
feduc-07-958635 March 15, 2023 Time: 10:41 # 1

TYPE Original Research
PUBLISHED 15 March 2023
DOI 10.3389/feduc.2022.958635

OPEN ACCESS

EDITED BY

Stamatios Papadakis,
University of Crete, Greece

REVIEWED BY

Antti Luoto,
Tampere University, Finland
Bert Zwaneveld,
Open University of the Netherlands,
Netherlands

*CORRESPONDENCE

Mária Csernoch
csernoch.maria@inf.unideb.hu

SPECIALTY SECTION

This article was submitted to
Digital Learning Innovations,
a section of the journal
Frontiers in Education

RECEIVED 31 May 2022
ACCEPTED 20 September 2022
PUBLISHED 15 March 2023

CITATION

Nagy K and Csernoch M (2023) Pre-testing
erroneous text-based documents: Logging
end-user activities.
Front. Educ. 7:958635.
doi: 10.3389/feduc.2022.958635

COPYRIGHT

© 2023 Nagy and Csernoch. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Pre-testing erroneous text-based
documents: Logging end-user
activities
Keve Nagy and Mária Csernoch*

Faculty of Informatics, University of Debrecen, Debrecen, Hungary

An extremely high number of erroneous text-based documents are in circulation,

being multiplied, serving as samples both in the office world and in education.

Creating, editing, and modifying these documents generates a serious financial

loss when both human and machine resources are considered. Our research

team developed an application and a testing method for building up an objective

measurement system, in order to see the rate of loss in the handling of erroneous

documents. In the pre-testing period, the error factor of a sample text was set up

based on the logged activities of an expert researcher. It was found that first level

modifications require about five times more human and machine resources in a

short, one-paragraph text burdened with layout errors than in its properly formatted

version. Further testing is required to find out how demanding longer texts and more

serious modifications are, but it is already obvious that erroneous text-editing, and

the lack of fundamental computational thinking skills involve unnecessary use of our

resources.

KEYWORDS

end-user computing, erroneous text-based documents, computational thinking skills,
logging end-user activities, sunk cost fallacy, Dunning-Kruger Effect

1. Introduction

Many believe that handling natural language texts with computers is a straightforward
procedure. Meanwhile, researchers of this field within social sciences already know that such
thoughts are only a wishful daydream. And, once we wake up from it, we are faced with the most
challenging problem of the entire computer technology industry, namely: end-users.

What is an end-user? Who are these end-users? What roles do they play in the digital
world? What are their initiatives (if there are any)? What are their expectations (if there are
any)? On what bases are their expectations rooted? People asking these questions may initially
feel lucky, because short definitions revealing the characteristics officially assigned to end-users
exist. Those, however, do not provide the practical essence of end-users in reality, who tend to
weaponize digital tools for creating, modifying, and masterfully messing up (bricolage) natural
language digital texts primarily in word processing and presentation applications.

“An end user is the person that a software program or hardware
device is designed for. [. . .] To simplify, the end user is the person
who uses the software or hardware after it has been fully developed,
marketed, and installed” (TechTerms, 2021).

Frontiers in Education 01 frontiersin.org

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/journals/education#editorial-board
https://www.frontiersin.org/journals/education#editorial-board
https://doi.org/10.3389/feduc.2022.958635
http://crossmark.crossref.org/dialog/?doi=10.3389/feduc.2022.958635&domain=pdf&date_stamp=2023-03-15
https://doi.org/10.3389/feduc.2022.958635
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feduc.2022.958635/full
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-958635 March 15, 2023 Time: 10:41 # 2

Nagy and Csernoch 10.3389/feduc.2022.958635

“end user: the person ultimately intended to use a product,
as opposed to people involved in developing or marketing it”
(Downing et al., 2017).

Rigdon uses the term without defining it and without paying
attention to its consistent spelling (both the “end user” and the “end-
user” forms are used in the dictionary, arbitrarily) (Rigdon, 2016).
The same is true for the original Microsoft Language Portal (2021).

Recent studies clearly prove that erroneous digital texts do not
primarily originate from the shortcomings of software solutions –
e.g., machine translation, spell checker, character recognition, and
lemmatization – but arrive from the general population, the end-
users (Ben-Ari and Yeshno, 2006; Csernoch, 2010; Ben-Ari, 2015;
EuSpRIG Horror Stories, 2022), and is due to their lack of
computational thinking skills, which should be as fundamental
nowadays as the 3Rs (Reading, wRiting, aRithmetic) (Wing, 2006).
End-users do not fulfill their dictionary-assigned role because they
are not able to efficiently and effectively use the computer programs
designed to serve them – if they can use them at all. The problem is
not that they cannot use these applications; the problem is when they
firmly believe that they can use these applications properly.

