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Learning with desktop virtual reality learning environments (DVR) can be highly
visual and present many visual stimuli simultaneously. This can be distracting and
require instructional support to help learners in their learning processes. The signaling
principle could be a promising approach to support these processes, as signals can
guide learners’ attention to the relevant information (Mayer, 2005). The present study
investigated the effects of signals in a 360◦ DVR on learning outcomes and cognitive
load. In our between-subjects design, we examined a total of N = 96 participants
who were randomly assigned to the signaling or non-signaling group. We hypothesized
that the signaling group would achieve higher recall, comprehension, and transfer
performance than the non-signaling group. We also expected that the signaling group
would experience less extraneous cognitive load and higher germane cognitive load
than the non-signaling group. The results show that learners who received signals in a
DVR achieved significantly higher recall and comprehension scores than learners who
did not receive signals. Transfer performance did not differ between groups. Participants
in the signals group also experienced significantly lower extraneous cognitive load than
participants in the non-signaling group. However, no differences in germane cognitive
load were found between groups. These results suggest that learners in a DVR can be
supported by signals in their learning processes while simultaneously helping to reduce
unnecessary cognitive load.

Keywords: virtual reality, signaling, desktop virtual reality, cognitive load, instructional design, learning outcome,
media in education

INTRODUCTION AND THEORETICAL BACKGROUND

In recent years, virtual reality learning environments (VRLE) have become increasingly popular.
They are also increasingly used as a learning medium in educational institutions to enhance
learning (Radianti et al., 2020; Wu et al., 2020). VRLE makes it possible for learners to be immersed
in a wide variety of scenarios while feeling as if they are actually present in that environment.
With VRLE, learning scenarios can be created that would be difficult or impossible to implement
in the real world. But what exactly is virtual reality (VR)? VR is defined as a realistic computer-
generated environment that can engage multiple human senses (Burdea and Coiffet, 2003), leading
to the immersive and sensory illusion of actually being present in the VR environment (Biocca
and Delaney, 1995). One of the most important features that distinguishes classical learning
environments from VR environments is immersion. On one hand, immersion can be defined as
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a psychological state of how much learners feel mentally involved
in the learning environment (Li et al., 2020). While, this definition
is also often used for presence, in this article we will limit
ourselves to this definition of immersion. On the other hand,
immersion can be defined as objectively measurable by the
characteristics of the technology used, such as its degrees of
freedom, which relate to the user’s freedom of movement in a
three-dimensional space (Slater and Wilbur, 1997). Depending
on the VR technology, the extent of immersion may differ
(Radianti et al., 2020). According to both definitions, so-called
head-mounted displays (HMD) usually lead to a high degree of
immersion (Radianti et al., 2020). These are displays worn in
front of the eyes, the display of which adapts according to the
movement of the head and thus enables a view of the virtual
environment of up to 360◦ (Rolland and Hua, 2005). However, in
a learning scenario, the drawbacks of HMD technology include
its high acquisition cost and difficult scalability in real learning
environments (Richards and Taylor, 2015; Radianti et al., 2020).

A widely used alternative to HMDs is a desktop virtual
reality. These are virtual environments that run on inexpensive
computer systems and can be operated with a mouse, keyboard
or touchscreen (Lee and Wong, 2014). They can even be used
in an online classroom setting (Dodd and Antonenko, 2012).
While, desktop virtual reality learning environments (DVR) are
technically classified as low immersive, they still contain certain
immersive aspects to it (Robertson et al., 1997; Radianti et al.,
2020). The learner is in control by determining the temporal
and visual sequence of the learning environment, which allows
the learner to be drawn into the virtual environment (Robertson
et al., 1997). There is also a form of navigation and search
through the operation of the 360◦ field of view, as textual
coherent learning information, depending on the learner’s point
of view, can be discovered in the virtual space. The main
advantage over HMDs is the lower acquisition cost, since only an
Internet-enabled device with a browser is needed to present the
VRLE. This is also associated with greater scalability in difficult
learning settings.

