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Introduction: Whereas it is commonly assumed that in learning science, 
representational competence is a critical prerequisite for the acquisition of 
conceptual knowledge, comprehensive psychometric investigations of this 
assumption are rare. We  undertake a step in this direction by re-analyzing 
the data from a recent study that found a substantial correlation between the 
two constructs in undergraduates in the context of field representations and 
electromagnetism.

Methods: We  re-analyze the data (N = 515 undergraduate students; Mage = 21.81, 
SDage = 4.04) to examine whether the relation between representational 
competence and conceptual knowledge, both measured with psychometrically 
validated test instruments, is similar or varies between four samples from two 
countries. To this end, we  will employ correlational analysis and scatter plots. 
Employing these methods, we will examine whether a positive relation between 
representational competence and conceptual knowledge can be found and is of 
similar magnitude in all samples. We will also employ multiple-group latent profile 
analysis to examine how the more detailed association between the two constructs 
varies or is similar across samples. Finally, we will examine how commonalities 
and differences between samples relate to aspects of learners’ gender, topic-
specific learning opportunities, and individual preferences for specific learning 
content. The aim is to unravel the generalizability of this relation and thereby 
derive hypotheses for potential moderating factors that can be further examined 
in future research.
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1. Introduction

Representational competence, that is, the ability to interpret and translate between different 
representations of scientific concepts (Kozma and Russell, 2005), is commonly portrayed as a 
critical prerequisite for developing conceptual knowledge in science (Ainsworth, 2008; Corradi 
et al., 2012; Treagust et al., 2017). Consequently, much research has examined how these two 
constructs interact during inquiry activities (e.g., Kohl et al., 2007; Nieminen et al., 2013; Scheid 
et al., 2019).
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FIGURE 1

Scatter plot of representational competence and conceptual knowledge in data by Malone et al. (2021).

Recently, more targeted studies have tried to measure 
representational competence with elaborate psychometric instruments 
(Klein et al., 2017; Scheid et al., 2018). Klein et al. (2017) developed a 
two-tier instrument to assess representational competence in 
Kinematics, and Scheid et al. (2018) an open-answer instrument to 
assess representational competence in the topic of Ray Optics.

In the present study, we  are concerned with the empirical 
relationship between representational competence and conceptual 
knowledge and, in particular, with the conditions that might influence 
the magnitude of this relationship. Although a strong positive 
relationship has been assumed by many researchers, it has been noted 
that the quantitative empirical evidence on this relationship is rather 
sparse and struggles with methodological issues (Chang, 2018; 
Edelsbrunner et  al., 2022). As Edelsbrunner et  al. (2022) note, 
instruments that have been used to measure these two constructs and 
their interrelations often have not been psychometrically validated, or 
suffer from contextual bias. Specifically, if instruments such as 
pen-and-paper tests that are assumed to measure the two constructs 
are both contextualized within the same topic (e.g., electromagnetism; 
Nieminen et al., 2013; Nitz et al., 2014; Scheid et al., 2019), then the 
common relation between the two constructs cannot be disentangled 
from such common topical context.

A recent study by Edelsbrunner et al. (2022) tried to overcome 
these issues by using an assessment instrument for representational 
competence with field representations (such as vector-field plots and 
field lines) that does not employ an explicit topical context. Using this 
instrument, the authors investigated the relation between 
representational competence with fields and conceptual knowledge 
about electromagnetism in university undergraduates from Germany 
and Switzerland. Encompassing students from four different 
universities, the authors found a substantial positive relationship, with 

a Pearson correlation estimate of r = 0.54, p < 0.001. In addition, the 
authors found that in a scatter plot, there were almost no students with 
high conceptual knowledge but low representational competence, 
whereas there appeared to be more students with high representational 
competence but low conceptual knowledge (see Figure 1). From these 
results, the authors inferred the hypothesis that representational 
competence is a necessary yet insufficient prerequisite for developing 
conceptual knowledge (Edelsbrunner et al., 2022).

