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Enhancing topic-specific prior 
knowledge of students impacts 
their outcomes in mathematics
Nawaf Awadh Khallaf Alreshidi *

College of Education, University of Ha’il, Ha'il, Saudi Arabia

Introduction: The aim of this study was to investigate how enhancing topic-
specific prior mathematical knowledge of students before introducing new topics 
impacts their outcomes in mathematics achievements.

Methods: A quasi-experimental design was applied to two groups: a control group 
[students who did not receive enhancement for their topic-specific prior mathematical 
knowledge (N = 37)] and an experimental group [students who received enhancement 
for their topic-specific prior mathematical knowledge (N = 36)].

Results: The results revealed that there were no significant differences between 
the students’ average scores in ‘conceptual knowledge’ in the immediate post-
test for groups; however, the difference was significant in the delayed post-test in 
favor of the experimental group. The results also showed that there were significant 
differences between the students’ average scores in ‘procedural knowledge’ in 
both the immediate and delayed post-tests in favor of the experimental group.

Discussion: The results showed the importance of this strategy in improving 
students’ outcomes.
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1. Introduction

Many studies have found that prior knowledge strongly influences new learning (Rothman 
and McMillan, 2003; Thompson and Zamboanga, 2003; Aubrey et al., 2006; Byrnes and Wasik, 
2009; Fazio et al., 2016; Byrnes et al., 2018; Kosiol et al., 2019). For example, a longitudinal study 
by Aubrey et al. (2006) tracked primary school pupils during the first 5 years (from 6 to 11 years 
old). The study found that early numeracy skills were a good predictor for later mathematics 
achievement, while a low starting level of mathematical knowledge was predictive of failure to 
progress. Prior knowledge includes content, skills, and beliefs (Hattie and Yates, 2013). The scope 
of this research is limited to the content of prior mathematical knowledge that includes critical 
topic-specific information, which is a necessary foundation for learning that involves conceptual 
and procedural knowledge. Although much is known about the importance of prior knowledge 
for students’ achievement, little is known about the effect of manipulating prior knowledge on 
a student’s achievements. Such a study may give insight for instructional designers and teachers 
to use prior knowledge to improve students’ learning in mathematics as a highly interconnected 
discipline. It may also pave the way for further studies about manipulating prior knowledge for 
learning effectiveness.

This article begins with a discussion of prior knowledge and its relationship with cognitive 
load, followed by a review of how types of prior knowledge affect students’ subsequent learning. 
The experiment conducted here examined whether enhancing necessary topic-specific prior 
knowledge before introducing a new topic improves student outcomes in mathematics.
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1.1. Prior knowledge and cognitive load

Studies have shown that students with different levels of prior 
knowledge or expertise perform differently in subsequent learning 
in several dimensions. Students with greater prior knowledge learn 
better (Yüksel, 2014; Fazio et al., 2016), demonstrate more positive 
attitudes (O'Donnell and Dansereau, 2000; Winters et al. 2008; 
Yüksel, 2014; Usman and Miranda, 2020), can control their learning 
better (Bernacki et  al., 2012; Song et  al., 2016; Mihalca and 
Mengelkamp, 2020; Alreshidi, 2021), and have stronger 
perseverance (Hattie and Yates, 2013; Riazy et  al., 2020) than 
students with less prior knowledge. These differences can 
be explained through cognitive load theory.

According to constructivist and cognitivist perspectives on 
learning, learners construct new knowledge individually using their 
prior knowledge about ideas or objects that are connected to new 
information (Fosnot, 1996; Wilson, 1996; Loyens and Gijbels, 2008; 
Yew and Schmidt, 2009; Rach and Ufer, 2020). Existing knowledge, 
therefore, should be actively used through information processes to 
form connections between it and new information (Mayer, 1979). 
Activation of prior knowledge occurs when individuals retrieve 
relevant prior knowledge from their long-term memory to their 
working memory. When dealing with unfamiliar information (that 
is, new or novel information that lacks relevant prior knowledge 
stored in long-term memory), one’s working memory is 
tremendously restricted. Individuals are able to process and store 
only a few combinations of unfamiliar elements at any given time 
(Miller, 1956). However, individuals can store vast amounts of 
information in their long-term memory.

Cognitive load theorists have argued that working memory 
capacity can be vastly increased by accessing information stored in 
long-term memory (Ericsson and Kintsch, 1995; Paas et al., 2003; 
Sweller, 2003). Cognitive load can be  divided into three 
dimensions—namely, intrinsic, extraneous and germane cognitive 
load. The intrinsic cognitive load is imposed by complex tasks; for 
example, a task that has more interactive elements imposes a higher 
intrinsic cognitive load compared with a task that has fewer 
interactive elements. However, when learners have more expertise 
(i.e., prior knowledge) in the task, their intrinsic load can 
be  reduced because they combine some interactive elements 
together as a chunk (i.e., one element); this reduces the number of 
interactive elements, and consequently, it decreases the intrinsic 
load. The extraneous cognitive load is imposed by poor instructional 
design; for example, when students are taught using conventional 
problems, they apply the means-ends analysis technique, which 
imposes a higher extraneous load. Finally, the germane cognitive 
load is responsible for forming schemas. In other words, it refers to 
the resources that remain after the other two dimensions are 
accounted for which can be used to construct schemas. It is related 
to relevant learning; for example, when students learn the steps of 
problem solving form worked examples, they devote the germane 
load to constructing generalizing procedures to solve similar 
problems (for more details about cognitive load dimensions, see 
Jordan et al., 2020).

When learners are exposed to new information, they can draw on 
prior knowledge, reducing the cognitive load, particularly the intrinsic 
cognitive load (Kester et  al., 2010). When the intrinsic load is 
overloaded, it leaves no place for the germane load to form schemas. 

The germane load relates to how information turns out to be stored in 
long-term memory (Jordan et al., 2020).

If prior knowledge is insufficient or inaccurate, the long-term 
memory cannot support new learning, leading to overload working 
memory. For example, if an individual would like to learn a new 
concept that is ‘addition’ but does not know what ‘number’ means or 
what ‘combining’ is, then the individual has to learn the meaning of 
those concepts alongside the new concept. This challenge will either 
overload the working memory because the individual has insufficient 
prior knowledge to learn the new concept, or it could result in surface 
learning (e.g., rote memorization). Surface learning could take place 
if students cannot connect the new knowledge to their prior 
knowledge base (Dochy et al., 1999; Donald, 2002). In addition to 
insufficient prior knowledge, inaccurate prior knowledge could, in 
fact, do more harm than good; learners could be conflict with they 
believe to be  correct. Several studies found that the activation of 
inaccurate prior knowledge could hinder new learning (Lipson, 1982; 
Alvermann et al., 1985; Braasch and Goldman, 2010; Arbiyah et al., 
2020). Therefore, integrating existing knowledge to new knowledge 
works well only if the existing knowledge can be extended by new 
ideas or concepts (Mihalca and Mengelkamp, 2020).

