by Hattie’s 

meta-analysis visible learning (cf. Hattie and Timperley, 2007). Also, 
the updated meta study indicates a high effect size of feedback on 
student’s achievement (Hattie and Zierer, 2019), while the recent 
meta-study of Wisniewski et al. (2020) following a more elaborated 
approach shows a medium effect (d = 0.48). Even if the latter meta 
study shows a considerably lower effect of feedback, the authors 
conclude: “Feedback, on average, is powerful, but some feedback is 
more powerful” (Wisniewski et al., 2020, p. 13).

The way how feedback is given has clearly an impact on students’ 
learning progress. Feedback is more effective if it aims on a cognitive 
or physical than on a motivational or behavioral outcome. 
Furthermore, feedback has a greater impact, if it contains information 
on the task and the process level as well as the self-regulation level. 
This high-information feedback has an effect size of d = 0.99 (strong 
effect), while a low to medium effect is reported for corrective 
feedback (0.46; Wisniewski et al., 2020). This result is in line with the 
prior findings (Kluger and DeNisi, 1996; Hattie and Timperley, 2007).

With these findings on feedback focusing on task processes 
in general, it becomes obvious that feedback can be an important 
influence for the valuation of modelling results in particular. As 
it was pointed out in the introduction, the validation step requires 
special demands from the students in terms of reflection and self-
regulation. Because of these special demands of validating the 
gained result, this step of the modelling cycle can rarely be found 
in students’ independent modelling activities (Blum, 2007), 
because students seem to lack considerations about responsibility 
and appropriateness, for which the teacher seems to be exclusively 
responsible (Blum and Ferri, 2009). Combined with observed 
strategies, such as “Ignore the context, just extract all data from 
the text and calculate something according to a familiar schema” 
(Blum, 2015 cited in Buchholtz, 2017, p.  49), overwhelmed 
students seem to work product-oriented on modelling problems, 
following the attempt to simply achieve a result. In contrast to the 
actual idea of mathematical modelling being linked to realistic 
situations, only using calculations and schemas does not allow a 
realistic validation, in the sense of reflecting on the reliability of 
the result and might lead to the acceptance of arbitrary or simply 
wrong results. Still, it seems legitimate to assume that corrective 
feedback will also enhance student learning in the context of 
modelling tasks.

In order to initiate and enhance students’ validation activities, 
digital tools were being used and their functionality being tested. 
Greefrath et al. (2018) describe the use of digital tools as a general 
potential for real-world modelling problems. In the context of 
validation, the monitoring and check of resulting solutions (Hegedus 
et al., 2016; Greefrath et al., 2018) are described to being supported by 
digital tools. Even more, providing a digital validation option can not 
only provide an external checking of results, but it increases the 
students’ self-evaluation as reported by Mousoulides (2011) in a 
Dynamic Geometry Environment. The use of digital tools can 
therefore be two-sided with the support and initiation of validation 
activities, whereas the focus differs with the possibilities and features 
a digital tool offers. In the following, we  will be  focusing on 
digital feedback.

The efficacy of digital feedback on the task and its processing in 
computer-based learning environments was investigated in a meta-
analysis by Van der Kleij et al. (2015). Following and extending the 
earlier given approach by Shute (2008), the authors distinguish 

TABLE 1 Overview of studies on problems concerning different 
modelling steps.

Step Selected empirical studies

(1) understand the problem given as a 

situation model

Blum and Leiss (2007); Hagena et al. 

(2017); Schukajlow (2010)

(2) simplify it by choosing important 

information

Blum and Leiss (2007); Buchholtz 

(2017); Ludwig and Jablonski (2021); 

Schukajlow (2010); Stillman et al. 

(2013)

(3) mathematize the problem and 

transfer it into the world of 

mathematics

Buchholtz (2017); Ludwig and 

Jablonski (2021); Schukajlow (2010); 

Stillman et al. (2013); Stillman et al. 

(2015)

(4) work on it mathematically Schukajlow (2010)

(5) interpret the gained result and 

transfer it back to reality

Schukajlow (2010); Stillman et al. 

(2013)

(6) validate the result Blum (2007); Blum and Leiss (2007); 

Hankeln (2020); Stillman et al. (2013)

(7) present the result –
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between three types of feedback. The first is knowledge of results (KR), 
which is corrective feedback without additional information, e.g., 
error flagging is classified as KR feedback. The second type of feedback 
is knowledge of correct results (KCR), where only the correct answer 
is provided. The third type is elaborated feedback (EF) where an 
explanation as to why the answer is correct or incorrect is given. Also, 
elaborated feedback can be given on a strategic level, e.g., by providing 
hints. The results of the meta-study (Van der Kleij et al., 2015) show 
that EF has a larger effect (Hedge g* = 0.49; nearly medium effect) than 
KCR feedback (g* = 0.32; small effect), while solely KR has no effect 
on student’s learning progress (g* = 0.05). Even though the reported 
effect sizes are smaller than in Wisniewski et al. (2020), a comparable 
effect can be observed: the more information is given on task and 
process level, the more effective the feedback is.

This result is also shown for specific feedback strategies. For 
example, de Kock and Harskamp (2016) showed for word problems 
that students were able to solve more tasks if the hints include not only 
procedural knowledge but link it to the given contents. Also in view 
of mathematical problem solving, Attali (2015) could show that the 
provision of hints after a wrong answer led in multimedia 
environments to a better performance of students compared to a 
group that did not receive hints after a wrong entry. Other researchers 
reported a gender difference for hints usage. According to Narciss 
et al. (2014) especially conceptual hints have a greater impact on the 
learning progress of girls than on boys.