In the present study, we  follow up on this hypothesis with an 
alternative model-based analytical approach. Specifically, whereas a 
scatter plot is an important and powerful visual tool, it does not 
prevent getting false impressions about patterns that might be driven 
by sampling error. Another reason for a model-based re-analysis is 
that the sample by Edelsbrunner et  al. (2022) encompassed four 
different student samples from different courses (teacher education, 
STEM and non-STEM study programs) at three different universities. 
The authors analyzed the students from all four samples within the 
same models, potentially hiding important information regarding the 
generalizability of their findings. The overall pattern might 
be unreliable if, for example, it is underlain by Simpson’s paradox (e.g., 
(Kievit et al., 2013). This paradox describes situations in which, on the 
level of a whole population [i.e., the common population underlying 
all four samples by Edelsbrunner et al. (2022)], a pattern is visible that 
might actually not exist or even be  reversed within the distinct 
sub-samples forming the larger population. More specific analyses on 
the level of sub-samples are needed to unravel the generalizability of 
the findings.

In the context of physics education, such sub-samples might 
be  defined by variables such as gender, topic-specific learning 
opportunities in the classroom, or individual preferences for specific 
learning content that can be expected to affect learning in a number of 
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ways. Regarding gender, females seem to perform worse than boys on 
tests of conceptual knowledge across various physics topics (e.g., 
OECD, 2009; Madsen et al., 2013; Hofer et al., 2018). Among the 
manifold explanations provided for this gender effect are missing 
female role models (e.g., Mullis et  al., 2016; Chen et al., 2020) or 
underlying subject-specific gender differences in motivational-
affective variables such as interest and self-concept (e.g., Jansen et al., 
2014; Patall et al., 2018; Kang et al., 2019). Although, so far, we do not 
know much about gender differences in representational competence, 
female students seem to struggle more with visual graphical 
representations (e.g., Hegarty and Kriz, 2008; Chan and Wong, 2019; 
Tam et al., 2019) and different types of mathematical-graphical tasks 
(e.g., axis tasks; Lowrie and Diezmann, 2011) than male students do. 
Gender differences in spatial abilities (e.g., Reinhold et  al., 2020) 
might at least in parts explain such findings (see Heo and Toomey, 
2020). Concerning the relation between conceptual knowledge and 
representational competence, Nieminen et al. (2013) reported more 
problems on the part of female students to infer the same facts from 
tasks differing in the representational formal.

As regards topic-specific learning opportunities in the classroom, 
we can expect experiments to be especially effective in promoting 
understanding of fields and electromagnetism (see National Research 
Council, 2012; Sandoval et al., 2014; de Jong, 2019; Rodriguez et al., 
2020). In physics education, student experiments allow learners to 
observe physical phenomena and explore their dependence on 
physical quantities. An important tool helping students to acquire the 
physical concepts underlying observations are external 
representations. They can help students in acquiring knowledge by 
visualizing non-visible fundamentals and causes of the observed 
phenomena (Olympiou et al., 2013). Usually, external representations 
of physical concepts such as vector fields are presented before or after 
experimentation. Teachers provide students with explanations and 
visual-graphical models which represent aspects that cannot 
be directly observed. Such learning opportunities involving guided 
experimentation have proven successful in terms of conceptual 
understanding (Hardy et al., 2006; van der Graaf et al., 2020). Whether 
students in the different samples did guided student experiments in 
the field of electromagnetism, whether they watched the teacher 
conduct such experiments or whether they did not have this learning 
opportunity at secondary school at all can hence be  expected to 
influence students’ conceptual knowledge and representational 
competence as well as their relation.

Finally, sub-samples might be  determined by systematic 
differences in individual preferences for specific learning content as 
reflected in the choice of a specific study program. There is evidence 
that interest and prior knowledge are substantially and linearly related 
(Tobias, 1994). In line with this finding, various studies have 
documented systematic differences on cognitive variables between 
students in specific study programs. Comparing (among others) 
physical sciences, math/computer science, engineering, humanities, 
and social sciences majors, Lubinski and Benbow (2006), for instance, 
found considerable differences in terms of mathematical, verbal, and 
spatial ability, with physical sciences students being the only ones with 
positive manifestations on all three measures.

The four samples are from two different countries, namely 
Germany and Switzerland, which have similar track-based educational 
systems. Country will not be examined as a covariate in the present 
analysis because there is no reason to expect country-level effects on 

the relation between and magnitude of students’ conceptual 
knowledge and representational competence, since they are assumed 
to depend on learning opportunities varying on the teacher- or 
school-level as well as on individual experiences and preferences. 
We  do not expect systematic differences between Germany and 
Switzerland on these variables.