1.2. Types of prior knowledge and learning

It is important to distinguish between the effects of different types 
of prior knowledge. There are two key types of prior knowledge: 
conceptual knowledge and procedural knowledge (Alexander et al., 
1991; De Jong and Ferguson-Hessler, 1996; Anderson and Krathwohl, 
2001; Ningsih and Retnowati, 2020). Conceptual knowledge is the 
knowledge of facts and concepts, or knowing what, while procedural 
knowledge is knowing how and when to apply different procedures. 
Knowing facts does not necessitate knowing how and when to 
implement procedures, and vice versa. In other words, students can 
know concepts or facts but cannot know how and when to apply them 
(Clement, 1982). Likewise, students can execute procedural tasks, but 
they may not be able to show a clear understanding of what they are 
doing or why (Berry and Broadbent, 1988; Reber and Kotovsky, 1997; 
Sun et al., 2001). In mathematics, students might be able to use a 
formula to solve a certain problem; however, they may not be able to 
explain the principles underlying the solution. These students may 
possess sufficient procedural knowledge, which enables them to 
perform successfully in certain contexts, while lacking conceptual 
knowledge of the deep principles and features that would permit them 
to adapt to different situations. Research has found that procedural 
prior knowledge contributes to student achievement more than 
conceptual prior knowledge (Hailikari et al., 2007). However, this 
situation is quite complicated, as discussed in the following paragraphs.

Conceptual knowledge is a web of relationships of concepts 
(Miller and Hudson, 2007; Rittle-Johnson and Schneider, 2015) that 
develops between a previously learned concept and new one or 
between two early learned mathematical concepts (Rittle-Johnson 
et al., 2016). To develop conceptual knowledge, students should first 
learn the concepts and then learn the relationships between the 
concepts. If students lack the necessary prior concepts, then learning 
connections between the concepts would be unsuccessful. Similarly, 
procedural knowledge is visualized as the ability to follow steps in a 
sequence to reach a mathematical goal or solve mathematical 
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problems (Canobi, 2009; Rittle-Johnson and Schneider, 2015), which 
can often be interrelated or rooted within other procedures (Baroody 
et al., 2007). Learning new procedures that have relationships with 
other procedures that students do not already learned would lead to 
overload memory. Differences arising between different students in 
prior knowledge strongly affect students’ learning processes (Smith 
et al., 1994; Ackerman and Cianciolo, 2000). The impact can extend 
beyond a single domain to affect both conceptual and procedural 
knowledge. Several studies have revealed that prior conceptual 
knowledge about the target content is among the most important 
factors of subsequent learning processes, including the gaining of new 
procedural knowledge (Hecht et al., 2003; Schneider et al., 2009). The 
research has shown that the lack of a conceptual understanding of 
mathematics critically impedes students’ ability to transfer and 
generalize mathematics (Richland et al., 2012). For example, when a 
learner needs to solve a new problem, prior conceptual knowledge 
should support the production of new procedures (Gelman and 
Williams, 1998). Other researchers have found that prior procedural 
knowledge also impact on a later conceptual understanding 
(Karmiloff-Smith, 1992). A study conducted by Canobi (2009) 
suggested that improving procedural knowledge can support 
improvements in conceptual knowledge. For example, before children 
understand most of the underlying concepts of counting, they learn 
counting procedures (Frye et al., 1989; LeFevre et al., 2006).

Recently, Rittle-Johnson et al. (2001) proposed that the causal 
relation between conceptual and procedural knowledge is 
bidirectional, with increases in one type of knowledge leading to 
subsequent increases in the other type of knowledge. In a study 
examining elementary school students’ knowledge of fractions in the 
fourth and fifth grades, Hecht and Vagi (2010) discovered that 
conceptual knowledge in fourth grade predicted procedural 
knowledge in fifth grade, while procedural knowledge in fourth grade 
predicted conceptual knowledge in fifth grade. These results illustrate 
that prior knowledge works as a moderator to support learning for 
both conceptual and procedural knowledge because its relationships 
with each other. Enhancing students’ prior knowledge, particularly 
necessary topic-specific prior knowledge, might contribute to 
students’ outcomes. This process might reduce the cognitive load, 
particularly the intrinsic load, and increase the germane load for 
supporting learning connections (i.e., scheme formation). However, 
enhancement would not be considered when teachers assume that 
teaching always leads to intended learning.

1.3. Present study

Students do not learn the necessary prior knowledge just because 
it was previously taught, so teachers cannot assume that students have 
sufficient and accurate prior knowledge to support subsequent 
learning. Therefore, enhancing students’ necessary prior knowledge, 
which includes addressing insufficient prior knowledge, addressing 
inaccurate prior knowledge and activating prior knowledge before 
introducing new topics, might be useful in helping students learn 
subsequent new knowledge.

Mathematics knowledge includes conceptual and procedural 
knowledge, as discussed in a previous section (i.e., Introduction  
section).

Although studies have shown that prior conceptual or procedural 
knowledge affects student’s cognitive load and contributes to outcomes 
in mathematics, no study has been conducted to assess how 
manipulating the necessary prior mathematical knowledge affects 
students’ outcomes.

In this study, a quasi-experimental design was used to assess the 
effectiveness of enhancing necessary topic-specific prior knowledge 
before introducing new topics affects student outcomes in 
mathematics. This study aimed to address the following questions:

 1. What is the immediate and late effect of enhancing necessary 
topic-specific prior mathematical knowledge before 
introducing new topics on students’ mathematical knowledge?

 2. What is the immediate and late effect of enhancing necessary 
topic-specific prior mathematical knowledge before 
introducing new topics on students’ mathematical 
conceptual knowledge?

 3. What is the immediate and late effect of enhancing necessary 
topic-specific prior mathematical knowledge before 
introducing new topics on students’ mathematical 
procedural knowledge?

2. Method

2.1. Participants and design

The school selected for the study was located in an urban district 
in Ha’il, a major city in Saudi Arabia. It was chosen because the school 
administration and the teacher were willing to participate in the study. 
The participants consisted of 73 third-grade students in four classes in 
one Saudi primary school (age M = 8.9 years; SD = 0.23). A quasi-
experimental design was applied with two groups. Two classes (n = 37) 
were randomly assigned as the ‘control group’, and the other two 
classes (n = 36) were assigned as the ‘experimental group’. The same 
mathematics teacher taught both groups. All participants and their 
parents gave their consent and agreed to take part in this study; they 
were informed that they could withdraw at any time without having 
to provide any reason for their decision to leave the study. Based on 
the statistical test induces: ANCOVA test (effect size, α err, sample 
size, numerator df and covariates), a post hoc power analysis was 
conducted using G*Power 3.1 to check whether the sample size was 
adequate. G*Power indicated a power level of 0.94. That is, the sample 
size was adequate for the study.