1.4. Research question

In the previous sections, we summarized recent research results 
on validation activities for mathematical modeling and on verification 
and elaboration feedback, partly in digital environments. As a first 
objective, it is the aim of this paper to combine both topics and to 
examine the role of digital feedback in the context of validation in 
mathematical modelling. As second objective, we aim to investigate 
students’ validation activities with support of digital feedback in a 
special setting, namely in view of outdoor mathematics tasks. Based 
on the state of the art, how digital feedback affects the validation 
process in this environment can be  considered a research gap. 
We therefore focus on the research question:

How can digital feedback support secondary school students’ 
validation activities in mathematical outdoor modelling problems?

We hereby limit the article’s focus to the context of mathematical 
modelling tasks that are solved directly at the real object using the 
digital tool MathCityMap. The MathCityMap system has been 
developed since 2012 at Goethe University and contains two 
components: a web portal in which teachers can create outdoor tasks 
and a smartphone app that guides students along these outdoor tasks. 
Besides other technologies like Actionbound (Buchholtz, 2021) or 
GoogleMaps (Fesakis et al., 2018), the MathCityMap system has been 
used for research in the fields of outdoor mathematical modelling 
(e.g., Hartmann and Schukajlow, 2021; Ludwig and Jablonski, 2021).

In the following, we will present the features of the digital tool and 
give an insight into the methodology of two related studies that 
provide quantitative and qualitative data in order to answer the 
formulated research question. Figure  2 presents the theoretical 

background of the article and the interplay of the quantitative and 
qualitative approaches.

2. Material and methods

In order to answer the research questions two studies have been 
conducted that are related to each other. Both report on data gained 
through an empirical investigation with secondary school students 
solving outdoor modelling tasks with MathCityMap.

We start by describing the features of the digital tool MathCityMap. 
Afterwards, the methodology of both the quantitative and qualitative 
study are presented in the context of the article’s research question.

2.1. The digital tool MathCityMap

MathCityMap is a digital tool to support students while solving 
outdoor mathematics tasks related to real objects in the students’ 
environment (Ludwig and Jesberg, 2015). Hereby, the approach of 
math trails (cf. Blane and Clarke, 1984) is used – an approach that can 
be  linked to the basic idea of mathematical modelling for two 
main reasons:

 • The tasks can only be solved at the real object which requires 
mathematical activities and data collections (Shoaf et al., 2004; 
Buchholtz, 2017). The link between reality and mathematics is 
therefore apparently given. Moreover, the required steps to 
process math trail tasks can be  linked to the modelling cycle 
(Buchholtz, 2021).

 • The design requirements for outdoor tasks (Jablonski et al., 
2018) propose open tasks that allow different solution 
processes and strategies, as well as different degrees of 
simplifications and choices of mathematical models (Ludwig 
and Jablonski, 2021).

With the research question focusing on the students’ perspective 
on validation, the app’s functionalities will be presented in more detail 
(cf. Figure 3):

 • Hints: For each task, the students can retrieve up to three hints 
which aim to guide and to structure student’s working process (cf. 
Shute, 2008; de Kock and Harskamp (2016)). Following Shute 
(2008), hints can be seen as a form of elaborate feedback.

 • Answer Validation: When entering a result, the app automatically 
checks this result – in case of modelling tasks – by means of a 
pre-defined interval. Hereby, a very good, an acceptable and a 
wrong range are the basis for the particular app feedback. Hereby, 
MathCityMap, hence, uses two different verification 
functionalities (cf. Shute, 2008): if a wrong answer is given, the 
students again can make further attempts to enter a correct 
solution (cf. Hankeln, 2020). If a correct answer is entered or the 
students declare that they failed to give a correct answer to the 
task, the correct response is indicated by the app.

 • Sample Solution: After entering a correct or acceptable solution 
or giving up on a task, the students can view the sample solution 
provided for the task. According to Shute (2008), viewing the 
sample solution can also be considered as elaborative feedback 
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since an explanation on how the correct answer is calculated 
is given.

Regarding feedback and validation, the MathCityMap app offers 
both verification and elaboration. With reference to the theoretical 

considerations on validation, the app serves as a digital tool that can 
initiate the validation of (interim) results (e.g., hints and answer 
validation). In addition, it can guide the validation process in terms of 
the result’s quality (answer validation and sample solution) and 
therefore support a reasoned assessment of the result.

FIGURE 2

Overview of the article’s theoretical background and interplay of the studies.

FIGURE 3

(from left to right): MathCityMap app features task presentation, hint, positive feedback through answer validation, sample solution.
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2.2. Quantitative study on validation 
activities

To examine how students work on math trail tasks and how they 
validate their results, a quasi-experimental study was conducted in 
Spring and Summer 2022 with 13 classes. The students, German 8th 
graders (grammar school; approx. 14 years old), worked in groups of 
three on a math trail for 60–70 min. While student groups of seven 
classes used the MathCityMap app including all above mentioned 
features (MCM groups), student groups of six classes ran the math 
trails without technical support (P&P groups). Thus, the latter group 
did a ‘classic’ paper-and-pencil math trail as indicated by Blane and 
Clarke (1984) and Shoaf et al. (2004).