2. The present study

In the present study, we examine the generalizability of the findings 
by Edelsbrunner et al. (2022) across all four samples from their study. 
Building on the fact that they published their data set for re-use (the 
published data set is available from the repository of Malone et al., 2021), 
we will re-analyze these data. The major reason to use this data set is that 
the present study and its research questions have been triggered by this 
study and data. In addition, it is the only study so far that has used 
psychometrically validated instruments to assess both representational 
competence and conceptual knowledge that are not embedded within 
the same context, preventing topical bias (Edelsbrunner et al., 2022). 
Whereas this implies that our study and research questions are bound to 
the variables available within this data set, the data set appears to offer 
potential for various informative research questions which to the best of 
our knowledge have not been addressed so far. Based on this data set, 
we will address the following research questions:

 1. Do we  find a positive linear correlation between 
representational competence and conceptual knowledge in 
each of the four samples?

To answer this research question, we  will estimate linear 
correlations of the relation between the two constructs in all four 
samples separately. Based on extensive literature emphasizing the 
importance of representational competence for acquiring conceptual 
knowledge (e.g., Nitz et al., 2014), we expect that there is a positive 
linear correlation in all four samples:

H1: A positive linear association between representational 
competence and conceptual knowledge exists in all four samples.

 2. Do we  find comparable linear associations between 
representational competence and conceptual knowledge in all 
four samples?

To answer this research question, we  will compare the four 
samples with regard to their linear correlation estimates of the relation 
between the two constructs. This is an exploratory research question 
aiming at unraveling potential similarities and differences in the 
magnitude of the association between the two constructs across 
samples, so we do not have hypotheses regarding this question.

After examining research questions (1) and (2), we will produce 
scatter plots individually within all four samples. These will help us 
visualize the data patterns underlying the estimated correlations to 
discuss differences and similarities across samples.

Research questions (3) to (5) are also exploratory, with the aim to 
generate hypotheses for future research. Here, we apply a method to 
identify different combinations of conceptual knowledge and 
representational competence that systematically occur in each of the 

https://doi.org/10.3389/feduc.2023.1046492
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Edelsbrunner and Hofer 10.3389/feduc.2023.1046492

Frontiers in Education 04 frontiersin.org

four samples. These different combinations, for example, high 
representational competence and low conceptual knowledge, are 
referred to as latent profiles. The corresponding research questions are 
as follows:

 3. To what degree do latent profiles of representational 
competence and conceptual knowledge show similar or 
different patterns across the four different samples?

 4. To what degree is the pattern of low representational 
competence but high conceptual knowledge, but not vice versa, 
visible in all four samples?

 5. Do gender, topic-specific learning opportunities, and individual 
preferences for specific learning content (as reflected in the 
choice of study program) explain differences and similarities 
between the four samples?

To answer research questions (3)–(5), we will apply multiple 
group latent profile analysis (e.g., Morin et  al., 2016). In this 
analysis, latent profiles of representational competence and 
conceptual knowledge can be extracted and compared across the 
four samples.

Although this research is predominantly exploratory, a 
preregistration can be helpful for exploratory research to ensure that 
researcher degrees on freedom in selecting and presenting analysis 
and their results are controlled (Nosek et al., 2018; Dirnagl, 2020). In 
addition, although latent profile analysis is predominantly used as an 
exploratory tool, there are central decisions such as the process leading 
to determining the number of latent profiles that are guided by 
multiple fit criteria and subjective considerations (Edelsbrunner et al., 
in press). In preregistering the approach to determining the number 
of latent profiles, we can ensure that we keep to a priori criteria that 
have been agreed upon in peer-review and clearly mark and discuss 
any deviations thereof.

3. Method

3.1. Sample

This will be  a secondary analysis based on the sample by 
Edelsbrunner et  al. (2022). The sample encompassed N = 515 
undergraduate students from three different universities in Germany 
and Switzerland. The main sample characteristics are provided in 
Table  1. For detailed descriptions of the sampling strategy, see 
Küchemann et al. (2021).

3.2. Assessment instruments

The authors used a newly developed measure of conceptual 
knowledge about electromagnetism, encompassing 12 items 
(internal consistency of ω = 0.92), and another newly developed 
measure of representational competence with fields that also 
encompassed 12 items (ω = 0.86). More detailed psychometric 
characteristics of the two instruments are provided in Edelsbrunner 
et  al. (2022), and more details regarding the instrument for 
representational competence in Küchemann et al. (2021). We will 
use sum scores of items solved from each instrument, which in both 
cases reach from 0 to 12 points.