2.2. Materials

2.2.1. Topics
The study topic was ‘fractions’. The content was new to the 

students and included the concept of fractions, the representation of 
fractions, fractions as parts of a whole, fractions as parts of a group, 
equivalent fractions and comparing and ordering fractions. The 
instruction lasted for 2 weeks and took place during seven 45-min 
sessions. Four sessions were held per week, resulting in a total of 5.15 h 
for each group. Both groups were given the same amount of time.
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2.2.2. Mathematics test
The mathematics test contained 15 questions: 8 conceptual questions 

(5 multiple choices, 2 short answer and 1 drawing test) and 7 procedural 
questions (4 multiple choices, 2 short answer and 1 drawing test). The 
same test was conducted three times: Time1, before the experiment took 
place (pre-test); Time 2, immediately after the intervention was completed 
(immediate post-test); and Time3, a week later (delayed post-test). The 
pre-test was conducted to ensure that no significant difference existed 
between groups in their prior knowledge related to the content. The 
immediate post-test was carried out to measure the differences between 
groups following the intervention. The delay post-test was intended to 
measure the difference between groups in retention. The mathematics 
items were adopted from released items of the Trends in International 
Mathematics and Science Study (TIMSS) 2003, 2007 and 2011 (Mullis et 
al., 2004, 2008, 2011). The selected TIMSS items exactly matched the 
objectives of the topics for conceptual knowledge and procedural 
knowledge. After the tests had been prepared, they were presented to five 
arbitrators for checking. The arbitrators gave feedback on the adequacy, 
clarity, relevance of the content and validity in terms of measuring the 
students’ abilities in conceptual and procedural knowledge. The 
arbitrators’ evaluations were considered during the preparation of the 
final versions of the tests. The reliability by test-retests was 0.93, and the 
internal consistency for the sub-scale of the tests was 0.91. For the 
examination marks, each item (multiple choice, short answer and 
drawing) was scored as either one or zero. Examples of the items are 
shown in Appendices 1 and 2.

2.3. Strategy for enhancing necessary 
topic-specific prior knowledge

Together, the authors and the teacher, as a team, identified the 
content of the necessary topic-specific prior conceptual and 
procedural knowledge for each topic intended to be taught. The design 
of the content of prior knowledge was conducted in three stages. First, 
the team identified the unit (i.e., fractions) and determined how many 
sessions it needed (eight sessions). Second, the team identified the 
conceptual and procedural knowledge necessary for learning each 
topic. Third, the team developed small problems to address the 
identified prior knowledge.

In typical classrooms, teachers might suppose that students 
learned equivalent fractions in the previous lesson simply because it 
was previously taught. The control group represented this normal 
classroom, where the teacher assumed that his students had already 
learned equivalent fractions. This assumption was not made for the 
experimental group. For example, when students need to learn the 
concept of comparing and ordering fractions, the lesson of equivalent 
fractions becomes necessary prior knowledge for comparing and 
ordering fractions. Both groups were taught equivalent fractions 
before teaching comparing and ordering fractions. However, when the 
teacher was about to teach comparing and ordering fractions to the 
experimental group, he began the lesson by enhancing the students’ 
conceptual knowledge (i.e., recognized equivalent fractions) and 
procedural knowledge (i.e., how to determine an equivalent fraction 
for a certain fraction) of equivalent fractions.

The strategy for enhancing necessary topic-specific prior 
knowledge includes three components: addressing insufficient prior 
knowledge, addressing inaccurate prior knowledge, and activating 

prior knowledge. This can be done by posing predetermined problems. 
These problems aimed to activate accurate and relevant prior 
knowledge and address inaccurate or inadequate prior mathematical 
knowledge and were provided only for the experimental group at the 
beginning of each topic through problem-solving formats. For 
instance, at the beginning of each topic, the prior knowledge of the 
experimental group was enhanced by posing small problems to 
be solved by students individually, such as ‘Draw a circle and express 
¼’. The teacher then provided the students collectively with 
appropriate feedback. This strategy activates the necessary prior 
knowledge when students engage in problem-solving processes and 
addresses inaccurate or inadequate prior knowledge by providing 
appropriate feedback. The team determined that the feedback should 
not take more than half of the time allocated to the session (i.e., not 
more than 20 min). Both groups were taught using conventional 
teaching methods, which included the teacher explaining concepts to 
students and then the students doing exercises. The only difference 
between the groups was that the experimental group received 
enhancement at the beginning of each lesson, as discussed above.

Three experts in the field verified the validity of the prior 
knowledge content as being relevant, appropriate, and sufficient for 
the purpose of the study. Their feedback was taken into consideration.

2.4. Procedures

As detailed above, the school was chosen and permission was 
granted to implement the study in the school. All participants and 
their parents gave their consent and agreed to participate in the study. 
The author designed the content of the necessary topic-specific prior 
knowledge and checked for its validity. The mathematics test was 
adapted from TIMSS released items, and its validity and reliability 
were checked. The teacher was trained before the commencement of 
the intervention, and the teacher of the experimental group was 
provided with extensive training on how to conduct the experiment. 
The authors conducted 4 h of training on how to use the strategy for 
the teacher. The teacher performed appropriately before the 
intervention took place. The author attended all lessons (for both 
groups) to make sure that the experiment was going as planned.

Two groups were randomly selected (control and experimental 
groups). A pre-test was conducted for both groups. Both groups were 
taught the same content and given the same allocated time. For the 
experimental group, students’ necessary topic-specific prior knowledge 
was enhanced at the beginning of each topic. Both groups were taught 
using conventional teaching methods. After 2 weeks, the content was 
taught to both groups, and the post-test was administered to both 
groups. A week later, the delayed post-test was also administered to 
both groups (see Figure  1). The same mathematical tests were 
administered three times. Between the immediate post-test and late 
post-test (i.e., a 1 week interval), the same teacher taught both groups 
the same next topics using the same conventional methods with no 
enhancement. The collected data were analyzed using IBM SPSS v 22.