In theory, VRLE seem to bring great opportunities for
learning. However, the empirical evidence on whether VRLE
lead to better learning outcomes is heterogeneous. Some studies
indicate that learning in VR improves learning outcomes
(Dalgarno and Lee, 2010; Tüysüz, 2010). In contrast, other studies
have shown that learners learn less in a VRLE, regardless of
the level of immersion (Parong and Mayer, 2018; Makransky
et al., 2019b). However, there are also studies that find no
differences regarding learning outcomes (Stepan et al., 2017).
Recent meta-analyses show that learners using VRLE can show
higher learning outcomes than learners in control groups,
but further empirical research is needed to investigate the
levels of processing in more detail (Radianti et al., 2020;
Wu et al., 2020). A common classification for these levels of
processing is described in Bloom’s (1956) Taxonomy. The first
three levels are recall, comprehension, and transfer. While,
recall tasks only aim at reproducing memorized information,
comprehension questions test a deeper understanding of the
content, e.g., by asking for explanations or relations. The
transfer level describes how the acquired knowledge can be

transferred to new situations. The majority of the presented
studies only examine recall performance for learning outcomes
in VR, with some study results suggesting an advantage in
retention performance (Pulijala et al., 2018). Other studies find
a lower recall performance in VR compared to a less immersive
presentation of the learning material (Parong and Mayer, 2018;
Makransky et al., 2019b). A few studies also measure transfer
performance and also show heterogeneous results for learning in
VR (Chittaro et al., 2018; Makransky et al., 2019b). In summary,
it is important to consider the learning outcome in a DVR in a
differentiated way, otherwise possible effects can be overlooked
or overestimated.

Challenges of Learning With DVR
Although we examine a 360◦ DVR in this study, the challenges
presented below are also relevant to VRLE. The learning material
was developed to be presented in both DVR and a VRLE.
That is why we also draw conclusions from and for VRLE.
Characteristic of immersive DVR is the particularly large number
of 3D models, which are often displayed with high resolution
and a high level of detail. With realistic textures and sounds, a
DVR can look convincingly real and thus promote immersion
(Jensen and Konradsen, 2018). However, when so much visual
information is presented graphically at the same time, learners
can easily become overwhelmed in filtering out the relevant
learning content (Mayer, 2005; Jensen and Konradsen, 2018).
In the Cognitive Theory of Multimedia Learning (CTML) this
process is called selection (Mayer, 2005). An impaired selection
process can result in either important information being missed
or irrelevant information being selected for further processing.
Since the selection process is the basis for further processes
of learning, all subsequent levels of learning outcomes can
be impaired (Moreno and Mayer, 2000). If information is
incompletely selected, then only incomplete connections can
be made between the information in the working memory.
When irrelevant information is selected, not only is it more
difficult to make correct connections between relevant stimuli,
but unnecessary prior knowledge may be activated, requiring
additional working memory capacity (Moreno and Mayer, 2000).
In addition, the visual complexity in a DVR can also actively
distract the learner from the actual learning subject (Jensen
and Konradsen, 2018). In this complex representation, there
are often stimuli that are not related to the actual learning
content. These so-called seductive details are stimuli that are
not relevant for the understanding of the learning material and
can distract from what is actually important (Sundararajan and
Adesope, 2020). In a DVR, this would mean that anything that
is not coherent with the learning objective can be counted as
seductive details. de Koning et al. (2009) have shown that in
a dynamic and transient learning environment, salient but not
learning-relevant information is more likely to be selected and
processed, and therefore the capacity of working memory may
not be sufficient to cognitively process the learning-relevant
information (de Koning et al., 2009). Due to the many visual
stimuli and thus possible seductive details, learners in a DVR
may experience increased cognitive load by placing additional
demands on working memory capacity simply by presenting the
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information in DVR (Parong and Mayer, 2018; Frederiksen et al.,
2019). This unnecessary load for learning is called extraneous
cognitive load (ECL) in the Cognitive Load Theory (CLT; Sweller,
2005).

Another challenge in the selection of information in a DVR
is that the relevant information is not always placed directly
in front of the learner, but only becomes visible when the
learner actively looks around in the learning environment. This
additional navigation effort must also be invested by the learner
and takes up capacity in limited working memory, which can lead
to higher ECL (Parong and Mayer, 2018; Frederiksen et al., 2019).

When the actual learning content, distractions and navigation
effort must be processed simultaneously in working memory,
there may not be enough capacity left for the germane cognitive
load (Sweller, 2005). The germane cognitive load results from
the effort a learner must invest in the learning task and thus
contributes directly to learning outcomes (Sweller, 2005).