The trails were organized as so-called theme-based trails (cf. 
Barlovits et al., 2020) with a special focus on linear functions. To 
guarantee that all students worked on tasks about linear functions, 
proportionality and the slope concept, two tasks of the trail each dealt 
with the same topic. The following task types were given in the math 
trail (Table 2).

All task types can only be  solved on site of the real object by 
collecting data and dealing with the context setting (cf. Shoaf et al., 
2004; Buchholtz, 2017). Different models, processes and solution 
strategies can be developed, in particular, in task types 1 & 7 as well as 
5 & 11 in order to find a suitable gradient triangle. Hereby, the students 
have to simplify and structure the given task surrounding and decide 
on the data collection process in order to transfer the presented object 
into a linear function (cf. Ludwig and Jablonski, 2021). In the sense of 
providing this open scenario in terms of different simplifications and 
mathematizations, the task types from Table  2 are regarded as 
modelling tasks that particularly focus on the two mentioned steps.

The trail was adapted to the schoolyards of the six schools 
participating in the study and to the given local conditions. However, 
we want to emphasize that the original task wording and the strategies 
to solve the task remained unchanged. An example trail in German 
language can be  accessed by entering the code “179,794” in the 
MathCityMap app.

For the MCM group, the interaction of the students with the 
MathCityMap app was logged in an event-log. This included 
information on the use of hints, the entered results, the view of the 
sample solution and related timestamps. Hence, by evaluating this 
event-log, the students’ use of these app features can be determined. 
Moreover, the students’ performance on the tasks can be evaluated as 
well. To do so for the P&P group, the notes made during the math trail 
were investigated. Based on a comparison of the groups’ performances, 
the value of the MathCityMap app in terms of the validation features 
can be described. The data analysis is carried out with the statistics 
programme JASP.

2.3. Qualitative case study on validation 
activities

With a focus on the role of MathCityMap in terms of the students’ 
modelling activities, i.e., validation, a qualitative case study was 
conducted in May 2022. For the aim of this article, we involve nine 
groups of students with a total of 29 students from grades 6–8. All of 
them visited the enrichment programme Junge Mathe-Adler Frankfurt.

The students formed groups of three and were asked to solve an 
outdoor modelling task. In total, there were three different tasks from 
the field of geometry. For the later examinations in the case studies, 
particularly the task “The Sculpture” will be taken into consideration. 
Therefore, we present this task as one example of the three outdoor 
tasks in more detail. The sculpture is placed at Goethe University 
Frankfurt and is a six meters’ tall sculpture named Rotazione. The 
sculpture’s name comes from the regular spikes that are turned 
upwards along the sculpture, getting smaller. Being on site of the 
object, the students should determine the surface of the sculpture (see 
Figure 4).

This task can be categorized as a modelling task since several 
different models and ways are possible to determine the sculpture’s 
surface. One example modelling is examined here:

The Rotazione sculpture’s height can be determined using the 
intercept theorem or estimations: It is about six meters high. In this 
example, we calculate its surface by describing the individual prongs 
as triangles. The legs and height of a triangle are approximately 6 m 
long, the base approximately 30 cm. This results in an area of about 
0.9 m2 per triangle. The figure consists of 12 prongs with two triangles 
each, so the surface area is about 21.6 m2. By comparing different 
models and approaches, a solution interval was defined with 17–26 m2.

All groups were equipped with a folding ruler to take 
measurements if desired. Whereas six groups worked on the task 
without any digital support, three groups worked with the 
MathCityMap app through which they could access hints, automatic 
feedback and the sample solution. The hints should support the 
Simplify and Structure and Mathematize steps:

 • Hint 1: Look for a model that you  can use to describe the 
sculpture. There are several models that could be considered and 
none will fit perfectly.

 • Hint 2: You can approximate the prongs of the sculpture, e.g., by 
using triangles or squares.

 • Hint 3: Think about the values you need for your model and how 
you can approximate, measure or determine them as accurately 
as possible.

While using the hints was optional, the groups working with the 
MathCityMap app were explicitly asked to have their result validated 
by the app. After solving a task correctly or giving up, the 
MathCityMap groups were able to view the sample solution with one 
of the possible solutions for the modelling task.

The groups’ solution processes were filmed by a student assistant. 
The video interactions were transcribed and coded deductively using 
the modelling steps according to Blum and Leiss (2007). With the 
article’s focus on validation by means of digital tools, a particular focus 
was laid on this modelling step. Herefore, the activities of the digital 
and non-digital groups were compared, coding the observed 
validation activities in a qualitative content analysis according to 
Mayring (2000). In addition, the app activities were stored in the 
MathCityMap database and added to the coding of the groups using 
the app as follows:

 • Retrieval of Hint 1/2/3
 • Solution Input correct/incorrect
 • View of Sample Solution
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3. Results

In the following section, we report the results from both studies. 
As for the methods, we  start with a quantitative perspective and 
continue with qualitative results. In the discussion part, both 
perspectives are combined and reflected.

3.1. Quantitative results

To investigate how students use the validation features of the 
MathCityMap app when working on outdoor modelling tasks, a 
quasi-experimental study was conducted with 13 classes. While 
seven classes worked on a math trail with digital support, six 

TABLE 2 The task types of the theme-based math trail on linear functions.