Millions of maltreated, erroneous digital texts are born day after
day (Csernoch, 2009), often created by confident end-users. The
most ignorant and aggressive end-users proudly publish these on
the internet, in the belief that the documents are correct. Teachers
with the same attitude and dubious digital education can do more
harm than good in schools [e.g., (Wood, 2007; Correy, 2011;
Gareth, 2017; National Center for Computing Education, 2019; EA
SEND Implementation Team, 2021; GCFGlobal, 2022; Goodwin,
2022; McKinney, 2022; tabaks, 2022; The Skills Factory, 2022)] by
presenting these documents as examples of high-quality work, and
at times discourage students who try to do things the right way. In
these cases the Dunning-Kruger Effect (DKE) (Kruger and Dunning,
1999) and the sunk cost fallacy (SCF) (Kahneman, 2011) show their
impact.

Considering both human and computer resources, the poor
quality digital texts made by overconfident DKE-end-users and SCF
victims cause serious financial losses. The question repeatedly arises,
how can we convince people that their text-treatment practice, habits,
concepts, and approaches do more harm than good? Even fully
developed pieces of software lose their power by misuse (Panko,
1998, 2013; Csernoch and Dani, 2022; EuSpRIG Horror Stories,
2022; Sebestyén et al., 2022). On the one hand, scientific papers
presented on this subject reach neither the target population (Ben-
Ari and Yeshno, 2006; Wing, 2006; Csernoch, 2009, 2010; Ben-Ari,
2015; EuSpRIG Horror Stories, 2022) nor the appropriate segment
of education (Malmi et al., 2019, 2022). On the other, most of the
researchers who are aware of this problem and publish studies on its
severity, face difficulties, as their results do not change the behavior
of those who produce these documents (Malmi et al., 2019, 2022).

1.1. Detecting end-user activities

We have decided to investigate this problem with a different
approach: studying the input activities of the end-users in digital
texts of various error-levels. Our hypothesis is that both creating and
updating a properly structured text (Csernoch, 2009, 2017) require
significantly fewer atomic end-user actions – defined as first level

tasks in Hankiewicz and Butlewski (2014) – than editing an erroneous
form of the same content with identical or very similar printed
appearance. Consequently, when end-user activities do not need to
include anything other than entering the intended content, both
human and computer resources can be used more economically. In
the case of properly edited texts, less frustration, time, and computer
use are required to construct and modify documents, which would be
the ultimate goal of end-user education and activities.

In this particular field, objective measurement requires that
researchers know exactly how their subjects solve the given problems,
what actions they apply to the content, and in precisely what order.
This demands that one tracks every input action of the user, hence we
need to log all the keypresses and mouse clicks our subjects initiate.

1.2. Search for the appropriate tool

In advance to our research study, we examined a handful of
existing software solutions, and found that none of them were
suitable for our complex purposes. Regardless of where we looked,
considered tools always fell into either of the following categories.

• Macro-recorder: records keyboard and mouse actions, and
allowing such series of actions to be replayed on demand. A few
may even provide a browsable list of the recorded events but they
do not allow analysis or processing of the logged events, because
the format of the recordings is proprietary.

• Event-handler: allows to define keypress, key-combination, or
mouse-click events to be monitored, and executes custom
instructions (in our case, just logging them would have been
sufficient) when they occur. However, it only handles input
events that we specifically pre-programmed. Unfortunately, this
is exactly what cannot be predicted. We do not know all
the actions our end-users will perform, and expecting to pre-
program every possible input combination is not realistic.

• Password-grabber: most are for stealing passwords, and some
are generally designed to collect text entered into any input
field. Hence, they focus on the resulting string-literal and do not
capture how the symbols got generated. Take the semicolon as
an example. On a UK or US keyboard, this is a single key press:
the button on the right side of the L key. On a Dutch or Icelandic
keyboard you press Shift + Comma on the key to the right of M,
while on a Hungarian keyboard you press AltGr + Comma on
that same key.

We could not find any available software that could clearly
present all the atomic input-device activities an end-user carries
out while they are modifying a digital text with previously set up
requirements. Consequently, we were left with no other choice than
to create our own tool.

1.3. Software requirements

Our aim was a specialized user input tracking software with the
following criteria:

• Logs in sequential order what keyboard keys the user presses.

Frontiers in Education 02 frontiersin.org

https://doi.org/10.3389/feduc.2022.958635
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-958635 March 15, 2023 Time: 10:41 # 3

Nagy and Csernoch 10.3389/feduc.2022.958635

• Logs when modifier keys – left and right Alt, Ctrl, Shift, Win –
are pressed and released.

• Logs when state-changing keys (switches) – Num Lock, Caps
Lock, Scroll Lock – are turned on or off.

• Monitors mouse actions, and logs what is clicked and when.
• Logs in what application and for which document the

input is performed.
• Does not require access to the source code of any application.
• Needs no patching, the officially distributed binaries of the Office

Suite can be used.
• Works equally well with Microsoft Office, LibreOffice, and

internet browser embedded office applications like Google Docs,
Google Sheets or Word OnLine, Excel OnLine.

• The log is a human readable text file.
• The log allows post-processing or analysis in an automated way.

1.4. Adjusting expectations

The greatest advantage of developing your own software tool is
that you can make a custom application that can do everything you
want, the way you want. Yes, well ... not so much. While we managed
to achieve most of what we desired, some expectations turned out to
be quite unrealistic and needed to be adjusted.