The cognitive process of organization involves making
connections between selected elements of the learning material. If
irrelevant information is selected for learning, further processing
of that information would not be useful for learning and could
result in irrelevant or incorrect connections being made, leading
to impaired comprehension performance. In order to select
relevant information for better comprehension performance,
it might be necessary for the learner to return to an earlier
processing step. Another challenge in the process of organization
can occur when auditory information is presented in addition
to visual information. In a DVR, the learner must then
independently search for the matching visual information to the
auditory information and determine whether the information
belongs together. If the information does not match, the visual
search continues. However, a narrated audio track will continue
regardless of whether the learner has already formed enough
connections, which can affect comprehension performance.
Therefore, it is important to assist the learner by means of
instructional design in how to focus attention on what is relevant,
be less distracted, and reduce navigation effort in a DVR.

Guiding Attention by Using Signals
To help leaners avoid getting distracted by seductive details and
focus their attention on the relevant parts of the learning material,
highlighting these sections could be beneficial for learning in
DVR. A multimedia design principle that derived from the CTML
and particularly addresses this problem is the signaling principle.
The signaling principle refers to the idea that learners can
process the learning material more deeply when learning-relevant
information is highlighted. The learner’s attention is thus directed
to the relevant parts of the learning material (Mayer, 2005;
Van Gog, 2014). In classical multimedia learning environments,
signaling has already proven to be an effective instructional aid
to support selection processes (Van Gog, 2014; Alpizar et al.,
2020). To understand whether signals can also support deeper
learning processes, a differentiated view of learning outcomes is
necessary (Xie et al., 2017). In Xie et al.’s (2017) meta-analysis,
they distinguished between three types of learning outcomes
according to the levels of Bloom mentioned above (Bloom,
1956). They found that signaling not only increased learning

outcome for recall and comprehension but also for transfer
scores. Schneider et al. (2018) found in their meta-analyses that
signaling can improve recall and transfer performance, when
compared to non-signaling groups. Another meta-analysis by
Richter et al. (2016) also found effects for comprehension and
transfer when signaling was used in the multimedia learning
environment. This effect was moderated by prior knowledge,
making it even more pronounced for learners with low prior
knowledge (Richter et al., 2016). Overall, it can be assumed that
signals can be used as an effective instructional aid in a DVR, just
as in classical multimedia environments. This is because signals
directing attention to relevant learning material, making it salient
to the learner, so that it can stand out from irrelevant material
(Lorch, 1989). This so-called guiding attention hypothesis was
supported by Ozcelik et al. (2010) in an eye tracking study
in which learners in a signaling group outperformed the non-
signaling group in transfer and matching tests.

Directing the learner’s attention with signals in a visually
complex DVR can reduce unnecessary search and orientation
processes, which can lead to less seductive details being
selected, ultimately reducing extraneous cognitive load (Dodd
and Antonenko, 2012; Alpizar et al., 2020). The freed-up capacity
in the limited working memory, could then be used for germane
processes (de Koning et al., 2009). In a DVR, the learning
material may have relevant information outside the current field
of view. To navigate to the relevant information, the learner must
decide what might be relevant to the learning (Neumann, 1996).
Especially for learners without prior knowledge, signals could
help to reduce this navigation effort (Richter et al., 2016).

In conclusion, signaling in a DVR could help to focus on
relevant information, help to not be distracted by seductive
details and help to orientate in the learning environment.
Therefore, signaling represents a promising approach to support
the visually and cognitively demanding learning processes in
a DVR, thus enhancing the user’s learning performance and
helping them manage the different types of cognitive load.