Task No. Topic Object Shortened task formulation Task picture

1 & 7 Linear function Handrail Determine the equation y = mx + b of the 

straight line describing the handrail of the 

staircase. Enter b in meters

2 & 8 Proportionality e.g., price list You want to buy 8 chocolate rolls, 12 pretzels, 

and 6 pudding cups for your class.

How much does this cost?

3 & 9 Count e.g., windows How many glass blocks are there at the front 

of the building?

4 & 10 Linear function e.g., sculpture with 

uniformly rising side 

surface

Fill in the missing technical terms in the 

following cloze

5 & 11 Slope Ramp Determine the slope of the ramp. Give the 

result as in percentage

6 & 12 Length units Two prominent objects Determine the distance between the two 

objects marked in the task picture. Enter the 

result in meters
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classes performed a “classic” paper-and-pencil math trail without 
immediate validation.

3.1.1. Solution rate of and validation activities by 
groups with digital support

To examine students’ work on math trails, the task processes of 52 
groups from the seven classes working with the MathCityMap app 
were studied. A total of 422 task processes were logged for the 12 tasks 
presented above. Since two tasks comprised the same question on 
similar objects, they are considered as one task type below.

The interaction of the groups with the MathCityMap app is 
presented in Table 3. As expected, the solution rate of the task types 
varied. While task types 1 & 7 could be solved by about 52% of the 
student groups, the other tasks had a solution rate of 74% (task type 5 
& 11) or more than 85% (remaining tasks). Task difficulty is also 
reflected in the number of incorrect entries per task completion. For 
the measurement tasks 6 & 12, almost all groups were able to directly 
enter a correct solution. For the task types 1 & 7 as well as 5 & 11, in 
which the students had to choose an appropriate strategy and model 

to define the slope triangle, on average 2,0, respectively, 1,3 incorrect 
entries were made per group.

Additionally, the failing and skipping behavior of the groups were 
analyzed. While failing means that the students give up on the task 
and can access the sample solution, skipping means a temporary 
postponement of the task with the opportunity to continue the task 
later. This option was implemented in the MathCityMap app to avoid 
overcrowded task spots. Especially in the two more difficult tasks 1 & 
7, it is clear that this option was abused by the students: instead of 
giving up the task, they skipped it. Here, only a minority of the groups 
continued the task processing, i.e., about 15% of all skipped processes 
of task types 1 & 7 were subsequently solved or failed.

The student groups consulted the hints regularly during their 
work processes (Table 4): Even for tasks with a solution rate above 
85%, a considerable number of groups used the hints. For the more 
difficult task types 1 & 7 and 5 & 11 (in terms of their empirical 
solution rate), more than 60% of the groups used the hints.

To evaluate if using hints impacts the student’s ability to solve 
the task, we compare the solution frequency with and without the 

TABLE 3 Task process of the student groups: solving, failing and skipping behavior and numbers of wrong entries.

Task type Number of task 
processes

Task solved 
(%)

Task failed 
(%)

Task skipped 
(%)

Task not 
finished (%)

Mean value of 
wrong entries

1 & 7 71 52.1% 0.0% 42.3% 5.6% 2.0

2 & 8 67 85.1% 0.0% 7.5% 7.5% 0.9

3 & 9 73 90.4% 1.4% 5.5% 2.7% 0.6

4 & 10 71 91.5% 1.4% 5.6% 1.4% 0.9

5 & 11 77 74.0% 2.6% 22.1% 1.3% 1.3

6 & 12 76 96.1% 0.0% 3.9% 0.0% 0.2

FIGURE 4

Rotazione Sculpture Task Object at Goethe University Frankfurt.
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use of hints by the Chi-squared test of independence. Contrasting 
findings can be obtained. For the most difficult task types 1 & 7, 
using hints increases significantly the solution rate (medium effect 
size). For the easier task types 2 & 8 and 3 & 9, the solution rate is 
considerably higher if no hints are used (significant differences 
with a small effect). For the other task types, the solution rate 
remains unchanged (task types 6 & 12) or tends to increase with 
the use of hints (task types 4 & 10 and 5 & 11) without significant 
results. Thus, the presence of hints to guide and support the task 
process does not automatically lead to greater student success in 
solving the task. However, since the number of solved tasks and the 
usage ratio of hints per task process correlates significantly with a 
medium effect size (Spearman’s rho = 0.365, p < 0.05, n = 52), it can 
be assumed that especially weaker groups used the hint function 
more regularly in terms of their need for support. For the easier 
tasks, this fact might lead to the described small effect in terms of 
a lower solution rate after hint usage. The fact that the hints can 
support a successful task solution on the most difficult tasks could 
be explained by the high relevance of mathematizing in this task 
type: To solve task types 1 & 7 (and 5 & 11), students had to first 
find a suitable gradient triangle.

As shown in Table 5, the sample solution was only rarely accessed. 
On the one hand, while it is invoked by a maximum of one fifth of all 
student groups at maximum (for task type 5 & 11), it was accessed in 
14.5% of the solution processes for the easiest task type and only once 
for the most difficult task types 1 and 7. On the other hand, all four 
groups that did not solve a task accessed the sample solution. Thus, it 
can be assumed that for the student groups that solved the task, the 
app feedback “correct answer” was sufficient for a large majority: If 
they were able to solve the task, they did not feel the need to compare 
their own solution path with a sample solution. This finding is 
independent of task difficulty.