The best example of this was capturing mouse actions. We
thought it would be practical to include in our logfile what buttons or
menu options are clicked on and what text portions are highlighted,
etc. However, the mouse is a very dumb device, and you cannot
interrogate it for information that it does not itself possess. When
you click on a window title or a scroll bar or any other UI item
(User Interface), the mouse is not aware of what is being pointed
at. What it “knows” is a pair of screen coordinates, which button
(left/right/middle) was used, whether that button was pressed down
or released up, and precisely when this occurred. That is all. So, it
doesn’t even known what application that UI item belongs to. The
operating system knows that. Whether that UI item was a push
button, a checkbox, a drop-down list, a menu option, or a piece
of text, is only known for the application which has drawn that
particular UI item. There are ways to get some of those details from
the operating system/application. For example, developer tools like
Window Spy are able to tell the object-ID and text-label of the buttons
the mouse hovers over, but it does not work all the time. In our
experience with Microsoft Office applications, this just does not work
at all. Our custom-made software tool is not (yet) able to tell what
our users click on.

Since mouse activities are essentially important details for our
research, we came up with the alternative of capturing the portion
of the screen around the mouse pointer as a still image, upon every
mouse click event. We intended to have these pictures analyzed in an
automated way, with a backup plan to manually review these pictures
at analysis time should the first option not be possible. Either way,
identifying what exactly the user was clicking on would allow us to
learn what they were doing at that particular step of completing a
given task; however, this was not the case.

Most of the time, even in the possession of the screenshots — to
keep the required storage space and capture time to a minimum, we
took only a portion of the screen, 100 pixels around the pointer —
we were still unable to tell what that click was for, and could not

identify what the user did or why. So, we generally ended up with
more questions than what we started our analysis with. Which was
very, very frustrating.

As an alternative to the alternative, we finally worked around
this problem by capturing a full-screen video recording of how
our subjects work and what exactly they do. For the moment, we
borrow that capability from a ready-made FFmpeg binary, which
is automatically started when logging begins. This solution saved
us development time — more precisely, it allowed us to delay it
for later — and enabled us to continue testing users. Whenever
we encountered confusing actions in a logfile, we watched the
corresponding screen recording to see exactly what was happening.
Most of the time we arrived at the same conclusion: that there
was simply no logical explanation for the users’ actions. Users are
extremely unpredictable, their actions often defy sense and logic, they
are very innovative and/or do unreasonable things.

1.5. Error recognition model

In this context, errors – due to their extremely high number
in digital texts – must be categorized. Considering the terminology
of both natural and artificial languages in connection with
computers, errors were sorted into six major categories, three for
both requirements of the properly formatted texts, forming the
quantitative and the qualitative hypernym categories. Quantitative
errors are those that are recognizable in any printed or displayed
form. As such, they can potentially come into contact with the
target audience of the document, the person or legal entity who is
supposed to ultimately read it. The primary printing surface is paper,
and the secondary is electronic display (monitor, tablet, television,
etc.); however, in this sense other printable surfaces are taken into
account (advertisement board, t-shirt, mug, etc.). On the other hand,
qualitative errors are invisible in printed or displayed form. These can
only be seen in the editable form of a document, which also means
that there must be suitable software to open and edit that document
type. As such, qualitative errors do not affect the target audience
and can be recognized or managed only by authors, updaters, and
editors/correctors. The hypernym categories are listed in Table 1,
accompanied by a short description of the hyponyms, considering the
rules that should be followed to avoid these errors.

We must also note that there are errors that belong to more than
one category. In such cases, the category is identified as primary
where the applied rule is more definitive than the second or the
third. For example, the incorrect or overuse of font styles – such as
underline, bold, italic, etc. – belongs to the category of typographic
errors, since typography set up the rules for the proper appearance of
the printed documents (e.g., in Figure 1 the whole text is formatted
in italic and the section titles are underlined). However, in word
processing, these errors are carried out by formatting, meaning that
their secondary category is formatting. Quite often, the combination
of typographic and formatting errors is accompanied by style errors
(Figure 1, Line 12). In these cases, the error can also be classified as
style error, which indicates its third category.

The different development levels of digital texts can be measured
based on the definition of properly formatted text, which has two
criteria (Csernoch, 2009):

• The text fulfills the requirements of printed documents
(quantitative requirements).

Frontiers in Education 03 frontiersin.org

https://doi.org/10.3389/feduc.2022.958635
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-958635 March 15, 2023 Time: 10:41 # 4

Nagy and Csernoch 10.3389/feduc.2022.958635

TABLE 1 The quantitative and qualitative errors and their hyponyms.

Quantitative error categories

Syntactic The grammar of the language

Semantic The content of the text

Typographic The appearance of the printed document

Qualitative error categories

Layout The breaking of the text into meaningful pieces

Formatting The formatting commands of the software applied to the pieces
of the text

Style The style handling

• The content is invariant to modification (qualitative
requirements): the document is editable, but the only allowed
changes are those matching the original intention of the user.