Recent Studies
While, different types of signals in DVR have been explored, there
are still research gaps on how these may affect learning (Horst
et al., 2019). Initial research investigating the effects of signals on
learning outcomes and cognitive load in a VR context appears
promising. Albus et al. (2021) revealed that signaling in the form
of textual annotations can improve learning outcomes in a VRLE
compared to a group without signaling on recall performance.
In addition, they also found that the use of signaling in VR can
also increase germane cognitive load (Albus et al., 2021). Another
study that looked at signals in a VRLE showed an interaction
effect on learning outcome with motivation as a moderator. They
found that less motivated learners supported by signals achieved
a similar learning outcome as intrinsically motivated learners
(Vogt et al., 2021a). Chin et al. (2015) found similar results in
VR lab safety training. They showed that the signaling group
achieved better learning outcomes than the group without signals
when prior knowledge was taken into account as a covariate
(Chin et al., 2015).
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Research Question and Hypothesis
In this study, we will examine the effects of signals in a 360◦ DVR
on the topic of the German forest and its animals on learning
outcomes and cognitive load. In order to examine learning
outcome and the underlying levels of processing in a DVR
more precisely, the learning outcome were differentiated into
recall, comprehension and transfer according to Bloom’s (1956)
Taxonomy. We also measured cognitive load differentiated into
extraneous cognitive load and germane cognitive load (Sweller,
2005). In addition, variables relevant to the learning process are
considered in the data analysis, including motivation (Goodman
et al., 2011) and prior knowledge of the subjects (Seufert,
2003) to shed more light on their influence of signaling when
learning with DVR.

We hypothesize, that the use of signals in a DVR can lead
to better recall (H1), comprehension (H2), and transfer (H3)
outcomes, than learning without signals. Concerning cognitive
load, we hypothesize that extraneous cognitive load should be
significantly lower in the signals condition than in the non-
signaling condition (H4). We also hypothesize that germane
cognitive load should be significantly higher in the signal
condition than in the non-signaling condition (H5).

MATERIALS AND METHODS

A priori Power Analysis
For the estimation of the required sample size for this study, an
a priori power analysis was performed. Mayer’s (2017) review
concerning the effect size of signaling on learning outcomes was
considered as reference of the effect size. Applying α = 0.05, a
power level of (1–β) = 0.95 and reference effect size of d = 0.46,
the required sample size for our study was estimated to be
approximately N = 64 [G∗Power 3.1; Faul et al. (2009)]. In total,
we collected more participants than we initially calculated. We
decided to collect additional subjects in order to counteract the
expected drop out of an online study. We could not identify
which subjects had to be excluded due to technical problems or
early termination of the study until the end of the data collection.

Participants and Study Design
A total of 113 participants completed the study, of which 17
were excluded from the study due to technical problems with the
learning environment. The analyses presented therefore refer to
a total sample of N = 96 subjects (72.9% female). The age of the
participants varied from 18 to 64 years (M = 28.29; SD = 12.48).
The study was conducted as an online survey with the DVR
built in. Participation was 95.8% via desktop devices and 4.2%
via tablets or smartphones. In our one-factorial between-subjects
design with two groups participants were randomly assigned
to either the signaling group (n = 48) or the non-signaling
group (n = 48). Informed consent was obtained from participants
prior to participation in the study. The study was conducted as
a browser-based online study. Within the survey, the subjects
were redirected to an external website where the integrated 360◦
DVR started automatically. As dependent variables, we measured
learning outcomes (recall, comprehension, and transfer) and

cognitive load (ECL and GCL). As potential covariates we
assessed prior knowledge, motivation, previous contact with
VR and immersion.

Materials and Instruments
The learning material in the 360◦ DVR was about native animals
in German forests. While, learners could click and drag their
way around the visually rich environment, additional auditive
information about the animals was played. In total, there were 14
interactive segments that were presented to the learners in a linear
progression. In the first segment, the use and navigation of the
learning environment was explained to the learners. At this point,
they were instructed to work through the learning environment
conscientiously and to listen to each audio track once. They
were able to move on to the next learning content in a self-
paced manner, but could not return to the previous content. Also,
the audio track could be activated in each segment by clicking
on the corresponding icon. The audio tracks were on average
about 60 s long and could not be paused once activated. Only
the signaling group contained static signals in the form of light
green circles around learning relevant information (e.g., the feet
of the deer are highlighted when it is explained that they belong
to the cloven-hoofed genus; see Figure 1). Both groups spent
the same amount of time in the DVR, approximately 14 min.
The questionnaires and constructs measured in the present study
can be found below. In addition, basic demographic data such
as age, gender, student status and previous contact with VR of
participants were collected.

Prior Knowledge
At the beginning of the study, the participants’ prior knowledge
was determined with a total of 15 questions. Domain-specific
knowledge about the German forest and its native animals was
assessed. These questions were created with experts on the
topic to ensure content validity. The test consisted of five open
questions (e.g., "Name five animal species that live in our forests.")
and ten closed multiple-choice questions that had between three
and five possible answers. The maximum score achievable was
18 points, and participants could earn half points for partially
correct answers. No points were deducted for incorrect answers.
Two independent raters scored the answers using a coding
scheme and achieved very high inter rater reliability (ICC = 0.98,
95% CI [0.95–0,98] p < 0.001).