As a first interim result, it can be hypothesized that the hints can 
support the students’ modelling processes, particularly for more 
difficult tasks. The sample solution is rarely used by the student groups 
who solved the tasks but by all student groups who failed the tasks. 
The frequently used option “skipping the task” led to the problem that 
these groups of students cannot call up the sample solution.

3.1.2. Comparison of groups with and without 
digital support

To further investigate the value of digital feedback when working 
on math modelling problems, we compare students who worked with 
the MathCityMap app and hence received feedback (MCM groups) to 
students who did not receive feedback (P&P groups). Here, the P&P 
groups’ calculated solutions were scored as correct or incorrect as if 
they had entered their solution into the app. The solution rates of the 
MCM (52 groups; 422 task processes) and P&P groups (46 groups; 413 
task processes) are compared in Table 6.

While the MCM groups worked on an average of 8.4 tasks (SD: 
2.7; mean: 9.0), the P&P groups worked on 9.0 tasks (SD: 2.5; mean: 
9.0). Using the Mann–Whitney U test (alpha = 0.05; p = 0.236), no 
significant difference can be found in the number of tasks worked 
on, i.e., the MCM and P&P classes worked on a comparable number 
of tasks. In other words, the functionalities of the app and especially 
the feedback functions did not slow down the progress of the 
math trail.

TABLE 4 Use of hints related to students’ ability to solve the task.

Task No. Number of task 
processes with hints 

used

Task solved if 
hints used

Task solved if 
hints not used

Chi-squared test

p Kendall’s Tau-b

1 & 7 49

69.0%

28 out of 49

57.1%

4 out of 22

18.2%

0.002 0.362

medium

2 & 8 19

28.4%

13 out of 19

68.4%

44 out of 48

91.7%

0.017 −0.294

small

3 & 9 18

24.7%

14 out of 18

77.8%

52 out of 55

94.5%

0.037 −0.245

small

4 & 10 43

60.6%

41 out of 43

95.3%

23 out of 28

82.1%

0.068 n.s.

5 & 11 48

62.3%

37 out of 48

77.1%

17 out of 29

58.6%

0.086 n.s.

6 & 12 13

17.1%

12 out of 13

92.3%

61 out of 63

96.8%

0.446 n.s.

TABLE 5 View of the sample solution after solving or failing the task.

Task No. View of the 
sample 
solution

View of 
sample 

solution if 
task solved

View of 
sample 

solution if 
task failed

1 & 7 1

2.7%

1 out of 32

2,7%

N.A.

2 & 8 2

3.5%

2 out of 57

3.5%

N.A.

3 & 9 6

9.0%

5 out of 66

7.6%

1 out of 1

100%

4 & 10 5

7.6%

4 out of 65

6.2%

1 out of 1

100%

5 & 11 12

20.3%

10 out of 57

17.5%

2 out of 2

100%

6 & 12 11

15.1%

11 out of 73

15.1%

N.A.
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However, significant effects can be found when the number of 
solved or failed tasks is taken into account. For the MCM groups, 
skipping or not finishing the task process was counted as failing the 
task. By a medium effect, the MCM groups were able to solve more 
tasks than the P&P groups (Mann–Whitney U test, W = 1707.5, 
p < 0.001, r = 0.428). With a strong effect, the MCM groups failed 
significantly fewer tasks than the P&P groups (W = 233.5, p < 0.01, 
r = 0.805).

To investigate the influence of task difficulty, the comparison of 
MCM and P&P groups is repeated considering the six different task 
types. The number of tasks worked on and solved is shown in Table 7. 
For all six task types, the solution rate of the P&P groups was lower 
compared to the MCM groups. To confirm the observation that the 
P&P groups were less successful in solving the tasks, a Mann–Whitney 
U test was performed based on a 3-level ordinal scale:

 • two tasks accessed and solved or one task assessed and solved
 • two tasks accessed whereby one task solved and one task failed
 • two tasks accessed and failed or one task assessed and failed

The results are presented in Table 7.

The Mann–Whitney U test shows that the MCM groups achieved 
a significantly higher number of solved tasks compared to the P&P 
groups in all task types despite of task type 3 & 9 (alpha = 0.05). Even 
though the effect sizes vary in magnitude, it can be concluded that the 
validation function can help students to reconsider and revise their 
own calculated solution, regardless of the task topic. By taking Table 3 
in consideration, it can be  assumed that the effect size is higher 
especially for the tasks where there was at least one incorrect entry per 
group on average. This hypothesis also highlights the value of the 
validation function.

To further investigate the value of the validation functionality, 
we analyzed the calculated solutions of the P&P groups for task type 
1 & 7. This task type on setting up a linear function was chosen since 
it firstly has the lowest solution rate. Secondly, the task demands 
choosing an appropriate real model in order to find a suitable gradient 
triangle to then determine the slope m (see the task formulation in 
Table 2). Three minor errors occurred frequently:

 • slope m correct, b incorrect (measurement mistake; no. of 
occurrence: 7)

 • slope m correct, b in wrong unit (unit mistake; no. of 
occurrence: 5)

 • slope |m| correct, −m correct, b correct (sign mistake; no. of 
occurrence: 5)

These minor errors occurred in 17 task solving processes, i.e., in 
one third of the incorrect processes. It can be assumed that these three 
error types could have been detected by the groups if they had received 
validation feedback.