1.6. The sample

For testing purposes, a short Microsoft Word document created
by a 13-year-old Hungarian student was selected. The original version
she created and submitted holds various errors concerning all the
categories. However, the most serious are the layout errors (Csernoch,
2009, 2010, 2017) implemented by multiple Space characters, (lines
4–7, 12–13, 18–20, 25,30, 33, 34), multiple Enter characters (lines 1,

3, 8–9, 11, 14–15, 17, 21–29, 31–32, 34), end-of-line Enter characters
(lines 4, 5, 6, 12, 18, 19), and manual hyphenation (line 19). Although
we provide the entire original document in our tests (Figure 1),
only the first five-line-long section (Figure 1, lines 4–7) – appearing
as the second paragraph – is to be manipulated in order to avoid
cumulative errors.

1.7. The layout errors of the selected
section

The section selected for testing carries the following layout errors.
Multiple Space characters are placed on the left side of the text
to imitate a left indent (Figure 1, lines 4, 5, 6, 7; Figure 2, #1.).
Every line ends with the end-of-paragraph character (Figure 1, lines
4, 5, 6; Figure 2, #2.), instead of allowing text to automatically
flow and wrap, having only one end-of-paragraph mark at the real
end of the paragraph. Furthermore, the starting and ending Space
characters inside the parentheses are syntactic errors by definition
according to the rules of the language, but generate a layout error
(Figure 1, lines 5, 6; Figure 2, #3.). There is a capital letter at
the beginning of the second line of the “paragraph,” which is a
syntactic error (Figure 1, line 5; Figure 2, #4.), most likely originating
from the combination of the end-of-paragraph mark at the end
of line#4 (Figure 1) and the AutoCorrect setting of Microsoft
Word (capitalize the first letter of sentences). The text is not quite
coherent, as it was composed by a 13-year-old student, and contains

FIGURE 1

The original Hungarian document (left) and an English translation (right), with the non-printing characters shown. Line numbers are not visible in the
original document, they are presented here to better describe the structure of the document and refer to its parts.

Frontiers in Education 04 frontiersin.org

https://doi.org/10.3389/feduc.2022.958635
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-958635 March 15, 2023 Time: 10:41 # 5

Nagy and Csernoch 10.3389/feduc.2022.958635

FIGURE 2

The layout errors of the selected section.

semantic errors but these issues are irrelevant from our current point
of view.

1.8. The translated section

To aid easier understanding, we have included English
translations in this publication. However, the original document
was in Hungarian, and so far only that Hungarian-language version
was tested. We must mention though, that layout errors #1 and #2
(Figure 2) are language independent and consequently, neither the
language nor the content affects the efficacy of text handling and
modification.

2. Materials and methods

2.1. Testing package

For our tests, a folder of seven files was prepared in a ZIP archive.
The folder contains the following files (Figure 3):

• Four editable sample text documents – gyogyszerek1.docx,
gyogyszerek2.docx, gyogyszerek3.docx, gyogyszerek4.docx
(meaning medicine1.docx, medicine2.docx, etc.). Documents #1
and #2 are the original erroneous text, while in #3 and #4 all
the layout errors have been corrected and properly formatted
with the contents and the overall appearance of the page
preserved (this is how the document should have been done in
the first place).

• WinANLITA.exe – the custom-developed app that logs and
starts the recording.

• A read-only document, gyogyszerek_feladat.pdf (means
medicines_tasks.pdf ), which briefly describes the document
editing tasks our user was expected to complete on the
four DOCX files.

• A copy of ffmpeg.exe – started by WinANLITA to make the
screen recording. To avoid user confusion, we preferred to set
this file to hidden (leaving only one visible EXE in the folder for
the test subject to start).

The test consists of four tasks. Tasks #1 and #2 are to be performed
in files #1 and #2 (erroneous), while tasks #3 and #4 are to be

performed in files #3 and #4 (correct). Tasks #1 and #3 are identical,
and Tasks #2 and #4 are also identical. Essentially asking the user
to perform the same tasks once in both the erroneous and the
correct documents, respectively. In Tasks #1 and #3, a two-word-
long expression was inserted into the text, as shown in the PDF file
(Figures 4, 5), causing the last two lines to re-wrap. In Tasks #2 and
#4, the font size of the whole section (paragraph) must be increased
to 16 pts, causing all the lines to re-wrap.

Similar sample figures are included in the PDF document to
explain the font-size-changing task.

2.2. Sample texts

The chosen section of files #1 and #2 are shown in Figure 6
while files #3 and #4 are in Figure 7 with the ruler and non-printing
characters visible.

2.3. The procedure of modification

All four tasks are broken down into the following four steps.

1. Open the indicated DOCX file.
2. Perform the required changes – add the two-word-long

expression or increase the font size based on the description and
the figure shown.