3. Results

The data were analyzed using the t-test and one-way 
ANCOVA. The main assumptions of these tests were included; 
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normality and Levene’s test checks were performed, and the 
assumptions were met. The values of skewness and kurtosis were 
acceptable. According to Curran et al. (1996), data are considered 
normal when the skewness is between −2 and + 2 and the kurtosis 
is between −7 and + 7. In this study, the skewness values ranged 
from 0.096 to 0.923, whereas the kurtosis values ranged from 
−0.895 to 1.272. Therefore, the data for all dependent factors is 
considered to be  normally distributed. The homogeneity of the 
results was also tested using Levene’s test, and the result of the test 
was (p > 0.05). This indicates that the data met the homogeneity 
conditions (see Field, 2013). The results are presented for each 
question as follows:

3.1. What is the immediate and late effect 
of enhancing necessary topic-specific prior 
mathematical knowledge before 
introducing new topics on students’ 
mathematical knowledge?

The t-test results indicated no significant difference in the pre-test 
scores for the control and experimental groups (t = 0.994).

A one-way ANCOVA was conducted to compare the effectiveness 
of the strategy, controlling for prior knowledge. There was a significant 
difference in the post-test F (1,71) = 4.71, p < 0.05. Students in the 
experimental group had higher post-test scores (M = 7.22, SD = 3.12) 
than students in the control group (M = 5.70, SD = 2.17) with small 
effect size (0.063). The results also indicated that students in the 
experimental group had higher delay post-test scores (M = 5.25, 
SD = 2.76) than students in the control group (M = 3.22, SD = 2.07), F 
(1,71) = 12.08, p < 0.01, with small effect size (0.147; see Table  1; 
Figures 2, 3).

This result indicates that enhancing necessary mathematical prior 
knowledge before teaching a new topic significantly improves 
students’ achievement in immediate and delayed mathematics tests 
when compared to students who did not receive enhancement.

The test included knowledge (conceptual knowledge) and 
knowledge application (procedural knowledge). It was important to 
check which types of knowledge were more effective.

3.2. What is the immediate and late effect 
of enhancing necessary topic-specific prior 
mathematical knowledge before 
introducing new topics on students’ 
mathematical conceptual knowledge?

The t-test results indicated no significant difference in the pre-test 
scores for the experimental and control groups (t = 0.1.31).

Table  2 and Figures  4, 5 show that there was no significant 
difference in the post-test F (1,71) = 2.99, p > 0.05. However, there was 
a significant difference in the delay post-test F (1,71) = 11.61, p < 0.01, 
it indicated that students in the experimental group had significantly 
higher average scores in conceptual knowledge (M = 2.64, SD = 1.44) 
than students in the control group (M = 1.49, SD = 1.22), with small 
effect size (0.142).

This result indicates that enhancing necessary mathematical prior 
knowledge before teaching a new topic significantly improves 
students’ achievement in only delayed conceptual mathematics tests 
when compared to students who did not receive enhancement.

3.3. What is the immediate and late effect 
of enhancing necessary topic-specific prior 
mathematical knowledge before 
introducing new topics on students’ 
mathematical procedural knowledge?

The t-test results indicated no significant difference in the pre-test 
scores for the control and experimental groups (t = 2.66).

The one-way ANCOVA results indicated that there was a 
significant difference in the post-test F (1,71) = 9.08, p < 0.01. Students 

FIGURE 1

Design of the study. Enhancement includes three components: addressing insufficient prior knowledge, addressing inaccurate prior knowledge, and 
activating prior knowledge.
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in the experimental group had higher post-test scores (M = 3.75, 
SD = 1.63) than students in the control group (M = 2.64, SD = 1.49), 
with small effect size (0.115). The results also showed that students in 
the experimental group had higher delay post-test scores (M = 2.61, 
SD = 1.73) than students in the control group (M = 1.73, SD = 1.30),  
F (1,71) = 6.24, p < 0.05, with small effect size (0.082; see Table  3; 
Figures 6, 7).

This result indicates that enhancing necessary mathematical prior 
knowledge before teaching a new topic significantly improves students’ 
achievement in immediate and delayed procedural mathematics tests 
when compared to students who did not receive enhancement.

4. Discussion

When the necessary topic-specific prior mathematical 
knowledge was enhanced for students before teaching new topics, 

students’ average scores in immediate and delayed mathematics tests 
improved in the intervention group when compared to the average 
scores of students who did not receive enhancement. More 
specifically, students who received enhancement improved in the 
immediate post-test for procedural knowledge and in the delayed 
post-test for conceptual and procedural knowledge with a small 
size effect.

Enhancement here targets the necessary topic-specific prior 
mathematical knowledge and includes three components: 
addressing insufficient prior knowledge, addressing inaccurate 
prior knowledge, and activating prior knowledge. This prior 
knowledge was selected to enhance by determining what is 
necessary for students in order to facilitate its integration into new 
information. For example, students cannot learn to compare or 
order fractions unless they have already learned equivalent 
fractions. Being able to recognize equivalent fractions works as a 
facilitator for new learning (i.e., comparing or ordering fractions). 
In other words, learning equivalent fractions is sufficient 
mathematical prior knowledge for learning to compare or order 
fractions. Sufficient prior knowledge supports working memory to 
increase its capacity. The capacity to utilize working memory can 
be  vastly increased by the information stored in the long-term 
memory (Ericsson and Kintsch, 1995; Paas et al., 2003; Sweller, 
2003). This can reduce the cognitive load, particularly the intrinsic 
cognitive load for working memory, by making working memory 
partially rely on the support of long-term memory, consequently 
increasing germane load capacity. The germane load is critical for 
learning, and it relates to how information turns out to be stored in 
long-term memory. When learners have sufficient prior knowledge 
to learn new materials, this can reduce the intrinsic load and 
augment the germane load, which leads to effective learning (Jordan 
et  al., 2020). Therefore, when students hold sufficient prior 
knowledge, they can learn better than those who lack the necessary 
prior knowledge.

Another component of enhancement is addressing inaccurate 
prior knowledge. If there is a misconception in prior knowledge, the 
learning of new knowledge is probably resisted. For example, if the 
students hold misconceptions about ‘equivalent fractions’, the learning 
of ‘comparing or ordering fractions’ is likely to be resisted. Learners 
could conflict with what they believe to be correct (for more details, 
see; Lipson, 1982; Alvermann et al., 1985; Braasch and Goldman, 
2010; Arbiyah et al., 2020). Therefore, addressing inaccurate prior 
knowledge could pave the way for new information to connect to 
existing knowledge.

The last component of enhancement is the activation of prior 
knowledge. Activating necessary prior knowledge is a key function 
for the integration of knowledge. Existing knowledge should 
be actively used through information processes to form connections 
between existing knowledge and new information (Mayer, 1979). 

TABLE 1 Summary of ANCOVA results of the whole achievement test.