As a second interim result, it was shown that student groups who 
received feedback through the app validation solved more tasks and 
failed less for a comparable number of tasks worked on. Thus, a 
positive impact of validation feedback on student performance on 
math trail tasks is hypothesized. This hypothesis can be supported by 
the presented study of errors that remained undetected because the 
student groups did not receive app feedback.

So far, the comparison of working with or without the 
MathCityMap app was only taken on the task level. Furthermore, the 

TABLE 6 Comparison of the working process of the MCM and the P&P 
group.

Tasks Tasks solved Task failed

MCM P&P MCM P&P MCM P&P

Groups 52 46 52 46 52 46

Median 9.0 9.0 7.0 5.0 1.0 4.0

MAD 2.0 2.0 2.0 1.5 1.0 1.0

Mean 8.4 9.0 6.8 4.8 1.5 4.2

Std. 

Deviation

2.7 2.5 2.7 2.1 1.6 1.7

Minimum 2 3 2 1 0 2

Maximum 12 12 12 9 9 8

TABLE 7 Comparison of the solution rate of the MCM and the P&P group per task type.

MCM P&P Mann–Whitney U test

Task No. No. task 
processes

Solving the 
task

No. task 
processes

Solving the 
task

p r

1 & 7 71 37

55.2%

69 18

26.0%

< 0.001 0.383

medium

2 & 8 67 57

91.9%

66 36

54.5%

< 0.001 0.444

strong

3 & 9 73 66

93.0%

73 60

82.2%

0.162 n.s.

4 & 10 71 65

92.9%

63 22

34.9%

< 0.001 0.700

strong

5 & 11 77 57

75.0%

70 24

34.3%

< 0.001 0.518

strong

6 & 12 76 73

96.1%

72 73

84.7%

0.009 0.179

small
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feedback functions of the app were discussed from a quantitative view 
– but without analyzing a concrete modelling situation. Thus, this 
quantitative analysis is supplemented by observations from a 
qualitative study in the following.

3.2. Qualitative results

In a case study with 29 students working in nine groups on 
outdoor modelling tasks, we aim to investigate the validation features 
of the MathCityMap app, including both elaboration and verification 
feedback. In order to get a deeper insight into the validation activities 
of the individual groups, we analyze their procedures in more detail. 
Hereby, we  describe the three groups that worked with the 
MathCityMap app and compare or contrast their activities in relation 
to those groups which worked on the same tasks without the 
app features.

Two of the MCM groups retrieved all three hints, the third group 
did not retrieve a hint. A total of seven solutions were validated for the 
three tasks. Five times, the entry was wrong and two times correct. 
After one correct processing step the sample solution was called up by 
the students. To follow the analysis, the activity diagrams in Figure 5 
visualize the coded modelling steps in different colors: (1) understand: 
green, (2) simplify: blue, (3) mathematize: red, (4) work 
mathematically: yellow, (5) interpret: grey, (6) validate: black, (7) 
present: not found in the material.

In addition, the app events were added with the following terms:

 • Retrieval of hint 1/2/3 as form of elaborative feedback: H1/H2/H3
 • Solution input and app feedback on its correctness/incorrectness 

as form of validation feedback: SI_c/SI_i
 • View of sample solution as form of elaborative feedback: VS

The process of solving a task, retrieving hints and using the given 
feedback can be classified in three cases: Inserting repeatedly a wrong 
solution, getting from a wrong solution to a correct one by using the 
hints, and entering right away a correct solution (see Figure 5).

3.2.1. User case I – inserting repeatedly a wrong 
solution

Group I worked on the outdoor task for about 21 min. First, they 
started to understand, simplify and mathematize the task. After a 

short period of mathematical work, the group entered their first 
solution input into the app, which was validated as incorrect, i.e., the 
app informed the students that the solution they entered was incorrect 
and encouraged them to solve the task again. Hereafter, the group 
continued with the retrieval of hint one which made them evaluate 
their previously chosen model. We can see that the group – after 
receiving elaborated feedback in form of a hint – went back to the step 
of simplifying, following another model to solve the problem. The 
students entered a new result in the app which was again validated as 
wrong. Again, the students asked for a hint and reconsidered their 
made simplifications. Only three minutes later, the group made a third 
wrong entry and retrieved hint three. After a fourth wrong entry, the 
group stopped their modelling process.

3.2.2. User case II – from wrong to correct 
solution

Group II needed about 12 min for their modelling task. Similar to 
Group I, this group started the solution process by understanding, 
simplifying and mathematizing the task. The group spent about three 
minutes on the mathematical work in which they repeatedly self-
validated their interim results. The following extract from their 
transcript can illustrate this observation from the activity diagram:

[Group II works mathematically on the surface of on spike of 
the sculpture].

Student A: [calculates] Ah that could even be correct. 1 m2 [looks at 
sculpture]. No, that’s much more.

Student B: Yes, much more.

Student A: But we only calculated for one side. And not for both.

Student B: So we would have to double that again. Then it would 
be 3.1 something.

[…]

Student B: [looks at sculpture] That could work out.

We can observe an iterative process between calculating and self-
validation activities, e.g., judging the interim result as appropriate. 
This is especially underlined by both involved students looking at the 

FIGURE 5

Activity diagram for the modelling activities of the three groups using the MathCityMap app.
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sculpture to estimating the surface of one spike and comparing it to 
the achieved result.

In the follow-up, this process leads to the total surface area and 
the first solution input of Group II.