Motivation
The Questionnaire on Current Motivation (QCM; Rheinberg
et al., 2001) was used to measure motivation. The 18 items
of the questionnaire (e.g., " I would also work on such a task
in my spare time.") are rated on a 7-point Likert scale (1
"strongly disagree" to 7 "strongly agree"). For further analyses,
a mean was calculated across all items. Internal consistency was
Cronbach’s α = 0.72 (95% CI [0.63–0.79]) indicating acceptable
reliability (Cohen, 1988).

Cognitive Load
Cognitive load was assessed differentiated by ECL and GCL
using the Cognitive Load Questionnaire (Klepsch et al., 2017).
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FIGURE 1 | Desktop virtual learning environment with signals and without signals in comparison. The learning environment was displayed in full screen and the
participants could turn 360◦ in any direction.

Two items each for ECL (e.g., "During this task, it was difficult
to recognize and link the crucial information.") and GCL (e.g.,
"For this task, I had to think intensively about what things
meant.") were rated using a 7-point Likert scale (1 "absolutely not
true" to 7 "completely true"). Internal consistency for ECL was
Cronbach’s α = 0.65, 95% CI [0.48–0.77] and for GCL α = 0.70,
95% CI [0.58–0.79].

Learning Outcomes
To measure the participants’ learning outcome, a knowledge
test was conducted that was related to the content of the
360◦ learning unit. The posttest consisted of 13 open-ended
questions that were differentiated into recall, comprehension,
and transfer according to Bloom’s taxonomy (Bloom, 1956).
With five recall questions (e.g., " Name the two most important
body parts of the fox, which are used to detect prey and
enemies."), four comprehension questions (e.g., "Explain why
there is only one male deer in a rutting pack."), and four
transfer questions (e.g., "Briefly justify whether these molars
belong to a younger or older deer."), a maximum total score
of 16.5 could be achieved. The maximum score for recall
was six points, five points for comprehension, and 5.5 points
for transfer. Partial points were awarded for partially correct
answers and no points were deducted. Interrater reliability
between two independent raters was very high for all learning
outcomes (recall: ICC = 0.86, 95% CI [0.79–0.91], p < 0.001;
comprehension: ICC = 0.90, 95% CI [0.85–0.93], p < 0.001;
transfer: ICC = 0.97, 95% CI [0.96–0.98], p < 0.001).

Immersion
Immersion was assessed using a subscale of the Technology Usage
Inventory (TUI; Kothgassner et al., 2013). A total of four items
(e.g., "During the virtual simulation, I completely forgot about
the world around me.") were rated on a 7-point Likert scale (1
"I disagree" to 7 "I agree").

RESULTS

All data analysis was performed with IBM SPSS (Version 28) with
an α-error = 0.05 for all calculations. The interpretation of partial
η2 as a measure of effect size, was appropriately categorized
according to Cohen (1988) as η2 = 0.01 (small), η2 = 0.06
(medium), and η2 = 0.14 (large).

Descriptive Analysis
Descriptive analysis revealed no significant differences between
the signaling and non-signaling groups in terms of gender [χ2

(1,

N = 96) = 0.21, p = 0.646], age [t(94) = 1.86, p = 0.067], motivation
[t(94) = 0.65, p = 0.519], prior exposure contact to VR [t(94) = 0.20,
p = 0.846], immersion [t(94) = 0.84, p = 0.403], and time-on-
task [t(86) = −1.10, p = 0.273]. However, there was a significant
difference in prior knowledge between the signaling and non-
signaling groups [t(94) = 2.34, p = 0.022]. Since prior knowledge
was also significantly correlated with recall (r = 0.29, p = 0.004)
and comprehension (r = 0.45, p > 0.001), it was included as a
covariate in subsequent analyses.
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To identify other potential control variables, we tested whether
motivation, prior contact to VR, immersion, or time spent
in the learning unit had an influence on learning outcomes
or cognitive load. There was a significant correlation between
motivation and GCL (r = 0.45, p < 0.001). Motivation
was therefore included as a covariate in the analyses of
GCL. Beyond that, there were no other correlations between
control variables and dependent variables. Descriptive statistics
of demographic and other relevant variables, separately for
the signaling and non-signaling conditions, are presented in
Table 1.