3. If it is necessary, adjust the text appearance to make it look like
the provided sample as much as possible.

4. Save and close the file.

2.4. The procedure of testing

In preparation, the user needed to download or copy the ZIP file
from a provided location, unpack it, and add his/her name to the
folder name. Following that, she/he opened the PDF file and read
the tasks to become familiar with them. We also advised (but did not
enforce) that they close any applications not connected to this test,
since they might distract or confuse participants. If the user had any
questions, they were invited to raise them and we answered at this
point. After that, they were required to complete the task alone.

Frontiers in Education 05 frontiersin.org

https://doi.org/10.3389/feduc.2022.958635
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-958635 March 15, 2023 Time: 10:41 # 6

Nagy and Csernoch 10.3389/feduc.2022.958635

FIGURE 3

Visible files of the ANLITA software package folder for testing.

FIGURE 4

Position of the new two-word-long expression inserted into the erroneous text.

FIGURE 5

Position of the new two-word-long expression inserted into the correct text.

FIGURE 6

The ruler and the non-printing characters reveal that there is no left indent set up, and the section consists of four paragraphs.

FIGURE 7

The ruler shows that there is a left indent configured, a single paragraph, and no extra space characters.

With the preparations complete, the user starts ANLITA, and
from this point on, keyboard and mouse activities are logged until
ANLITA is stopped. For the sake of fairness, ANLITA displays an

initial message, informing the user that their keyboard and mouse
actions will be recorded, and the user can either opt out by closing
the application or click the start button to continue. To avoid misuse

Frontiers in Education 06 frontiersin.org

https://doi.org/10.3389/feduc.2022.958635
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-958635 March 15, 2023 Time: 10:41 # 7

Nagy and Csernoch 10.3389/feduc.2022.958635

FIGURE 8

Contents of the finished test folder to be archived.

FIGURE 9

User input events in an ANLITA log, inserting words into the erroneous document with the adaptive approach.

and bad intentions, ANLITA pauses input logging when the user
switches to an application other than Microsoft Excel, Microsoft
Word, LibreOffice Writer, or LibreOffice Calc, and continues to log
input when the user switches back to any of these. This meant
that ANLITA could not log passwords, bank card details, or any
other sensitive data.

For the final steps, the user was required to archive the folder
(now containing two additional files: the logged input and the
recorded video) (Figure 8), and then upload or copy the resulting
ZIP file to a designated location. Home users were allowed to send it
in an e-mail.

3. Results

3.1. Logging application

The software tool we developed for the specific purpose of logging
end-user input activities in text-based documents is entitled Atomic
Natural Language Input Tracking Application (ANLITA). To date, it
has complete monitoring capability of the keyboard, regardless of the
complexity of key combinations pressed, held, or released, and the
basic monitoring capability of the mouse. The output of the logging

Frontiers in Education 07 frontiersin.org

https://doi.org/10.3389/feduc.2022.958635
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-958635 March 15, 2023 Time: 10:41 # 8

Nagy and Csernoch 10.3389/feduc.2022.958635

FIGURE 10

Video playback of what ANLITA (or rather FFmpeg) recorded when Figure 9 was logged.

FIGURE 11

User input events in an ANLITA log, inserting words into the erroneous document with the corrective approach.

process is in plain-text format. Screen recording is undertaken by
an external FFmpeg binary, automatically started by ANLITA. The
detailed text-log recorded by the software has already proven its
usefulness in many tests. It also enabled us to record the difficulties
faced by end-users in this study. These problems are primarily rooted
in the lack of their computational thinking skills (Wing, 2006), and
ANLITA had to be adjusted/updated several times to handle these
issues properly.

3.2. The output of ANLITA

With the tasks complete, the user stops ANLITA. A log file
(Figure 9) and a video file (Figure 10) are the output of the

testing. For reference purposes, the test was completed by one of our
experienced researchers, working on the incorrect document in two
different ways. The first approach adapted the incorrect pattern of
the original layout errors (Figures 9, 10), and after the modification
requested by the provided task, multiple Space and end-of-line Enter
characters were inserted, deleted, or repositioned to imitate the
desired appearance of the text with the hand-fabricated left indent
(bricolage). The result is a document section as ill-structured as the
original was (meant to be a single paragraph). This is the adaptive
approach.

The second approach completes the same task with the
intention of improvement. It begins by eliminating the layout errors
(Figures 2, 11, 12). Hence the automatic re-flow of text content will
no longer generate additional problems when further text editing is

Frontiers in Education 08 frontiersin.org

https://doi.org/10.3389/feduc.2022.958635
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-958635 March 15, 2023 Time: 10:41 # 9

Nagy and Csernoch 10.3389/feduc.2022.958635

FIGURE 12

Video playback of what ANLITA (FFmpeg) recorded when Figure 11 was logged.

performed, resulting in a correct document section (a true, single
paragraph). This is the corrective approach.

3.3. The evaluation of the results

According to the aims and the hypothesis of our research, pre-
testing was carried out by an expert in text management. Her role
was to complete the tasks in the least possible steps and in the
shortest time. However, neither the number of steps nor the time
were optimized, allowing space for minor detours, not altering the
magnitude of the modification.

