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Learning analytics represent a promising approach for fostering personalized learning
processes. Most applications of this technology currently do not use textual data
for providing information on learning, or for deriving recommendations for further
development. This paper presents the results of three studies aiming to make textual
information usable. In the first study, the iota concept is introduced as a new content
analysis measure to evaluate inter-coder reliability. The main advantage of this new
concept is that it provides a reliability estimation for every single category, allowing
deeper insight into the quality of textual analysis. The second study simulates the
process of content analysis, comparing the new iota concept with well-established
measures (e.g., Krippendorff’s Alpha, percentage agreement). The results show that
the new concept covers the true reliability of a coding scheme, and is not affected
by the number of coders or categories, the sample size, or the distribution of data.
Furthermore, cut-off values are derived for judging the quality of the analysis. The
third study employs the new concept, as it analyzes the performance of different
artificial intelligence (AI) approaches for interpreting textual data based on 90 different
constructs. The texts used here were either created by apprentices, students, and
pupils, or were taken from vocational textbooks. The paper shows that AI can reliably
interpret textual information for learning purposes, and also provides recommendations
for optimal AI configuration.

Keywords: learning analytics, artificial intelligence, content analysis, reliability, hyperparameter, neural net,
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INTRODUCTION1

Meta- and meta-meta analyses show that the integration of
digital technologies increases the efficiency and effectiveness of
learning processes (Kulik and Kulik, 1991; Means et al., 2010;
Tamim et al., 2011; Bernard et al., 2014). Several meta-analyses
have proven the usefulness of design principles for multimedia
learning environments (Brom et al., 2018; Schneider et al., 2018;
Mayer, 2019; Mayer and Fiorella, 2019; Mayer and Pilegard,
2019; Alpizar et al., 2020), and digital technologies are critical for
designing state-of-the-art instructional processes.

The improvement potential offered by digital technologies
can be enhanced even further if the design of instruction is
adapted to the individual prerequisites of every single learner.
The advantages of personalized instruction have been empirically
supported by several studies (Schrader, 1989; Anders et al., 2010;
Karst et al., 2014). For example, Bloom (1984) showed that
individual tutoring is more effective than traditional classroom
settings with 30 students per teacher. A study by VanLehn
(2011) shows that computer-based intelligent tutoring systems
are nearly as effective as one-on-one human tutoring.

One possibility for implementing personalized learning is
via learning analytics which aims to improve learning (Rienties
et al., 2020). These are “the collection, analysis, and application
of data accumulated to assess the behavior of educational
communities. Whether it be through the use of statistical
techniques and predictive modeling, interactive visualizations,
or taxonomies and frameworks, the ultimate goal is to optimize
both student and faculty performance, to refine pedagogical
strategies, to streamline institutional costs, to determine students’
engagement with the course material, to highlight potentially
struggling students (and to alter pedagogy accordingly), to fine
tune grading systems using real-time analysis, and to allow
instructors to judge their own educational efficacy” (Larusson
and White, 2014). The actual practice of learning analytics
was reported in a literature review of 401 research papers by
Jaakonmäki et al. (2020), showing that they are mostly applied
for the evaluation of student performance, decision support, and
clustering of learners. However, it was determined that the real-
time analysis of students’ learning behavior, and the adaption
of learning materials and demands to individual needs are only
rarely conducted.

The reason for this low level of personalization can be
traced to the high organizational and technical demands of
implementation. This type of learning analytics represents the
second-to-last level of organizational implementation in the
learning analytics sophistication model proposed by Siemens
et al. (2013). Another reason is the limited quality of data
available for the purpose of learning analytics. For example,
many studies use so-called log data, which represents the
interaction of a learner with the learning environment. This
includes elements such as the number of assessment attempts,
time taken for assessments, videos seen, or videos viewed
repeatedly (Ifenthaler and Widanapathirana, 2014; Liu et al.,
2018; ElSayed et al., 2019). Other studies opt for a research

1A preprint of this manuscript was published 03/2022 as Berding et al. (2022).