The descriptive statistics of the results for learning outcomes
and cognitive load can be found in Table 2.

Learning Outcomes
The ANCOVAs with prior knowledge as covariate for all three
learning outcomes revealed significant differences between the
signaling and non-signaling groups for recall [H1: F(1,93) = 9.58,
p = 0.002, η2 = 0.093] with a medium to high effect size.
Participants in the signaling group achieved higher recall scores
than participants in the non-signaling group.

In addition, there was a significant between-group difference
for comprehension [H2: F(1,93) = 3.06, p = 0.042, η2 = 0.032]
with a medium effect size. Participants in the signaling group
scored again higher on comprehension than participants in the
non-signaling group.

Regarding transfer, the data showed no significant difference
between groups [H3: F(1,93) = 0.58, p = 0.405, η2 = 0.001]. These
results are visualized in Figure 2.

Cognitive Load
Results of the ANCOVA with prior knowledge as a covariate
showed a significant difference in ECL between the signaling
and non-signaling group [H4: F(1,93) = 5.97, p = 0.008,
η2 = 0.060] with a medium effect size. Participants in
the signaling group experienced less ECL than those
in the non-signaling group. However, contrary to our
hypothesis, there was no significant difference between
groups on GCL when controlling for motivation and prior
knowledge [H5: F(1,92) = 0.62, p = 0.217, η2 = 0.007]. The
graphical representation of these results can be seen in
Figure 3.

DISCUSSION

The aim of this study was to investigate the effects of signaling
in a 360◦ DVR on learning outcome differentiated by recall,
comprehension, and transfer, as well as on cognitive load
differentiated by ECL and GCL.

Effects of Signaling on Learning
Outcomes
In line with our hypotheses, learning with signaling led to
significantly higher learning outcomes for both recall (H1) and
comprehension (H2) than learning without signaling in a DVR.
However, we found no differences between the groups in terms
of their transfer performance (H3). These results indicate that
signals in a DVR can be used to support learners in their selection
and organization processes.

We infer that learners were supported by signals in a DVR in
their selection process by directing their attention to the relevant
information (Ozcelik et al., 2010; Dodd and Antonenko, 2012).
Other studies on signals in classical multimedia settings have
also shown that the selection process can be supported, which
is reflected in a higher recall performance of the highlighted
information (Lorch, 1989; Mautone and Mayer, 2001). We were
thus able to show that the effects of signals in classical learning
environments can be transferred to DVR, since the underlying
learning processes involved remain identical. Our results are also
partially supported by the findings of previous research in a
VRLE. Albus et al. (2021) who examined signals in a VRLE in
the form of textual annotations also found higher recall scores
for the signaling group compared to the non-signaling group, but
no effects for comprehension or transfer. This is an indication
that textual annotations can support the selection processes,
but not the deeper organization or integration processes (Albus
et al., 2021). However, in this study we were able to show that
signals in a DVR could promote comprehension performance.
This could be an indicator that the signals also supported the
learners in their organizational processes. The signals might have
enabled the learners to process the relevant visual and auditory
information simultaneously in working memory. This allows
logical mental connections to be made between the information,
which has translated into higher comprehension performance.
When the auditory information is processed, the learner searches

TABLE 1 | Descriptive data of relevant variables, separately for the signaling and non-signaling conditions.

Variables Signaling group (n = 48) Non-signaling group (n = 48) Full sample (N = 96)

Gender (female): N (%) 34 (70.80) 36 (75.50) 70 (72.90)

Age (years): M (SD) 30.63 (14.41) 25.96 (9.80) 28.29 (12.48)

University student: N (%) 31 (64.60) 41 (85.40) 72 (75.00)

Prior knowledge (%): M (SD) 71.47 (12.69) 65.57 (12.07) 68.5 (12.66)

Motivation: M (SD) 4.15 (0.65) 4.07 (0.55) 4.11 (0.60)

Contact to VR: M (SD) 2.73 (1.59) 2.67 (1.55) 2.70 (1.56)

Immersion: M (SD) 3.37 (1.53) 3.13 (1.32) 3.25 (1.43)

Time-on-task (min): M (SD) 13.39 (3.19) 14.39 (5.13) 13.89 (4.28)

n, sample size; N, number of participants; M, mean value; SD, standard deviation.
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TABLE 2 | Means, standard deviations, and ANOVA/ANCOVA results, separately
for the signaling and non-signaling condition.