In gyogyszerek1.docx, dealing with the imitation of word
processing, it took 41 s to add the extra two words and then
manually adjust the hand-fabricated indentation (from 09:37:44
to 09:38:25) (Figure 9) using the adaptive approach. Eliminating
the layout issues and then adding the extra two words, using the
corrective approach took 38 s (from 09:43:05 to 09:43:43) (Figure 11).
In gyogyszerek2.docx, increasing the font size using the adaptive
approach took 61 s (from 09:38:28 to 09:39:29) (Figure 9), while
doing the same with the corrective approach took 37 s (from 09:43:49
to 09:44:26) (Figure 11). Working with a properly structured and
formatted document in gyogyszerek3.docx, inserting the two words
took 9 s (from 09:39:34 to 09:39:43) (Figure 9), and increasing the
font size in gyogyszerek4.docx took 11 s (from 09:39:47 to 09:39:58)
(Figure 9).

Based on our reference solutions, carrying out these first level
modifications (Hankiewicz and Butlewski, 2014) – typing two words
and changing the font size in a short paragraph – takes about
five times longer in the erroneous documents than in the properly
formatted versions (section “1.5. Error recognition model”).

4. Discussion

With our logging tool, we found objective proof that qualitative
errors are the most demanding, and texts carrying these errors require
the largest number of collateral adjustments during a modification
process, thereby wasting considerable amounts of human and
computer resources.

Overconfident DKE end-users often claim that displaying non-
printing characters in a word processor is only a distraction, hence
these symbols must stay hidden. However, our testing with ANLITA
revealed that those who intentionally keep these structural marks
always turned off, perform a higher number of unnecessary editing
steps than those who – periodically at least – have these symbols
displayed. This finding leads to the conclusion that by neglecting non-
printing characters, the editing of digital texts is carried out blindly,
leaving more space for errors. Unfortunately, this phenomenon
cannot be considered as the shortcoming of end-users only, but also
as a shortcoming of most applications and software development. For
example, some online word processors do not offer the Show/Hide
formatting symbols command, consequently, the requirements of the
properly edited text are extremely difficult to fulfill, even for those
who are aware of them. Without visible structural marks, extra Space
and Enter characters can easily lead to the loss of time and/or data in
a presentation, spreadsheet, and text editor applications.

A further finding of our tests is that the majority of end-users
generally do not know how to download a file to a designated
folder, name a folder consciously (avoiding national characters,
space, troublesome symbols), unzip an archive (difference between
opening and extracting a ZIP file), compress a file or a folder, switch
or navigate between applications efficiently, upload or otherwise
share a large file.

Frontiers in Education 09 frontiersin.org

https://doi.org/10.3389/feduc.2022.958635
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-958635 March 15, 2023 Time: 10:41 # 10

Nagy and Csernoch 10.3389/feduc.2022.958635

The pre-testing period of ANLITA made it clear that these tests
should be instructor-led and strictly supervised by professionals who
can verify all the end-users and their activities until the recording
starts, and then do the same at the end, by stopping ANLITA
and uploading the results. Providing only minimal guidance leads
to data losses and wasted time, due to the lack of computational
thinking skills (Wing, 2006) and/or the misconceptions carried by
overconfident DKE (Kruger and Dunning, 1999) end-users and/or
the victims of SCF (Kahneman, 2011).

5. Conclusion

End-user activities connected to erroneous office documents,
primarily those that involve word processed texts, spreadsheets,
and presentations, have been studied for decades without a real
breakthrough. These matters and problems are invisible to IT
professionals, corporate managers, and researchers in both the
fields of information systems and computer education. Its effects in
spreadsheets are more recognizable, compared to word processed
texts and presentations, because problems in a spreadsheet can
directly cause mentionable financial losses. In contrast, since they
only have an indirect and hard-to-recognize financial impact, errors
in text-based documents are ignored. To improve the quality of
digital texts and the efficiency of digital text handling, proof must
reach the wider community of end-users and education.

To carry out objective measurements in testing the quality of
digital text-based documents, our research group developed a user
input logging application entitled ANLITA and collected several
hundred erroneous documents to be used as samples for future
research. ANLITA logs all the keyboard and mouse events and uses
an external tool to capture a screen recording of the test as it is being
performed. The output of ANLITA is a human and machine-readable
plain text file and a Supplementary Video.

Building upon ANLITA, a reference test was performed by a
professional in our research group using two different solution
approaches. Her reference solutions keep both the keyboard and the
mouse activities to the necessary minimum. We found proof that
carrying out simple first level modifications in a one-paragraph long
text burdened with layout errors takes around five times longer than
in a properly formatted text. In an economic sense, this result can be
converted into companies needing to hire five times more employees,
purchase and operate five times more computers, renting five times
more office space, etc., to undertake jobs that could have been equally
well completed with 20% of those resources, at one-fifth of the costs.

Estimating the magnitude of loss in a longer document with more
planned modification requires further testing and research. However,

without the correction of the document, a linear regression is likely,
predicting rapidly upscaling losses.