approach to learning analytics that is based on the analysis of
stable and/or historical data such as students’ social backgrounds
and demographic characteristics, historical education records, or
average historical grades (Ifenthaler and Widanapathirana, 2014;
ElSayed et al., 2019). In their literature review, ElSayed et al.
(2019) reported four additional data types that are used less
frequently: multimodal data (e.g., heart rate, eye tracking), chat
and forum conversations, video recordings, and self-reported
data (e.g., questionnaires, interviews). On the one hand these data
types are important for understanding individual learning, as
well as for providing recommendations for further development,
because empirical studies prove their predictive power. On the
other hand this kind of data only provides limited insights about
changes in students’ cognition and motivation as the analysis of
the students’ interactions in terms of clicking in a digital learning
environment does not provide enough ground for pedagogical
decision-making (Reich, 2015).

What can be concluded from these studies is that data should
be supplemented by textual data allowing a deeper analysis
of the quality of learning processes and their outcomes. It is
not only important to gather information on grades, gender,
or how often a student repeats a video. It is also essential
for fine-tuning future learning processes to understand which
individual abilities, attitudes, and beliefs lead to current learning
behavior and outcomes. Textual data can provide this kind
of insight. For example, if teachers want to clarify whether
their students have the “correct” understanding of “price” in
an economy context, they could ask the students to write an
essay in which they explain what a price is. The teachers
can use this information to find a starting point for further
instruction, especially if some students understand the concept in
a “wrong” manner. Another example of this idea can be found in
teacher education. Prospective teachers create learning materials
containing textual data, such as learning task, explanations, and
visualizations for a lesson plan. The information included in the
textual components here strongly predicts what kind of learning
processes a prospective teacher intends to apply. For example,
the task “What kind of product assortment expansion can be
characterized as ‘diversification’?” does not include any of the
experiences of apprentices, i.e., it is a de-contextual task. In
contrast, the task “Explain the factors that influence the range
of goods in your training company and discuss it with your
colleagues” explicitly refers to the experience apprentices gain at
the company where they are doing their training. Based on the
textual information of the task, a teacher educator can conclude
the extent in which prospective teachers integrate the experiences
of their learners when creating a learning environment, and
further interventions can be planned based on their conclusions.

Intervention planning makes it necessary to sort information
into pedagogical and didactical theories. As Wong et al. (2019)
state: “(. . .) [L]earning analytics require theories and principles
on instructional design to guide the transformation of the
information obtained from the data into useful knowledge for
instructional design” (see also Luan et al., 2020). This complex
challenge is illustrated in Figure 1. With learning analytics
applications, the computer program has to understand the
textual information, summarize the information in categories
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of scientific models and theories, and derive the impact of the
categories on further learning to provide recommendations for
learners and teachers. In essence, learning analytics applications
have to solve the same problems as human teachers: diagnose the
preconditions of learners, and tailor adequately adapted learning
processes based on scientific insights.

Learning analytics require the realization of complex tasks
using artificial intelligence (AI). AI describes the attempt to
simulate human actions by a computer (Kleesiek et al., 2020),
and consists of machine learning (ML). In ML, a computer
solves a problem by developing the necessary algorithm itself
(Alpaydin, 2019; Lanquillon, 2019). With the different types of
ML, supervised machine learning is able to realize the model
of Figure 1, providing links to established scientific models
and theories. In this special case, AI attempts to generate a
prediction model which transforms input data into output data.
In the model seen in Figure 1, the first step aims to sort
the information of an individual learner based on textual data
into models and theories. The input data represents texts (e.g.,
written essays, interviews, tasks, instructional texts), while the
output data represents categories from didactical and pedagogical
theories and models (AI I). The next step predicts further
learning and outcomes based on the identified categories (AI
II). In this case, the input data are the categories, and the
output data are characteristics of other learning-related variables
(e.g., grades, motivation, use of learning strategies). Finally, the
information about the learning-related variables forms the input
data for generating recommendations as output data (AI III).
In this stage, AI can recommend interventions that produce the
strongest impact for the variable relevant for learning based on
the current state of these variables. For example, if a student has
low grades and low motivation, AI can recommend interventions
that promote the quality and quantity of motivation based on the
self-determination theory of motivation (Ryan and Deci, 2012),
such as an informative feedback or granting students freedom
while working on a task (Euler and Hahn, 2014). The increased
motivation increases the chance that the students improve their
grades since motivation is related to the quality of actions
(Cerasoli et al., 2014).