Variable Group N Mean SD Adjusted mean F η2

Post-test Exp. 36 7.22 3.12 7.08 4.71* 0.063

Con. 37 5.70 2.17 5.84

Daley post-test Exp. 36 5.25 2.76 5.11 12.08** 0.147

Con. 37 3.22 2.07 3.35

*p < 0.05 and **p < 0.01.

FIGURE 2

Immediate post-test for mathematical knowledge achievement.

FIGURE 3

Late post-test for mathematical knowledge achievement.
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Activation of prior knowledge is important as a foundation for new 
knowledge. When instruction ignores prior knowledge activation, 
learners will feel overwhelmed. Consequently, the learners will rely 
on memorizing the material presented. This is because a new 
knowledge structure cannot be done without its foundation (relevant 
prior knowledge; Merrill, 2002). Therefore, enhancing necessary 
prior knowledge can lay a solid foundation for facilitating connecting 
new information. Solidly relevant existing knowledge can help 
facilitate new learning (Ausubel, 1968; Dochy and Alexander, 1995; 
Bandura, 1997).

It is not surprising that the immediate post-test results revealed 
similar improvements in conceptual knowledge for both groups. 
The potential explanation is that this type of knowledge can 
be gained through low-level thinking, such as recalling facts. Both 

groups were able to demonstrate at least surface learning, even 
though students in the control group were not expected to link old 
knowledge to new knowledge as effectively as students in the 
experimental group. Surface learning may take place if students 
cannot connect the new knowledge to their prior knowledge base 
(Dochy et al., 1999; Donald, 2002). However, when students in the 
experimental group were tested later, their knowledge retention was 
significantly higher than that of control group. This finding could 
indicate that students made successful connections between existing 
knowledge and new information. When new knowledge is 
connected to past experiences, it becomes more memorable (Morris 
et al., 1981; National Research Council, 2000; Kole and Healy, 2007; 
Zambrano et al., 2019).

Furthermore, the experimental group students’ procedural 
knowledge was significantly improved in the immediate and 
delayed post-tests compared to the control group. Prior procedural 
knowledge contributes to student achievement more than prior 
conceptual knowledge (Hailikari et  al., 2007). This type of 
knowledge requires students to know how and when to apply 
different procedures (Anderson and Krathwohl, 2001). Using 
procedural knowledge might also require students to have the 
relevant conceptual knowledge of the deep principles and features 
that would permit them to adapt to different situations. Research 
has shown that the lack of conceptual understanding of mathematics 
is critically impeding students’ ability to transfer and generalize 
mathematics (Richland et al., 2012). Students in the experimental 
group learned conceptual knowledge more deeply than others, as 
discussed above, which likely supported students’ abilities in 
procedural knowledge. Several studies have revealed that prior 
conceptual knowledge about the target content is among the most 
important factors of subsequent learning processes, including the 
gaining of new procedural knowledge (Hecht et al., 2003; Schneider 
et  al., 2009). In addition, procedural knowledge can often 
be interrelated or rooted within other procedures (Baroody et al., 
2007). Therefore, learning new procedures that have relationships 
with other procedures that students possess would contribute to 
learning connections.

5. Conclusion

A quasi-experimental design study investigated the effectiveness 
of enhancing necessary topic-specific prior knowledge at the 
beginning of topics on students’ conceptual knowledge and 
procedural knowledge. The results showed the importance of this 
strategy in improving students’ outcomes. Future research is needed 
to test similar approaches for older students (e.g., secondary 
school students).

TABLE 2 Summary of ANCOVA results of the conceptual knowledge achievement test.

Variable Group N Mean SD Adjusted mean F η2

Post-test Exp. 36 3.42 1.87 3.32 2.99 0.004

Con. 37 3.03 1.26 3.13

Daley post-test Exp. 36 2.64 1.44 2.58 11.61** 0.142

Con. 37 1.49 1.22 1.54

**p < 0.01.

FIGURE 4

Immediate post-test for mathematical conceptual knowledge 
achievement.

FIGURE 5

Late post-test for mathematical conceptual knowledge 
achievement.
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FIGURE 6

Immediate post-test for mathematical procedural knowledge 
achievement.

FIGURE 7

Late post-test for mathematical procedural knowledge achievement.

6. Limitations

The limitations of this study are that the results can be generalized 
only to similar contexts. This study is limited to male students due to the 
gender segregation system that is operational in Saudi Arabia. The quasi-
experimental approach can be a limitation due to its lack of random 
assignment. Further study should include larger sample sizes of school 
students from different education levels. It is important to note that the 
same test was used repeatedly during the three time points of data 
collection, which might potentially have a practice effect on students’ 
performance on this test. Further studies should consider controlling such 
factor for more accurateresults.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and 
approved. Written informed consent to participate in this study was 
provided by the participants’ legal guardian/next of kin.

Author contributions

The author confirms being the sole contributor of this work.

Funding

This work was supported by the University of Ha’il [Project 
Number (BA-1515)].

Conflict of interest

The author declares that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/feduc.2023.1050468/
full#supplementary-material

TABLE 3 Summary of ANCOVA results of the procedural knowledge achievement test.

Variable Group N Mean SD Adjusted mean F η2

Post-test Exp. 36 3.75 1.63 3.74 9.08** 0.115

Con. 37 2.64 1.49 2.66

Daley post-test Exp. 36 2.61 1.73 2.60 6.24* 0.082

Con. 37 1.73 1.30 1.75

*p < 0.05 and **p < 0.01.

https://doi.org/10.3389/feduc.2023.1050468
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/feduc.2023.1050468/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feduc.2023.1050468/full#supplementary-material


Alreshidi 10.3389/feduc.2023.1050468

Frontiers in Education 09 frontiersin.org

References
Ackerman, P. L., and Cianciolo, A. T. (2000). Cognitive, perceptual speed, and 

psychomotor determinants of individual differences during skill acquisition. J. Exp. 
Psychol. Appl. 6, 259–290. doi: 10.1037/1076-898X.6.4.259

Alexander, P. A., Schallert, D. L., and Hare, V. C. (1991). Coming to terms: how 
researchers in learning and literacy talk about knowledge. Rev. Educ. Res. 61, 315–343. 
doi: 10.3102/00346543061003315

Alreshidi, N. A. K. (2021). The effect of enhancing prior knowledge on the learning 
behaviors of students and the teaching practices of mathematics teachers. J. Human Sci. 
9, 271–284.

Alvermann, D. E., Smith, L. C., and Readence, J. E. (1985). Prior knowledge activation 
and the comprehension of compatible and incompatible text. Read. Res. Q. 20, 420–436. 
doi: 10.2307/747852

Anderson, L. W., and Krathwohl, D. R. (Eds.) (2001). A Taxonomy for Learning, 
Teaching and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives: 
Complete Edition. New York, NY:Longman.