Signaling group (n = 48) Non-signaling group (n = 48)

M (%) SD (%) M (%) SD (%)

Learning outcome

Recall 4.43 (63.29%) 0.96 (13.71%) 3.65 (52.14%) 1.14 (16.29%)

Comprehension 3.83 (54.71%) 1.04 (14.86%) 3.32 (47.43%) 1.14 (16.29%)

Transfer 2.91 (41.57%) 1.22 (17.43%) 2.87 (41%) 1.24 (17.71%)

Cognitive load

ECL 2.02 (28.86%) 0.99 (14.14%) 2.75 (39.29%) 1.39 (19.86%)

GCL 5.56 (79.43%) 0.96 (13.71%) 5.3 (75.71%) 1.1 (15.71%)

M, mean value; SD, standard deviation; ECL, extraneous cognitive load; GCL,
germane cognitive load.

for the corresponding matching visual information in the DVR.
The signals make it clear that it belongs together with the
auditory information. They help learners identify matching
information in working memory as being related and encourage
them to want to comprehend how this information fits together.
Auditory information is also transient and learners need to
associate the information together in working memory in time
for understanding processes to happen. The signals help reduce
the visual search time for the relevant information within
the DVR (Xie et al., 2017). Signals help learners to be less
distracted by seductive details, allowing more time to be spent
on comprehension processes.

However, we did not measure visual search time in this study,
but it could be measured by eye movements in future studies.
Furthermore, it is not only relevant to link auditory and visual
information, but also several visual information among each
other. Although the signals were only simple outlines of the
objects, they seem to be able to help highlight the connections
between the individual visual information that learners would
have to conclude themselves without signals (Lorch, 1989;
Mautone and Mayer, 2001).

Contrary to our hypothesis (H3), we did not find a significant
effect of the signals in a DVR on the transfer performance.
A possible explanation for this could be that our signals were
solely visual in the form of green outlines. While, these could
draw the learner’s attention to the relevant information and
even possibly reduce visual search time, they did not help to
stimulate learners to deeper processing at the transfer level. Here,
for example, prompts could be helpful in the future to get the
learner to invest in deeper processing of the information (Vogt
et al., 2021b). Signals also do not seem to have had an effect
on immersion. The signals used here are visually coherently
integrated into the DVR and therefore should not interfere with
the learners’ experience of immersion. However, it would be
interesting to find out which features of the signals, such as
size relative to the image or animations could influence the
feeling of immersion.

Effects of Signaling on Cognitive Load
Our hypotheses on cognitive load could only be partially
confirmed. We could show that signals in a DVR can significantly

reduce ECL compared to when learners are not supported by
signals (H4). DVR are often visually complex and can contain
many seductive details. While, on the one hand these are
important for immersion, on the other hand they can also be
distracting and occupy cognitive resources (Van Merrienboer and
Sweller, 2005). Our results suggest that these non-relevant visual
stimuli in a DVR can be perceived as distracting to learners and
occupy working memory capacity important for learning (Parong
and Mayer, 2020). Signals, on the other hand, could make the
essential elements salient to learners through their attention-
guiding function, which reduces unnecessary visual search time
(Mayer and Fiorella, 2014). Thus, fewer seductive details are
also processed cognitively, which can reduce the associated ECL
(Sweller, 2005; Noetel et al., 2021). If less seductive details are
cognitively processed, the selection process can also be supported
(Parong and Mayer, 2020).

If the ECL can be reduced by signals, there should be
more cognitive capacity left in working memory for germane
processes (Sweller, 2005). Our hypothesis about GCL could not be
supported by the results we found (H5). Learners in the signaling
group reported no significant difference in terms of their
invested GCL compared to the non-signaling group. One possible
explanation for why the signals in the DVR did not encourage
learners to invest more GCL is that we measured high GCL values
in both groups. Learners thus already invested high levels of GCL
regardless of the signals. This may be due to our DVR, because
learners may have been motivated by the interesting topic or
the visually appealing learning environment to invest enough
cognitive capacity for it. For many learners, DVR are still a new
technological experience. This may be a factor that can motivate
learners to learn in a DVR (Huang et al., 2021). In studies that
compared classical learning environments with VRLE, it was
found that learners showed higher motivation and interest when
learning in with VRLE (Makransky et al., 2019a; Parong and
Mayer, 2020). Since we also identified motivation as a covariate
for GCL, this could be an indicator of why a possible effect of
signals on GCL does not become sufficiently pronounced.