This paper focuses on the first step of this process (AI I).
AI has to understand textual data and learn whether and how
this information belongs to scientific categories. AI here requires
a data collection of input and output data for identifying the
relationship between the two data types (Lanquillon, 2019).
AI essentially has to conduct parts of a content analysis by
assigning texts (input data) to categories (output data) based on
an initial content analysis of humans. As this paper concentrates
on supervised machine learning, this means that humans have
to develop a coding scheme. That is, humans have to define
the categories to which the text can be assigned. They have to
ensure sufficient quality of the coding scheme, and they need to
have applied the coding scheme to a specific number of textual
documents in order to generate the necessary input and output
data for the training of AI. Only on the basis of this data, AI can
learn to conduct a content analysis which is limited to the coding
processes of a human developed coding scheme. As a result, the
quality of the training data for AI is critical as Song et al. (2020)

recognized in their simulation study. In their study, the quality
of the initial data accounts for 62% of the variance of the mean
absolute prediction error.

Because the quality of content analysis performed by humans
and computers is critical for the process of learning analytics,
the accuracy of the assignments has to be very high, meaning
a powerful AI algorithm that includes a configuration that
optimizes its accuracy has to be selected. This also requires an
accurate initial content analysis by humans. Whereas a large
number of studies compare the performance of different kinds
of AI (e.g., Lorena et al., 2011; Hartmann et al., 2019), different
configurations of parameters have rarely been investigated (e.g.,
Probst et al., 2019). These hyperparameters have to be chosen
before the learning process of AI begins; they are normally
not optimized during the learning process (Probst et al., 2019).
Furthermore, most performance studies do not analyze how
accurately AI interprets the texts of students for learning
purposes. Previous studies analyze textual data such as product
reviews on Amazon, social media comments on Facebook or user
generated content on Twitter (Hartmann et al., 2019; Saura et al.,
2022). As a consequence, there is a clear research gap as there is
no empirical evidence how well AI can be used for the analysis of
textual data generated in educational settings.

The issue of determining the performance of AI for
interpreting texts generally increases, because there is no
widely-accepted performance measure for content analysis
reliability regardless whether it is conducted by human or
artificial intelligence. Reliability is a central characteristic of
any assessment instrument, and describes the extent to which
the instrument produces error-free data (Schreier, 2012).
Krippendorff (2019) suggests replicability as a fundamental
reliability concept, which is also referred to as inter-coder
reliability. This describes the degree to which “a process can
be reproduced by different analysts, working under varying
conditions, at different locations, or using different but
functionally equivalent measuring instruments” (Krippendorff,
2019). Past decades have seen a large number of reliability
measures being suggested. The study by Hove et al. (2018)
shows that the 20 reliability measures they investigated differ
in their numeric values for the same data. Thus, it is hard
to decide which measure to trust for the judgment of quality
in content analysis. Krippendorff ’s Alpha is currently the most
recommended reliability measure (Hayes and Krippendorff,
2007), as it can be applied to variables of any kind (nominal,
ordinal, and metric); to any number of coders; to data with
missing cases and unequal sample sizes; all while comprising
chance correction (Krippendorff, 2019). Recent years, however,
have seen the advantages of Krippendorff ’s Alpha being
questioned and controversially discussed (Feng and Zhao, 2016;
Krippendorff, 2016; Zhao et al., 2018). Zhao et al. (2013) analyzed
different reliability measures, concluding that Krippendorff ’s
Alpha contains problematic assumptions and produces the
highest number of paradoxes and abnormalities. For example,
they argue that Alpha penalizes improved coding, meaning that
if coders correct errors, the values for Alpha can decrease (Zhao
et al., 2013). Furthermore, cases exist where coder agreement is
nearly 100%, while the Alpha values are about 0, indicating the
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FIGURE 1 | Summarizing information on individual learners into models and theories for deriving recommendations.

absence of reliability. Thus, Krippendorff ’s Alpha may lead to
false conclusions about the reliability of a content analysis. This
is problematic since this measure has become one of the most
used measures in content analysis in the last 30 years (Lovejoy
et al., 2016) and is used in simulation studies for estimating the
initial data’s impact on the performance quality of AI (Song et al.,
2020). As a result, there is a need for new reliability measures that
overcome these difficulties (Zhao et al., 2013).