Arbiyah, N., Ardiningtyas, D., Widodo, M., Safitri, A., and Nurcahyati, N. (2020). The 
danger of hoax: the effect of inaccurate information on semantic memory. Makara Hum. 
Behav. Stud. Asia 24, 80–86. doi: 10.7454/hubs.asia.1020719

Aubrey, C., Godfrey, R., and Dahl, S. (2006). Early mathematics development and later 
achievement: further evidence. Math. Educ. Res. J. 18, 27–46. doi: 10.1007/BF03217428

Ausubel, D. P. (1968). The Psychology of Meaningful Learning; An Introduction to 
School Learning. New York, NY: Grune and Stratton.

Bandura, A. (1997). Self-Efficacy: The Exercise of Control. New York, NY. Freeman.

Baroody, A. J., Feil, Y., and Johnson, A. R. (2007). An alternative reconceptualization 
of procedural and conceptual knowledge. J. Res. Math. Educ. 38, 115–131. doi: 
10.2307/30034952

Bernacki, M. L., Byrnes, J. P., and Cromley, J. G. (2012). The effects of achievement 
goals and self-regulated learning behaviors on reading comprehension in technology-
enhanced learning environments. Contemp. Educ. Psychol. 37, 148–161. doi: 10.1016/j.
cedpsych.2011.12.001

Berry, D. C., and Broadbent, D. E. (1988). Interactive tasks and the implicit -explicit 
distinction. Br. J. Psychol. 79, 251–272. doi: 10.1111/j.2044-8295.1988.tb02286.x

Braasch, J. L., and Goldman, S. R. (2010). The role of prior knowledge in learning from 
analogies in science texts. Discourse Process. 47, 447–479. doi: 10.1080/01638530903420960

Byrnes, J. P., Miller-Cotto, D., and Wang, A. H. (2018). Children as mediators of their 
own cognitive development: the case of learning science in kindergarten and first grade. 
J. Cogn. Dev. 19, 248–277. doi: 10.1080/15248372.2018.1470975

Byrnes, J. P., and Wasik, B. A. (2009). Language and Literacy Development: What 
Educators Need to Know (Solving Problems in the Teaching of Literacy) New York, NY: 
Guilford Press.

Canobi, K. H. (2009). Concept-procedure interactions in children's addition and 
subtraction. J. Exp. Child Psychol. 102, 131–149. doi: 10.1016/j.jecp.2008.07.008

Clement, J. J. (1982). Students’ preconceptions in introductory mechanics. Am. J. Phys. 
50, 66–71. doi: 10.1119/1.12989

Curran, P. J., West, S. G., and Finch, J. F. (1996). The robustness of test statistics to 
nonnormality and specification error in confirmatory factor analysis. Psychol. Methods 
1, 16–29. doi: 10.1037/1082-989X.1.1.16

De Jong, T., and Ferguson-Hessler, M. G. (1996). Types and qualities of knowledge. 
Educ. Psychol. 31, 105–113. doi: 10.1207/s15326985ep3102_2

Dochy, F. J., and Alexander, P. A. (1995). Mapping prior knowledge: a framework for 
discussion among researchers. Eur. J. Psychol. Educ. 10, 225–242. doi: 10.1007/
BF03172918

Dochy, F., Segers, M., and Buehl, M. M. (1999). The relation between assessment 
practices and outcomes of studies: the case of research on prior knowledge. Rev. Educ. 
Res. 69, 145–186. doi: 10.3102/00346543069002145

Donald, J. G. (2002). Learning to Think: Disciplinary Perspectives. The Jossey-bass 
Higher and Adult Education Series. Jossey-Bass, Inc.: San Francisco, CA 94103.

Ericsson, K. A., and Kintsch, W. (1995). Long-term working memory. Psychol. Rev. 
102, 211–245. doi: 10.1037/0033-295X.102.2.211

Fazio, L. K., DeWolf, M., and Siegler, R. S. (2016). Strategy use and strategy choice in 
fraction magnitude comparison. J. Exp. Psychol. Learn. Mem. Cogn. 42, 1–16. doi: 
10.1037/xlm0000153

Field, A. (2013). Discovering Statistics Using IBM SPSS Statistics. Thousand Oaks, CA: 
Sage.

Fosnot, C. T. (1996). Teachers construct constructivism: the center for constructivist 
teaching/teacher preparation project. Constructivism: theory, perspectives, and practice, 
205-216. Fraction skills. J. Educ. Psychol. 102, 843–859. doi: 10.1037/a0019824

Frye, D., Braisby, N., Lowe, J., Maroudas, C., and Nicholls, J. (1989). Young children’s 
understanding of counting and cardinality. Child Dev. 60, 1158–1171. doi: 10.2307/1130790

Gelman, R., and Williams, E. M. (1998). “Enabling constraints for cognitive 
development and learning: domain specificity and epigenesis” in Handbook of Child 
Psychology: Vol. 2. Cognition, Perception, and Language. eds. D. Kuhn and R. S. Siegler. 
5th ed (New York, NY: John Wiley & Sons, Inc), 575–630.

Hailikari, T., Nevgi, A., and Lindblom-Ylänne, S. (2007). Exploring alternative ways 
of assessing prior knowledge, its components and their relation to student achievement: 
a mathematics based case study. Stud. Educ. Eval. 33, 320–337. doi: 10.1016/j.
stueduc.2007.07.007

Hattie, J., and Yates, G. C. (2013). Visible Learning and the Science of How We Learn. 
England: Routledge.

Hecht, S. A., Close, L., and Santisi, M. (2003). Sources of individual differences in 
fraction skills. J. Exp. Child Psychol. 86, 277–302. doi: 10.1016/j.jecp.2003.08.003

Hecht, S. A., and Vagi, K. J. (2010). Sources of group and individual differences in 
emerging fraction skills. J. Educ. Psychol. 102, 843–859. doi: 10.1037/a0019824

Jordan, J., Wagner, J., Manthey, D. E., Wolff, M., Santen, S., and Cico, S. J. (2020). 
Optimizing lectures from a cognitive load perspective. AEM Educ Train 4, 306–312. doi: 
10.1002/aet2.10389

Karmiloff-Smith, A. (1992). Beyond Modularity: A Developmental Perspective on 
Cognitive Science. Cambridge, MA: MIT Press.

Kester, L., Paas, F., and Van Merriënboer, J. (2010). Instructional Control of Cognitive 
Load in the Design of Complex Learning Environments. eds.  J. L. Plass, R. Moreno, and 
R. Brunken (Cambridge: Cambridge University Press), 109–130.