Data availability statement

The original contributions presented in this study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Ethics statement

Ethical review and approval was not required for the study
on human participants in accordance with the local legislation
and institutional requirements. Written informed consent from the
participants or participants’ legal guardian/next of kin was not
required to participate in this study in accordance with the national
legislation and the institutional requirements. The piece of work used
was originally produced by a Grade 7 student previously taught by
one of the manuscript authors.

Author contributions

Both authors listed have made a substantial, direct, and
intellectual contribution to the work, and approved it for publication.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Ben-Ari, M. (2015). Bricolage forever! PPIG 1999. 11th annual workshop. 5–7 January
1999. Computer-based learning unit. Leeds: University of Leeds.

Ben-Ari, M., and Yeshno, T. (2006). Conceptual models of software
artifacts. Interact. Comput. 18, 1336–1350. doi: 10.1016/j.intcom.2006.
03.005

Correy, H. (2011). Exercise: Word processing for data entry. Available online at: https:
//studyres.com/doc/5756468/exercise--word-processing-for-data-entry (accessed June
17, 2022).

Csernoch, M. (2009). Teaching word processing – the theory behind. Teach. Math.
Comp. Sci. 7, 119–137.

Csernoch, M. (2010). Teaching word processing – the practice. Teach. Math. Comp.
Sci. 8, 247–262.

Csernoch, M. (2017). Thinking fast and slow in computer problem solving. J. Softw.
Eng. Appl. 10, 11–40.

Csernoch, M., and Dani, E. (2022). Do you speak, write and think in informatics? Acta
Polytech. Hung. 19, 113–131. doi: 10.12700/APH.19.1.2022.19.8

Frontiers in Education 10 frontiersin.org

https://doi.org/10.3389/feduc.2022.958635
https://doi.org/10.1016/j.intcom.2006.03.005
https://doi.org/10.1016/j.intcom.2006.03.005
https://studyres.com/doc/5756468/exercise--word-processing-for-data-entry
https://studyres.com/doc/5756468/exercise--word-processing-for-data-entry
https://doi.org/10.12700/APH.19.1.2022.19.8
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/


feduc-07-958635 March 15, 2023 Time: 10:41 # 11

Nagy and Csernoch 10.3389/feduc.2022.958635

Downing, D., Covington, M., and Covington, M. (2017). Dictionary of computer and
internet terms. Hauppauge, NY: Barrons Educational Series.

EA SEND Implementation Team (2021). Word processing policy for examinations.
Available online at: https://www.ela.kent.sch.uk/files/ELA_Word_processing_policy_
2021_22.docx (accessed June 17, 2022).

EuSpRIG Horror Stories (2022). Available online at: https://eusprig.org/research-info/
horror-stories/ (accessed May 21, 2022).

Gareth (2017). Qualification component and record of learner achievement. Word
processing software skills E3 (L/616/1318). Available online at: https://www.aim-group.
org.uk/clientfiles/files/units/learner_achievements/Word%20Processing%20Software%
20Skills%20E3%20CV2%20AIM%20Awards%20Component%20V1-1.docx (accessed
June 17, 2022).

GCFGlobal (2022). Word basics. Available online at: https://edu.gcfglobal.org/en/
word/ (accessed June 17, 2022).

Goodwin, E. (2022). Business technology applications. Word processing basics. Available
online at: https://slideplayer.com/slide/6126983/ (accessed June 17, 2022).

Hankiewicz, K., and Butlewski, M. (2014). “Efficiency in performing basic tasks using
word processing programs by the elderly as a measure of the ergonomic quality of
software,” in Human-computer interaction, Part I, HCII 2014, LNCS 8510, ed. M. Kurosu
(Cham: Springer International Publishing Switzerland), 481–488.

Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar, Straus; Giroux.

Kruger, J., and Dunning, D. (1999). Unskilled and unaware of it: how difficulties in
recognizing one’s own incompetence lead to inflated self-assessments. J. Pers. Soc. Psychol.
77, 1121–1134. doi: 10.1037//0022-3514.77.6.1121

Malmi, L., Sheard, J., Kinnunen, P., Simon, and Sinclair, J. (2019). “Computing
education theories: what are they and how are they used?,” in ICER ‘19: Proceedings of
the 2019 ACM conference on international computing education research, Toronto ON,
187–197.

Malmi, L., Sheard, J., Kinnunen, P., Simon, and Sinclair, J. (2022). Development
and use of domain-specific learning theories, models and instruments in computing
education. ACM Trans. Comput. Educ. 23:48. doi: 10.1145/3530221

McKinney, J. A. (2022). Formatting and editing vocabulary. Available online at:
https://igcseicthelp.weebly.com/uploads/1/8/4/5/18452919/ict_igcse_paper_2_revision_
wordprocessing.docx (accessed June 17, 2022).

Microsoft Language Portal (2021). Available online at: https://www.microsoft.com/en-
us/language (accessed April 25, 2021).

National Center for Computing Education (2019). Plenary: quiz. Available online
at: https://hollis.horizonstrust.org.uk/file/hollis/ap-solutions-plenary-quiz-questions-
answers-29306.docx (accessed June 17, 2022).