[Group II works mathematically on the total surface area].

Student A: That would be 37.536

Student B: [types in result and reads app feedback] Wrong. […]

Student B: [calls up hints 1 and 2] You can approximate the prongs 
of the sculpture using triangles or squares, for example.

Student A: Well but that’s what we actually did from the bottom up. 
By this length. […] Maybe we  can take the average from the 
spike. Try it.

[Group II works mathematically and repeat the calculation with a 
new value].

As in case study I, the wrong solution validation by the app made 
the group retrieve the hints and based on hint two, to reconsider their 
collected data in a new attempt on mathematizing and mathematical 
work. After this second attempt, the students enter their 
second solution:

Student A: [calculates] That sounds plausible. I  came up with 
29.376m2.

Student B: [types in result and reads app feedback] Not perfect but 
ok [opens sample solution] 21.6 m2. What did we get before? 37.

Student A: Yes, a bit critical.

Student B: They have an area of 0.9 m2 per triangle.

Again, we can observe the independent self-assessment of the 
result, here as “plausible,” before entering the result in the app. The app 
judges the result as acceptable. In addition, this group calls up the 
sample solution which gives them a smaller value for the sculpture’s 
surface. The group judges this difference as “a bit critical.”

3.2.3. User case III – entering correct solution 
right away

With Group III, we  can observe a third user case. The group 
solved their outdoor task in about 13 min, whereby only in minute 12, 
an app event was recognized. Here, the students entered the achieved 
solution and received positive feedback from the app which does not 
lead to any further activities related to the task, e.g., self-validation or 
use of the sample solution provided by the MathCityMap app.

3.2.4. Comparing groups with and without digital 
support

After presenting three user cases, we compare them with three 
groups that worked on the same tasks without digital support. Figure 6 
enriches the presentation of the user cases I-III by adding the 
corresponding activity diagrams of the groups I′–III’ (same task, no 
digital support).

Firstly, we  can observe that the three groups without digital 
support needed less time to solve the task. For the groups I′ and III’, 
the validation step is not or only rarely carried out. Group II’ used 
validation elements in their solution process which will be the focus 
of a detailed comparison.

In a direct comparison of Group II with Group II’ that solved the 
same task, the sculpture, without digital support, we can see similar 
self-validation activities in terms of the checking and judging of interim 
results. For example, Student C, working in Group II’ calculates the 
height of the sculpture and states: “Then we would be at 525. [looks at 
sculpture] Yes, that makes sense.” Despite this interim self-validation, 
the group takes the aspect of plausibility into account as well:

Student C: [calculates] That would be 29,82.

Student E: Is that the result already?

Student C: Cubic, no square meters.

Student D: That’s kind of small.

Student C: That seems like a bit much somehow.

Student E: I do not know. […]

Student D: So, done.

FIGURE 6

Activity diagram for the modelling activities for groups with and without digital support.
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We can observe validation activities here: The students try to 
evaluate their achievement in terms of its appropriateness. From their 
conversation, we can see that they have problems classifying the result 
between “kind of small” and “a bit much.” It seems that the students 
do not find a concrete point of reference on which to base their 
impression of too small or too large. Furthermore, the different 
impressions of student D and C do not lead to a deeper self-validation 
discussion, so that the task is finally ended with the expression 
“So, done.”

All in all, the following interim results can be drawn from the 
qualitative data:

 • Hints as elaborative feedback: The hints were only retrieved in 
the course of processing so that most of their content had been 
considered beforehand. More precisely, they were accessed after 
the students received validation feedback by the app that the 
calculated solution is incorrect. Nevertheless, the hints were 
partly used for self-validation of previously made steps and 
intermediate results as observed in user case II.

 • Wrong answer validation as verification feedback: The answer 
validation giving the feedback “wrong” is presented as “repeat-
until-correct” feedback. In all processes, it leads to the fact that at 
least once again the modelling activities were revised. Usually, the 
groups started the revision with the simplifying/mathematizing 
step. This revision led to two different use cases: aborted after the 
fourth incorrect entry (user case I) or correctly solved in the 
second attempt (user case III).

 • Correct answer validation as verification feedback: Receiving a 
“correct” answer validation gives the students the confirmation 
that the result is in the predefined interval. Hereby, an estimation 
of the result is better than in comparison to the group without 
digital support and can still lead to the result being compared 
with the sample solution (user case II).

 • Sample solution as elaborative feedback: The sample solution is 
considered only once after a correct solution. Although the 
sample solution served in this case as the comparison of 
measured values (user case II), we also observed a problematic 
handling since the sample solution was not called after four times 
inserting wrong input (user case I).

4. Discussion

In the context of this paper, we examined the question of how far 
the digital tool MathCityMap supports validation activities of students 
in mathematical modelling problems. To address this question, two 
studies were conducted.

4.1. Conclusions of the quantitative study

From a quantitative perspective, a quasi-experimental study was 
conducted with 13 classes working on a math trail which involved 
several modelling problems. Of these, seven classes were supported by 
the MathCityMap app (MCM groups) from which students’ 
interaction with the app was analyzed. With regard to the app’s 
elaborative feedback, i.e., hints and sample solutions (cf. Shute, 2008), 

the following hypotheses can be made: The hints were frequently used 
by the MCM groups. On the one hand, for easier task types, the 
solution rate was negatively dependent on the use of hints. This could 
be explained by the finding that hints were used more often by groups 
that tended to solve fewer tasks (in terms of the ratio of hints used to 
processed tasks). On the other hand, for the more difficult task type, 
in which mathematizing processes were particularly relevant (cf. 
Ludwig and Jablonski, 2021), the student groups who used the hints 
had a higher solution rate than those who did not use the hints.