Kole, J. A., and Healy, A. F. (2007). Using prior knowledge to minimize interference 
when learning large amounts of information. Mem. Cogn. 35, 124–137. doi: 10.3758/
BF03195949

Kosiol, T., Rach, S., and Ufer, S. (2019). (which) mathematics interest is important for 
a successful transition to a university study program? Int. J. Sci. Math. Educ. 17, 
1359–1380. doi: 10.1007/s10763-018-9925-8

LeFevre, J.-A., Smith-Chant, B. L., Fast, L., Skwarchuk, S.-L., Sargla, E., Arnup, J. S., 
et al. (2006). What counts as knowing? The development of conceptual and procedural 
knowledge of counting from kindergarten through grade 2. J. Exp. Child Psychol. 93, 
285–303. doi: 10.1016/j.jecp.2005.11.002

Lipson, M. Y. (1982). Learning new information from text: the role of prior knowledge 
and reading ability. J. Reading Behav. 14, 243–261. doi: 10.1080/10862968209547453

Loyens, S. M., and Gijbels, D. (2008). Understanding the effects of constructivist 
learning environments: introducing a multi-directional approach. Instr. Sci. 36, 351–357. 
doi: 10.1007/s11251-008-9059-4

Mayer, R. E. (1979). Twenty years of research on advance organizers: assimilation 
theory is still the best predictor of results. Instr. Sci. 8, 133–167. doi: 10.1007/BF00117008

Merrill, M. D. (2002). First principles of instruction. Educ. Technol. Res. Dev. 50, 
43–59. doi: 10.1007/BF02505024

Mihalca, L., and Mengelkamp, C. (2020). Effects of induced levels of prior knowledge 
on monitoring accuracy and performance when learning from self-regulated problem 
solving. J. Educ. Psychol. 112, 795–810. doi: 10.1037/edu0000389

Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on 
our capacity for processing information. Psychol. Rev. 63, 81–97. doi: 10.1037/h0043158

Miller, S. P., and Hudson, P. J. (2007). Using evidence-based practices to build 
mathematics competence related to conceptual, procedural, and declarative knowledge. 
Learn. Disabil. Res. Pract. 22, 47–57. doi: 10.1111/j.1540-5826.2007.00230.x

Morris, P. E., Gruneberg, M. M., Sykes, R. N., and Merrick, A. (1981). Football 
knowledge and the acquisition of new results. Br. J. Psychol. 72, 479–483. doi: 10.1111/
j.2044-8295.1981.tb01777.x

Mullis,  I. V. S., Martin, M. O., and Foy, P. (2008). TIMSS 2007 International 
Mathematics Report: Findings from IEA’s Trends in International Mathematics and 
Science Study for the Fourth and Eighth Grades. Chestnut Hill, MA: TIMSS and PIRLS 
International Study Center, Boston College.

Mullis,  I. V., Martin, M. O., Gonzalez, E. J., and Chrostowski, S. J. (2004). TIMSS 2003 
International Mathematics Report: Findings from IEA’s Trends in International 
Mathematics and Science Study at the Fourth and Eighth Grades. International Association 
for the  Evaluation of Educational Achievement. Herengracht 487, Amsterdam, 1017 BT, 
The Netherlands.

Mullis, I. V., Martin, M. O., Foy, P., and Arora, A. (2011). International Results in 
Mathematics. Chenut Hill, MA: TIMMS & PIRLS Internasional study center, 
Boston College.

National Research Council. (2000). How People Learn: Brain, Mind, Experience, and 
School: Expanded Edition. Washington, DC: National Academies Press.

Ningsih, E. F., and Retnowati, E. (2020). “Prior knowledge in mathematics learning” 
in SEMANTIK Conference of Mathematics Education (SEMANTIK 2019) eds.  

S. A. Widodo, S. Maharani, E. F. Ningsih, Leonard and H. Nurdiyanto (Wiley: Atlantis 
Press. NY), 61–66.

https://doi.org/10.3389/feduc.2023.1050468
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://doi.org/10.1037/1076-898X.6.4.259
https://doi.org/10.3102/00346543061003315
https://doi.org/10.2307/747852
https://doi.org/10.7454/hubs.asia.1020719
https://doi.org/10.1007/BF03217428
https://doi.org/10.2307/30034952
https://doi.org/10.1016/j.cedpsych.2011.12.001
https://doi.org/10.1016/j.cedpsych.2011.12.001
https://doi.org/10.1111/j.2044-8295.1988.tb02286.x
https://doi.org/10.1080/01638530903420960
https://doi.org/10.1080/15248372.2018.1470975
https://doi.org/10.1016/j.jecp.2008.07.008
https://doi.org/10.1119/1.12989
https://doi.org/10.1037/1082-989X.1.1.16
https://doi.org/10.1207/s15326985ep3102_2
https://doi.org/10.1007/BF03172918
https://doi.org/10.1007/BF03172918
https://doi.org/10.3102/00346543069002145
https://doi.org/10.1037/0033-295X.102.2.211
https://doi.org/10.1037/xlm0000153
https://doi.org/10.1037/a0019824
https://doi.org/10.2307/1130790
https://doi.org/10.1016/j.stueduc.2007.07.007
https://doi.org/10.1016/j.stueduc.2007.07.007
https://doi.org/10.1016/j.jecp.2003.08.003
https://doi.org/10.1037/a0019824
https://doi.org/10.1002/aet2.10389
https://doi.org/10.3758/BF03195949
https://doi.org/10.3758/BF03195949
https://doi.org/10.1007/s10763-018-9925-8
https://doi.org/10.1016/j.jecp.2005.11.002
https://doi.org/10.1080/10862968209547453
https://doi.org/10.1007/s11251-008-9059-4
https://doi.org/10.1007/BF00117008
https://doi.org/10.1007/BF02505024
https://doi.org/10.1037/edu0000389
https://doi.org/10.1037/h0043158
https://doi.org/10.1111/j.1540-5826.2007.00230.x
https://doi.org/10.1111/j.2044-8295.1981.tb01777.x
https://doi.org/10.1111/j.2044-8295.1981.tb01777.x


Alreshidi 10.3389/feduc.2023.1050468

Frontiers in Education 10 frontiersin.org

O'Donnell, A. M., and Dansereau, D. F. (2000). Interactive effects of prior knowledge 
and material format on cooperative teaching. J. Exp. Educ. 68, 101–118. doi: 
10.1080/00220970009598497

Paas, F., Renkl, A., and Sweller, J. (2003). Cognitive load theory and instructional 
design: recent developments. Educ. Psychol. 38, 1–4. doi: 10.1207/S15326985EP3801_1

Rach, S., and Ufer, S. (2020). Which prior mathematical knowledge is necessary for 
study success in the university study entrance phase? Results on a new model of 
knowledge levels based on a reanalysis of data from existing studies. Int. J. Res. 
Undergraduate Math. Educ. 6, 375–403. doi: 10.1007/s40753-020-00112-x

Reber, P. J., and Kotovsky, K. (1997). Implicit learning in problem solving: the role of 
working memory capacity. J. Exp. Psychol. 126, 178–203. doi: 10.1037/0096-3445.126.2.178

Riazy, S., Simbeck, K., Woestenfeld, R., and Traeger, M. (2020). “Prior knowledge as a 
predictor for persistence” in Proceedings of the 12th International Conference on Computer 
Supported Education. SCITEPRESS – Science and Technology Publications, 137–144.