Feng and Zhao (2016) suggest to orientate a new reliability
measure on the item response theory and not on the classical test
theory. In the classical test theory reliability is characterized with
measures such as Cronbach’s Alpha. These measures produce a
single numeric value for a complete scale similar to the measure
currently used in content analysis (e.g., Krippendorff ’s Alpha,
percentage agreement, Scott’s Pi, Cohen’s Kappa) (Lovejoy et al.,
2016). From the perspective of the item response theory, this is
an oversimplification since the reliability is not constant over the
range of a scale. With the help of the test information curve,
the reliability of a scale can be investigated for different scale
characteristics (e.g., de Ayala, 2009; Baker and Kim, 2017). For
example, a test for measuring the motivation of students can be
more reliable in the middle than for the extreme poles implying
that the test is reliable only for participants with medium
motivation and less reliable for students with very low or very
high motivation. Furthermore, some models of the item response
theory such as Rasch models offer the opportunity to investigate if
a scale produces a bias for different groups of individuals. That is,
they allow to examine whether an instrument functions similarly

for different groups of people (subgroup invariance) or not (e.g.,
Baker and Kim, 2017). Based on the previous example in this
paragraph, a test may be more reliable for women with high
motivation than for men with high motivation, leading to bias.
Men with a high motivation may be falsely represented in the
data. Current measures for content analysis do not provide these
analytical opportunities.

In this context this paper has the following objectives:

(1) Developing a new performance measure for content
analysis,

(2) Investigating and comparing the properties of the new
measure with well-established measures,

(3) Analyzing the performance of AI based on the new
measure, and deriving insights for the optimized
configuration of AI in educational contexts.

By working on these objectives the originality of the present
study is that

• it develops a new and innovative measure for content
analysis based on the ideas of item response theory. That is,
a measure that allows to assess the reliability of every single
category of a coding scheme. Previous measures are limited
to the scale level only.
• it develops a new measure for content analysis avoiding

the problematic assumptions Krippendorff ’s Alpha uses as
discussed in literature (Zhao et al., 2013, 2018; Feng and
Zhao, 2016; Krippendorff, 2016).
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• it generates rules of thumb for the new measure to judge the
quality of content analysis in practical applications.
• it applies a new and innovative approach for determining

the performance of AI in the interpretation of textual data
produced within educational settings.

Thus, this paper aims to contribute to a progression in the
field of content analysis by transferring the basic ideas of the item
response theory to content analysis and by offering an additional
tool for understanding how AI generates new information based
on textual data.

In order to reach these objectives, section “Development of the
New Inter-coder Reliability Concept” presents the mathematical
derivation of the new concept called Iota Reliability Concept. In
order to prove if the new concept is really a progression, section
“Simulation Study of the New Reliability Concept” presents a
simulation study simulating 808,500 coding tasks with a varying
number of coders and categories and varying sample sizes.
With the help of the simulation, the new measure is compared
with percentage agreement which represents the most intuitive
measure of inter-coder-reliability, and with Krippendorff ’s Alpha
which represents the current state of research (Hayes and
Krippendorff, 2007; Lovejoy et al., 2016). The simulation is also
used to derive rules of thumb for judging the quality of content
analysis in practical applications.

Section “Analyzing the Performance and Configuration of
Artificial Intelligence” applies both the new and the established
measures to real world cases by training three different types
of AI to interpret 90 different didactical constructs. The data
comprises essays written by students of different degrees and
textual material out of textbooks. Training AI utilities mlr3 (Lang
et al., 2019) which is the newest framework for machine learning
in the statistical coding language R. This provides insights into
the performance of AI for educational purposes.