As covariates, we  will use gender, topic-specific learning 
opportunities, and individual preferences for specific learning content. 
All variables were assessed in online questionnaires. For gender, 
participants could indicate female, male, or diverse. We  will not 
include participants with diverse gender in the statistical models, as 
these were only n = 6 across all four samples, undermining reliable 
parameter estimation, but we  will include them in all descriptive 
analysis for which this is possible.

As an indicator of topic-specific learning opportunities, we will 
use a question on which participants indicated whether their 
teachers used the conductor swing-experiment in their Physics 
classes, or not. In this experiment, a conducting piece is put within 
the magnetic field of a magnet. Current is then activated that flows 
through the conductor, initiating a second electromagnetic field. 
Through the two magnetic fields’ crossing directions, a Lorentz 
Force results, causing the conductor piece to swing. The Lorentz 
Force is a standard topic in German and Swiss Physics education. 
The conductor swing-experiment, by providing students with a 
visible phenomenon relating to magnetic fields and the Lorentz 
force, is supposed to foster students’ conceptual understanding of 
electromagnetism and fields (Donhauser et  al., 2020). We  will 
therefore use information from a question asking participants 
whether in high school, their teachers used the conductor swing-
experiment as a demonstration experiment (implemented by the 
teacher), as a student experiment (implemented by the students 
themselves), or not at all. In a fourth answer option, the participants 
could indicate that they could not remember whether this 
experiment was part of their Physics education. This variables thus 
has four categorical answer options: Experiment not implemented, 
implemented as student experiment, implemented as teacher 
experiment, or cannot remember.

As a final covariate, we will consider students’ fields of study. This 
will serve as an indicator of individual preferences for specific learning 

TABLE 1 Characteristics of participants in the four samples.

Sample 1 (n = 188) Sample 2 (n = 149) Sample 3 (n = 98) Sample 4 (n = 80)

Gender (% m/f/diverse) 29/71/0 85/14/1 28/29/3 67/29/3

Mean age (SD) 20.75 (3.82) 20.72 (2.36) 21.10 (1.60) 19.74 (2.96)

Years of physics at school (SD) 4.45 (1.69) 5.57 (1.90) 3.11 (1.27) 4.08 (1.48)

University Saarland University TU Kaiserslautern ETH Zurich ETH Zurich

Study semester (SD) 1.19 (0.97) 1.58 (1.38) 3.12 (0.51) 1.18 (1.59)

Most frequent field of study Teacher education (100%) Mechanical engineering (40%), 

electrical engineering (28%)

Environmental sciences (57%) Physics (55%)
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content. We will use two dummy variables to group students into the 
non-exclusive categories of teacher education student (n = 422) vs. 
non-teacher education (n = 93), and STEM (n = 305) vs. non-STEM 
student (n = 210).

3.3. Analytical approach

Analyses will be conducted in the MPlus and R environments. To 
examine our research questions, we will use descriptive methods and 
the approach of multiple group latent profile analysis. We will interpret 
statistical tests at 10% alpha error-levels or 90% confidence intervals, 
to prevent too large beta error probabilities particularly in the smaller 
samples. We will not apply corrections for multiple tests, as all but the 
first research question are exploratory and meant to bring up 
hypothesis for future research. We will also not use corrections for 
multiple tests for research question 1 to prevent substantial inflation 
of beta-errors, which we judge more severe than alpha-errors for the 
aim of this research question.

3.3.1. Research question 1
To examine the first research question, whether a positive linear 

association between representational competence and conceptual 
knowledge exists within all samples, we  will estimate bivariate 
correlations through maximum likelihood-estimation within the 
Mplus software package. In order to standardize students’ mean scores 
for both constructs, we will define dummy-latent variables with unit 
variance and a fixed factor loading of one. By constraining the error 
variance in students’ scores to 0, all their variance will be represented 
in the respective latent variable standardized with a variance of 1. 
We will estimate the covariance of these two latent variables within 
each group, which through the standardization will represent the 
correlation estimate between the two constructs. To test hypothesis 1 
and decide whether correlations are present in all six samples, we will 
inspect bootstrapped 90% confidence intervals based on 10,000 
bootstrap draws for the covariance between the two constructs 
(DiCiccio and Efron, 1996). If a bootstrapped 90% confidence interval 
within a sample lies fully above 0, we will conclude that a positive 
correlation between representational competence and conceptual 
knowledge is present within the respective sample. If the confidence 
intervals in all four samples are above 0, we  will interpret this as 
support of hypothesis 1. If either or all confidence intervals include 0 
or are fully below, we  will interpret this as a lack of evidence for 
hypothesis 1.