Richland, L. E., Stigler, J. W., and Holyoak, K. J. (2012). Teaching the conceptual 
structure of mathematics. Educ. Psychol. 47, 189–203. doi: 10.1080/00461520.2012.667065

Rittle-Johnson, B., Fyfe, E., and Loehr, A. (2016). The content of instruction within a 
mathematics lesson: implications for conceptual and procedural knowledge 
development. Br. J. Educ. Psychol. 86, 576–591. doi: 10.1111/bjep.12124

Rittle-Johnson, B., and Schneider, M. (2015). “Developing conceptual and procedural 
knowledge of mathematics” in Oxford Handbook of Numerical Cognition. eds. R. C. 
Kadosh and A. Dowker (Oxford: Oxford University Press), 1118–1134.

Rittle-Johnson, B., Siegler, R. S., and Alibali, M. W. (2001). Developing conceptual 
understanding and procedural skill in mathematics: an iterative process. J. Educ. Psychol. 
93, 346–362. doi: 10.1037//0022-0663.93.2.346

Rothman, S., and McMillan, J. (2003). Influences on Achievement in Literacy and 
Numeracy. LSAY Research Reports, 40. England: Routledge.

Schneider, M., Grabner, R. H., and Paetsch, J. (2009). Mental number line, number 
line estimation, and mathematical achievement: their interrelations in grades 5 and 6. J. 
Educ. Psychol. 101, 359–372. doi: 10.1037/a0013840

Smith, J. P., di Sessa, A. A., and Roschelle, J. (1994). Misconceptions reconceived: a 
constructivist analysis of knowledge in transition. J. Learn. Sci. 3, 115–163.

Song, H. S., Kalet, A. L., and Plass, J. L. (2016). Interplay of prior knowledge, self-
regulation and motivation in complex multimedia learning environments. J. Comput. 
Assist. Learn. 32, 31–50. doi: 10.1111/jcal.12117

Sun, R., Merrill, E., and Peterson, T. (2001). From implicit skills to explicit knowledge: 
a bottom-up model of skill learning. Cogn. Sci. 25, 203–244. doi: 10.1207/
s15516709cog2502_2

Sweller, J. (2003). Evolution of human cognitive architecture. Psychol. Learn. Motiv. 
43, 216–266. doi: 10.1016/S0079-7421(03)01015-6

Thompson, R. A., and Zamboanga, B. L. (2003). Prior knowledge and its relevance to 
student achievement in introduction to psychology. Teach. Psychol. 30, 96–101. doi: 
10.1207/S15328023TOP3002_02

Usman, O., and Miranda, V. (2020). The influence of learning motivation, cognitive 
strategy, prior knowledge on learning satisfaction. Available at SSRN: https://ssrn.com/
abstract=3641269

Wilson, B. G. (1996). Constructivist Learning Environments: Case Studies in 
Instructional Design. Englewood Cliffs, NJ: Educational Technology.

Winters, F. I., Greene, J. A., and Costich, C. M. (2008). Self-regulation of learning 
within computer-based learning environments: a critical analysis. Educ. Psychol. Rev. 20, 
429–444. doi: 10.1007/s10648-008-9080-9

Yew, E. H., and Schmidt, H. G. (2009). Evidence for constructive, self-regulatory, and 
collaborative processes in problem-based learning. Adv. Health Sci. Educ. 14, 251–273. 
doi: 10.1007/s10459-008-9105-7

Yüksel, I. (2014). Impact of activity-based mathematics instruction on students with 
different prior knowledge and reading abilities. Int. J. Sci. Math. Educ. 12, 1445–1468. 
doi: 10.1007/s10763-013-9474-0

Zambrano, J., Kirschner, F., Sweller, J., and Kirschner, P. A. (2019). Effects of prior 
knowledge on collaborative and individual learning. Learn. Instr. 63:101214. doi: 
10.1016/j.learninstruc.2019.05.011

https://doi.org/10.3389/feduc.2023.1050468
https://www.frontiersin.org/journals/education
https://www.frontiersin.org
https://doi.org/10.1080/00220970009598497
https://doi.org/10.1207/S15326985EP3801_1
https://doi.org/10.1007/s40753-020-00112-x
https://doi.org/10.1037/0096-3445.126.2.178
https://doi.org/10.1080/00461520.2012.667065
https://doi.org/10.1111/bjep.12124
https://doi.org/10.1037//0022-0663.93.2.346
https://doi.org/10.1037/a0013840
https://doi.org/10.1111/jcal.12117
https://doi.org/10.1207/s15516709cog2502_2
https://doi.org/10.1207/s15516709cog2502_2
https://doi.org/10.1016/S0079-7421(03)01015-6
https://doi.org/10.1207/S15328023TOP3002_02
https://ssrn.com/abstract=3641269
https://ssrn.com/abstract=3641269
https://doi.org/10.1007/s10648-008-9080-9
https://doi.org/10.1007/s10459-008-9105-7
https://doi.org/10.1007/s10763-013-9474-0
https://doi.org/10.1016/j.learninstruc.2019.05.011

	Enhancing topic-specific prior knowledge of students impacts their outcomes in mathematics
	1. Introduction
	1.1. Prior knowledge and cognitive load
	1.2. Types of prior knowledge and learning
	1.3. Present study

	2. Method
	2.1. Participants and design
	2.2. Materials
	2.2.1. Topics
	2.2.2. Mathematics test
	2.3. Strategy for enhancing necessary topic-specific prior knowledge
	2.4. Procedures

	3. Results
	3.1. What is the immediate and late effect of enhancing necessary topic-specific prior mathematical knowledge before introducing new topics on students’ mathematical knowledge?
	3.2. What is the immediate and late effect of enhancing necessary topic-specific prior mathematical knowledge before introducing new topics on students’ mathematical conceptual knowledge?
	3.3. What is the immediate and late effect of enhancing necessary topic-specific prior mathematical knowledge before introducing new topics on students’ mathematical procedural knowledge?

	4. Discussion
	5. Conclusion
	6. Limitations
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material

	References