The paper ends with a discussion of the results and provides
recommendations for researchers and practitioners. Section
“Conclusion” provides an example for the analysis of AI with the
new measures in order to demonstrate the potentials of the new
concept.

DEVELOPMENT OF THE NEW
INTER-CODER RELIABILITY CONCEPT

Overview
The aim of this new concept is to develop a reliability measure
that provides information on every single category. To achieve
this goal, we suggest a reliability concept consisting of three
elements for every category: the alpha-, beta-, and iota-elements.
The concept additionally provides an assignment-error matrix
(AEM) offering information on how errors in the different
categories influence the data in the others.

Reliability describes the extent of the absence of errors
(Schreier, 2012), meaning the basic idea behind the alpha and
beta elements is to take two different types of errors into account.
These are described from the perspective of every single category.
The alpha elements refer to the error of a coding unit being

unintentionally assigned to the wrong category, e.g., when a
unit is not assigned to A, although it belongs to A. The beta
elements consider the error that a coding unit belonging to
another category is unintentionally assigned to the category
under investigation, e.g., when a unit is assigned to A, although it
does not belong there.

This concept is based on six central assumptions:

(1) The core of content analysis is a scheme guiding coders
to assign a coding unit to a category. Here, reliability is a
property of a coding scheme, not of coders.

(2) The categories form a nominal or ordinal scale with
discrete values.

(3) Every coding unit can be assigned to exactly one category.
(4) Every coding unit is assignable to at least one category.
(5) Coders judge the category of a coding unit by using a

coding scheme or by guessing.
(6) Reliability can vary for each category.

The following sections systematically introduce the new
concept and each of its elements.

Alpha Elements: Alpha Reliability and
Alpha Error
Developing a reliability concept that reflects the reliability of the
coding scheme for each single category requires the focus to be
shifted from all data to the data that involves the category under
investigation. Figure 2 illustrates this idea for the case of two
coders and three categories.

The gray cells in the tables show the relevant combinations for
the categories. For example, in the table on the left, only the first
row and the first column comprise coding judgments that involve
category one. In the middle table, the gray cross represents all
relevant coding for category two. The third row and the third
column in the right table include coding for category three. The
diagonal of the table shows all judgments for a category that the
two coders agree on. For example, both coders agree that 120
coding units belong to category one, that five units belong to
category two, and three coding units belong to category three.

The alpha reliability and the alpha error can be introduced
based on this data and category perspective. The alpha reliability
uses two basic ideas. First, the number of coding units all coders
agree on for a specific category (e.g., 120 for category one, 5
for category two, etc.) represents the agreement of the coders
regarding that category. Second, the number of all coding units
that involve the specific category (e.g., 12 + 10 + 120 + 78 + 7
for category one) is an approximation of the number of coding
units that belong to the specific category. Thus, the ratio of these
two numbers describes the extent to which the coders agree on
the specific category. Mathematically this idea can be expressed
and extended by using conditional probabilities.

The probability of an event A under the condition C is
generally described by P (A|C) = P(A∩ C)

C . Applied to the current
concept, we define event Ai as the case that all coders agree on
category i. This means that all coders assign a coding unit to the
same category. We define condition Ci as the case where at least
one coder assigns a coding unit to category i. In Figure 2, event Ai
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FIGURE 2 | Illustration of the alpha elements.

is the corresponding cell on the diagonal, with event Ci reflected
by the gray cells for each category. With these definitions in mind,
we can define the alpha reliability and the alpha error for category
i as

∝i,Rel =
P (Ai ∩ Ci)

P(Ci)
(1)

∝i,Error = 1−
P (Ai ∩ Ci)

Ci
(2)

The alpha error is the complementary probability of the alpha
reliability. Equations 1 and 2 provide the central interpretation of
the alpha elements. The alpha reliability is the probability that all
coders agree on the category of a coding unit if at least one coder
assigns the coding unit to that category. The alpha error is the
probability that not all coders agree on the category of a coding
unit if at least one coder assigns the coding unit to that category.