Panko, R. R. (1998). What we know about spreadsheet errors. J. Organ. End User
Comput. 10, 15–21. doi: 10.4018/joeuc.1998040102

Panko, R. R. (2013). “The cognitive science of spreadsheet errors: why thinking is bad,”
in Proceedings of the 46th Hawaii international conference on system sciences, January
7-10, 2013, Maui.

Rigdon, J. C. (2016). Dictionary of computer and internet terms “entries from the
microsoft language portal. © 2016 Microsoft corporation. All rights reserved, Vol. 1.
Cartersville, GA: Eastern Digital Resources.

Sebestyén, K., Csapó, G., Csernoch, M., and Aradi, B. (2022). Error recognition model:
high-mathability end-user text management. 19, 151–170. doi: 10.12700/APH.19.1.2022.
19.10

tabaks (2022). ICT IGCSE practical paper 2 revision for word processing. Available
online at: https://igcseicthelp.weebly.com/uploads/1/8/4/5/18452919/ict_igcse_paper_2_
revision_wordprocessing.docx (accessed June 17, 2022).

TechTerms (2021). End user. Available online at: https://techterms.com/definition/
enduser (accessed April 25, 2021).

The Skills Factory (2022). Microsoft word - tutorial for beginners in 13 MINUTES!.
Available online at: https://www.youtube.com/watch?v=GBHUBEOTdcA (accessed June
17, 2022).

Wing, J. (2006). Computational thinking. Commun. ACM 49, 33–35. doi: 10.1145/
1118178.1118215

Wood, M. (2007). Word processing. Available online at: https://www.uen.org/
lessonplan/download/28213?lessonId=454&segmentTypeId=3 (accessed June 17, 2022).

Frontiers in Education 11 frontiersin.org

https://doi.org/10.3389/feduc.2022.958635
https://www.ela.kent.sch.uk/files/ELA_Word_processing_policy_2021_22.docx
https://www.ela.kent.sch.uk/files/ELA_Word_processing_policy_2021_22.docx
https://eusprig.org/research-info/horror-stories/
https://eusprig.org/research-info/horror-stories/
https://www.aim-group.org.uk/clientfiles/files/units/learner_achievements/Word%20Processing%20Software%20Skills%20E3%20CV2%20AIM%20Awards%20Component%20V1-1.docx
https://www.aim-group.org.uk/clientfiles/files/units/learner_achievements/Word%20Processing%20Software%20Skills%20E3%20CV2%20AIM%20Awards%20Component%20V1-1.docx
https://www.aim-group.org.uk/clientfiles/files/units/learner_achievements/Word%20Processing%20Software%20Skills%20E3%20CV2%20AIM%20Awards%20Component%20V1-1.docx
https://edu.gcfglobal.org/en/word/
https://edu.gcfglobal.org/en/word/
https://slideplayer.com/slide/6126983/
https://doi.org/10.1037//0022-3514.77.6.1121
https://doi.org/10.1145/3530221
https://igcseicthelp.weebly.com/uploads/1/8/4/5/18452919/ict_igcse_paper_2_revision_wordprocessing.docx
https://igcseicthelp.weebly.com/uploads/1/8/4/5/18452919/ict_igcse_paper_2_revision_wordprocessing.docx
https://www.microsoft.com/en-us/language
https://www.microsoft.com/en-us/language
https://hollis.horizonstrust.org.uk/file/hollis/ap-solutions-plenary-quiz-questions-answers-29306.docx
https://hollis.horizonstrust.org.uk/file/hollis/ap-solutions-plenary-quiz-questions-answers-29306.docx
https://doi.org/10.4018/joeuc.1998040102
https://doi.org/10.12700/APH.19.1.2022.19.10
https://doi.org/10.12700/APH.19.1.2022.19.10
https://igcseicthelp.weebly.com/uploads/1/8/4/5/18452919/ict_igcse_paper_2_revision_wordprocessing.docx
https://igcseicthelp.weebly.com/uploads/1/8/4/5/18452919/ict_igcse_paper_2_revision_wordprocessing.docx
https://techterms.com/definition/enduser
https://techterms.com/definition/enduser
https://www.youtube.com/watch?v=GBHUBEOTdcA
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215
https://www.uen.org/lessonplan/download/28213?lessonId=454&segmentTypeId=3
https://www.uen.org/lessonplan/download/28213?lessonId=454&segmentTypeId=3
https://www.frontiersin.org/journals/education
https://www.frontiersin.org/

	Pre-testing erroneous text-based documents: Logging end-user activities
	1. Introduction
	1.1. Detecting end-user activities
	1.2. Search for the appropriate tool
	1.3. Software requirements
	1.4. Adjusting expectations
	1.5. Error recognition model
	1.6. The sample
	1.7. The layout errors of the selected section
	1.8. The translated section

	2. Materials and methods
	2.1. Testing package
	2.2. Sample texts
	2.3. The procedure of modification
	2.4. The procedure of testing

	3. Results
	3.1. Logging application
	3.2. The output of ANLITA
	3.3. The evaluation of the results

	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	References