Strengths and Limitations
The present study used a controlled randomized trial design
investigated the effects of signaling in a DVR, differentially on
learning outcomes and cognitive load. The DVR used in this
study was chosen to reflect realistic educational settings. This is
primarily due to its accessibility and low-cost implementation,
as learners only need an Internet-enabled device to immerse
themselves in the DVR. Another strength of this study is the
differentiated perspective on learning outcomes on different
levels of processing as well as on cognitive load. In doing
so, we also meet the demands of recent meta-analyses and
articles on learning in VRLE that criticized the lack of
theory-driven research and application development in VRLE
(Radianti et al., 2020; Makransky and Petersen, 2021). However,
there are also limitations that need to be considered. Despite
proper randomization to both groups, there was a significant
difference in prior knowledge. To avoid a possible bias in
the results, we statistically controlled for prior knowledge in
the analysis of the hypothesis. There were also limitations
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FIGURE 2 | Mean values (in percent) for the learning outcomes recall, comprehension and transfer, separately for the signaling and non-signaling group. The vertical
error bars indicate the standard error of the mean.
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FIGURE 3 | Mean values (in percent) for ECL, and GCL, separately for the signaling and non-signaling group. The vertical error bars indicate the standard error of the
mean; ECL, extraneous cognitive load; GCL, germane cognitive load.

within the DVR. Learners could look around independently
and start the audio track to the image in a self-directed
manner. However, we do not have objective data on whether
subjects listened to each audio track in its entirety. It could
also be that learners, against instruction, listened to the audio
track multiple times. Nevertheless, we measured how much
time learners spent in total in the DVR. Since both groups
spent on average the same amount of time in the DVR,
any possible influence on the results should be negligible.
Furthermore, learners were also able to self-navigate to the
next content, but not jump back to the previous one. It could
be possible that participants jumped to the next topic by

mistake or too fast, which could possibly influence the post-
test results. However, participants were able to indicate in the
post-test if they experienced any problems while completing the
learning environment. That said, participants who experienced
problems were excluded from the analysis, as explained in the
methods section.

Since the participants could look around 360◦ in the learning
unit at any time, it is possible that the relevant learning
content that the audio track is currently talking about is not
in the field of view of the learners at this time. This might
have affected the integration of text and pictures, leading to
poorer learning outcome performance (Seufert, 2003). To further
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empirically investigate the attention-guiding function of signals,
future eye tracking studies in DVR would be highly desirable
and informative.

CONCLUSION

Our study was able to show that signaling can improve
learners’ recall and comprehension performance in a DVR.
At the same time, signaling can also reduce unnecessary
load in working memory. Our results also demonstrated that
established theories from multimedia research, such as the
CTML or the CLT can be well-suited as a foundation for
studies in a DVR (Mayer, 2005; Sweller, 2005). Although
DVR can often be more visually complex and also involve
a higher degree of immersion, it is these features that
can be perceived as distracting. Nevertheless, the learning
processes are the same in both classical and immersive learning
environments and can benefit from instructional aids
(Parisi, 2015).

It is also interesting to consider that even quite simple
visual signals can have positive effects on learning outcomes
and the cognitive load. However, such simple signals do not
seem to be sufficient to stimulate deeper levels of processing.
Here, future studies would be interesting to investigate signals
specifically aimed at supporting deeper levels of processing or
how signals work in combination with prompts (Vogt et al.,
2021b). While, different types of signals have been studied in
DVR, their effectiveness in learning environments has not yet
been investigated (Horst et al., 2019). It would also be desirable
to investigate different types of signals (e.g., auditory signals,
adaptive or dynamic signals) to find out how they can affect
different levels of processes in learning. In addition, it is also

important to investigate further instructional aids in DVR.
A possible starting point could be further multimedia design
principles originating from the CTML.
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