We suggest treating alpha reliability as an approximation of
the probability that a coding unit of category i is classified as
category i, and the alpha error as the probability that a coding
unit of category i is not classified as category i. The reason
for this interpretation of the conditional probabilities of the
alpha elements is that the true category cannot be known. This
interpretation of the alpha elements assumes that the assignment
of a coding unit to this category by at least one coder is an
adequate approximation for the amount of coding units “truly”
belonging to that category. Furthermore, this interpretation of
the alpha elements makes them comparable to the alpha errors
used in significance testing.

Figure 2 shows the computations for an example where
the alpha reliability for category one is 0.529. This means that
the probability that a coding unit of category one is correctly
classified as category one is about 53%. The same probability
is about 4% for category two, and about 6% for category three.
Here, a coding unit belonging to category two or three is only
rarely classified as category two or three respectively. The alpha
error for both of these categories is very high, with a probability
of about 94–96%.

The occurrence of an alpha error means that a coding unit is
wrongly assigned to another category. In this case, the data of
the other categories will be biased as a result of errors in other
categories. The beta elements account for these errors.

Beta Elements: Beta Reliability and Beta
Error
A category’s data is not only influenced by the alpha error of that
category, but by errors in other categories as well. For example, a
coding unit could be assigned to category one although it belongs
to category two. When this occurs, the data of category one
will be biased by errors made in category two. However, this
error can only occur if an alpha error occurs in category two,
meaning a coding unit truly belonging to category two is wrongly
assigned to category one. The same influence can be expected for
every other category.

This relationship can be mathematically expressed with
conditional probabilities. The event Ej represents all cases where
an alpha error of category j occurs. In Figure 3, this is illustrated
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FIGURE 3 | Illustration of the beta elements.

by the gray cells for category two and three. Alpha errors of
all other categories are relevant for estimating the beta error of
category one. This situation is illustrated on the right side of
Figure 3. The condition here for the beta error of category i is
an occurrence of an alpha error in all other categories. In general,
event Ei is defined as all cases where an alpha error occurs in all
other categories except i.

Ei = ∪ Ej, where i 6= j

To be relevant for category one, only those parts of the alpha
errors of the other categories are relevant that guide coders to
assign a coding unit to category one. This situation is illustrated
in the second row of Figure 3. The corresponding event Bi
represents all cases where at least one coder assigns a coding unit
to category i, without the cases where all coders assign a coding
unit to category i. The reason for the exclusion of the cases where
all coders assign a coding unit to category i is that these cases do
not represent an error. The beta error of category i is therefore
defined as:

βi,Error =
P (Bi ∩ Ei)

P(Ei)
(3)

Mathematical equation 3 can be simplified for computations
by applying the concept of contemporary probabilities. As shown
in the first row on the right side of Figure 3, P(Ei) can be
expressed as the complementary probability of the event that all
coders agree on different categories (the diagonal of the table).
Furthermore, as shown in the second row on the right side of
Figure 3, P (Bi ∩ Ei) can be expressed by the complementary
probability of the event that no coder assigns a coding unit to
category i and that all coders assign a coding unit to category
i (white cells).

Similar to the alpha elements, the beta reliability is the
complementary probability to the beta error, describing the
probability that no beta error will occur.

βi,Rel = 1−
P (Bi ∩ Ei)

P(Ei)
(4)

Using the example of Figure 3, the beta error for category one
is 0.784. This means that the probability of assigning a coding unit
to category one if an alpha error occurs in categories two or three
is about 78%. The beta elements and the alpha elements offer the
possibility to analyze the influence of errors in greater detail with
the help of the assignment-error matrix (AEM).

The Assignment-Error Matrix
The assignment-error matrix is a tool for analyzing the influence
of errors in one category on other categories. The diagonal cells
show the alpha error for the specific category. The remaining
cells describe the probability that an alpha error guides coders
toward assigning a coding unit to another specific category. The
interpretation of this matrix can best be explained using the
example shown in Table 1. The alpha error for category one is

TABLE 1 | An example of an assignment-error matrix.