3.3.2. Research question 2
To examine the second research question, whether we  find 

comparable linear associations between representational competence 
and conceptual knowledge in all four samples, we will use parameter 
constraints to test the covariance parameters between the two 
constructs for equality between the four samples. We will first set all 
four covariance parameters to equality and compare the fit of this 
model to that of the model in which the covariance is allowed to vary 
between all four samples. We will use p < 0.10 as a cut-off to decide 
whether the assumption of parameter equality holds. If the likelihood 
ratio test is significant at p < 0.10, we will inspect which of the samples 
contributes most to the significant result and free that sample’s 

parameter to deviate from the others. This will be done until we yield 
a model with a non-significant likelihood ratio test. After examining 
research question 2, we will produce scatter plots to examine the exact 
nature of the relation between representational competence and 
conceptual knowledge within the four samples. This will help interpret 
similarities and differences in this correlation across samples. For 
example, in these scatter plots we might see different patterns of floor- 
or ceiling-effects in the samples, which might help explain differences 
in correlations.

3.3.3. Research questions 3–5
To examine research questions 3–5, we will conduct (multiple 

group) latent profile analyses. This statistical method allows 
capturing patterns such as the one observed by Edelsbrunner et al. 
(2022; i.e., low representational competence and high conceptual 
knowledge) in explicit model parameters. A latent profile analysis 
allows clustering individuals based on observed patterns of means 
and variances on one or more variables (Hickendorff et al., 2018). 
The two clustering variables in our study will be students’ mean 
scores on the representational competence-test and on the 
conceptual knowledge-test. In a latent profile analysis, systematically 
different patterns of means and variances across variables are 
modelled usually in a mostly data-driven manner. These patterns 
are then represented in a latent categorical variable that represents 
the patterns as different latent profiles. We will first determine the 
number of latent profiles in each sample individually by increasing 
the number of profiles from 1 to 7 in a step-wise manner. We will 
specificy latent profiles differing in means and variances across the 
two indicator variables. The number of profiles will be determined 
based on the AIC, AIC3, BIC, aBIC, and the VLMR-likelihood ratio 
test with a significance criterion of p < 0.10 (Edelsbrunner et al., in 
press; Nylund-Gibson and Choi, 2018). The AIC in many cases 
points to a higher number of profiles than the BIC, with the AIC3 
and the aBIC in between (Edelsbrunner et al., in press). In these 
cases or in case the VLMR-test is in disagreement with the other 
indices, we will determine whether the additional profiles shown by 
the AIC, or by one of the other indices, is informative by relying on 
our content knowledge (Marsh et  al., 2009). More in-depth 
descriptions of the different steps to determine the number of 
profiles in latent profile analyses are provided by Ferguson et al. 
(2020) as well as by Hickendorff et al. (2018).

After determining the number of profiles within each sample, 
we  will extend the latent profile analyses to a multiple group-
model. In a multiple group-extension, profiles can be extracted 
within each sample individually but within the same model 
estimation process (Morin et  al., 2016). This allows fixing 
parameters or letting them vary across samples, to test whether one 
or more parameters (mean- and variance- estimates of profiles, or 
relative profile sizes) differ or are similar across samples. Based on 
this analytic approach, we  will examine the comparability and 
specific patterns of latent profiles found in the four samples. 
We will inspect which profile parameters appear similar or different 
between samples and then fix those to equality that we judge to 
be similar from a theoretical perspective. After fixing parameters 
to equality, we  will test the respective restriction through a 
likelihood ratio test. We  will interpret the resulting profiles to 
judge to which extent we  can find the pattern described in 
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Edelsbrunner et al. (2022) of students showing high conceptual 
knowledge only with high representational competence.

After extracting and comparing the profiles, we will add the three 
covariates to the model via Lanza’s approach (Lanza et  al., 2013; 
Asparouhov and Muthén, 2014) to examine whether the profiles in 
the four samples relate to different mean values on students’ gender, 
topic-specific learning experiences, and individual preferences for 
specific learning content. We will again rely on p-values <0.10 to draw 
hypotheses for future research regarding the different profiles’ 
correlates.
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