The sample solution does not appear to play an important role in 
the students’ solution process: Although all student groups that failed 
the task read it out loud, the majority of student groups skipped the 
task rather than failed it and thus did not have the opportunity to see 
the sample solution. Student groups that solved the tasks tended not 
to feel the need to compare their calculation to a sample solution.

The verification feedback was investigated by comparing the 
MCM and P&P groups. The latter had no digital support and received 
no feedback on their tasks. It could be observed that the MCM group 
solved significantly more tasks and failed significantly less than the 
P&P group. Looking at the mistakes made by the P&P group, it can 
be  assumed that the “repeat-until-correct” mode of verification 
feedback (cf. Shute, 2008) can help students to reconsider and correct 
their outdoor task processes and go through another modeling cycle 
(cf. Hankeln, 2020).

4.2. Conclusions of the qualitative study

These data were enriched from a qualitative perspective. 29 
students divided in nine groups were observed during their solution 
processes of outdoor modelling tasks. Three of the groups used the 
MathCityMap app with its elaborative feedback features hints and 
sample solution and the solution validation in form of verification 
feedback (cf. Shute, 2008). From the analysis, the following conclusions 
can be drawn:

For the sample of this study, the hints, mostly focused on the 
process level, were taken to a later time of the solution process than 
expected. Therefore, their content had usually been considered by the 
groups and served mainly as a confirmation of these earlier steps. This 
confirmation partly led to intermediate self-validation processes. The 
solution validation served as verification feedback in terms of giving 
the students an idea whether their result is “correct” or “wrong.” In the 
first case, we can observe that these students, in comparison to those 
groups working without the app, have less difficulties in assessing their 
result through this “knowledge of correct result” (cf. Shute, 2008). 
Even though these processes were not independent, the validation by 
means of the app can be  a first attempt to students taking over 
responsibility and appropriateness in the validation process from the 
teacher (Blum & Borromeo Ferri, 2009). In the second case, 
we observed that the students started a new attempt to work on the 
task (cf. Hankeln, 2020) and rethink their modelling steps in terms of 
the “repeat-until-correct” approach (cf. Shute, 2008).

Finally, we can conclude that the sample solution feature played a 
minor role in the setting of this study. Especially the technical 
possibility to call up the sample solution requires many wrong answers 
and the students’ willingness to give up on the task. It would have been 
used more frequently if it had been displayed automatically after four 
wrong inputs and the app then had ended the task.
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4.3. Combination of the quantitative and 
qualitative perspective

From both studies, we  can draw conclusions concerning the 
validation feedback of the app. The implications are presented 
concerning verification and elaboration feedback.

4.3.1. Verification feedback
From a quantitative perspective, we can see a significant increase 

of successfully solved tasks, if student groups got verification feedback 
by the MathCityMap app. In addition, from a qualitative perspective, 
we can observe that the students had less difficulties in interpreting 
their received result when using the validation function of the app. In 
case of entering a wrong result, we  see new attempts to rework 
different steps of the modelling cycle in both studies.

4.3.2. Elaboration feedback
In addition, both studies revealed weaknesses of the app design 

concerning the presentation of the sample solution. On the one hand, 
the quantitative study reported that students abused the skipping option 
(instead of giving up on a task) so that the sample solution could not 
be accessed. On the other hand, we observed repeated entries of wrong 
results in the qualitative study – still, the number of wrong entries was 
not “high” enough to give up on the task and display the sample 
solution. Both studies could explain the low number of accesses of the 
sample solutions. This is considered as problematic since the potential 
of the elaborative feedback cannot be realized.

Regarding the hints, contrary results were observed. The 
quantitative study showed that using hints leads tendentially to a 
decrease of the solution rate for easier task types or an increase for the 
most difficult task type. The qualitative study showed that the students 
used the hints at other points of the solution process than expected: 
not during the solution process but after entering a wrong result. Thus, 
the hints were mainly used for the purpose of self-evaluating 
intermediate results.

4.4. Final conclusions and outlook

The combination of these two studies and their results can show the 
relevance of digitally supported feedback during outdoor modelling 
tasks. Hereby, previous results in the field of outdoor modelling can 
be extended (cf. Buchholtz, 2017; Ludwig and Jablonski, 2021). Students 
of both studies took advantage of the validation function and could 
either solve or improve their modelling activities. Hereby, the achieved 
results can be used for further studies that focus on verification and 
elaboration feedback in a similar context, e.g., by taking up the findings 
for design requirements for outdoor modelling tasks.

Based on the described weaknesses concerning the sample 
solution, the studies are an important basis for future technical 

developments of digital tools including feedback functions. In 
particular, for the MathCityMap app, this implies reworking of the 
skipping functionality and the presentation of the sample solution.

Finally, it remains particularly open if the success in hint usage is 
only dependent on the task type and difficulty or if other factors are 
additionally relevant. More likely, other factors like the wording of 
hints (cf. de Kock and Harskamp, 2016) might also play an important 
role for students’ understanding of the hints. The presented results 
show the need to investigate on this question in an additional study 
comparing different kinds of hints in more detail.
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