Assigned Category

True category Category 1 2 3 ∝2,Error= 0.959

β1,Error = 0.787

1 0.471 0.709 0.291 β2,Error = 0.860

2 0.690 0.959 0.310 β3,Error = 0.353

3 0.478 0.522 0.941
AEM (2, 1) = 0.959∗0.784

0.959∗(0.787+0.353)

∼= 0.690
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about 47%, i.e., in about 47% of the cases, a coding unit that truly
belongs to category one is assigned to another category. When
this error occurs, about 71% of the cases are assigned to category
two, and about 29% of the cases to category three. Here, category
two is more strongly impacted by the coding errors of category
one than category three.

The alpha error of category two is about 96%, meaning that
in about 96% of the cases, a coding unit truly belonging to
category two is assigned to another category. When this error
occurs, about 69% of the cases are assigned to category one,
and 31% of the cases to category three. Here, category one is
more strongly impacted by the coding errors in category two
than category three.

The assignment-error matrix provides detailed information
about how errors influence the data. With this example, category
one and two are not well differentiated, meaning the development
of the coding scheme should concentrate on creating better
definitions and coding rules for distinguishing category one and
two. In contrast, errors in category one and two do not strongly
influence category three. If an alpha error occurs in category
three, both remaining categories are impacted by this error
in a similar way.

The values for the cells outside the diagonal can be easily
estimated with the alpha and beta elements. The condition is that
an alpha error occurs in the category under investigation, and that
a beta error occurs in all other categories. The target event is that
an alpha error occurs in the category under investigation, and a
beta error in the other respective category. Equation 5 expresses
this relationship.

AEM
(
i, j
)
=

∝i,Error ∗βj,Error

∝i,Error ∗
∑

j 6=i βj,Error
(5)

The iota elements comprise the final aspect of this concept.

Iota Elements
The last part of this concept summarizes the different types
of errors while correcting the values for chance agreement,
providing the final reliability measure for every category. In
a first step, the alpha error and the beta error have to
be calculated under the condition of guessing. The concept
here assumes that every coder randomly chooses a category,
and that every category has the same probability of being
chosen. The probability for every combination with k categories
and c coders is p = 1

kc . The equations (1), (2), (3), and (4)
introduced in Section “Alpha Elements: Alpha Reliability and
Alpha Error” and “Beta Elements: Beta Reliability and Beta Error”
can now be applied for the calculation of the corresponding
values.

Ai,Rel=
p

1−
(
k− 1

)c p
(6)

Ai,Error = 1−
p

1−
(
k− 1

)c p
(7)

Bi,Error =
1− p ∗

(
k− 1

)c
− p

1− k ∗ p
(8)

Bi,Rel= 1−
1− p ∗

(
k− 1

)c
− p

1− k ∗ p
(9)

The chance corrected and normalized alpha reliability is

αi =

∣∣∣∣∝i,Rel−Ai,Rel

1− Ai,Rel

∣∣∣∣ (10)

Please note that normalization means here that the values
can only range between 0 and 1. Although the definition of αi
appears clear, the equation for βi still has to be explained. The
beta errors are designed in such a way that they describe how
errors influence the data of the category under investigation if
errors occur in the other categories. However, they do not provide
direct information about the probability of a beta error occurring,
meaning that the probability for the condition of the beta errors
has to be estimated in a first step. As described in Section “Beta
Elements: Beta Reliability and Beta Error,” P(Ei) represents the
probability for the condition of beta errors, and can be expressed
as the complementary probability of the event that all coders
agree on the different categories (the diagonal of the table in
Figure 3). For the beta error under the condition of guessing,
the corresponding probability is 1− k∗p. The realized beta errors
with chance correction are shown in Equation 11.

bi,Error = P (Ei) ∗ βi,Error −(1− kp) ∗ Bi,Error (11)

The complementary probability represents the corresponding
realized beta reliability as shown in Equation 12. Equation 13
represents the normalized beta reliability.

bi,Rel = (1− P (Ei) ∗ βi,Error )−
(
1−

(
1− kp

)
∗ Bi,Error

)
(12)

=
(
1− kp

)
∗ Bi,Error −P (Ei) ∗ βi,Error

βi =

∣∣∣∣∣ (1− P (Ei) ∗ βi,Error )− (1−
(
1− kp

)
∗ Bi,Error )

1− (1−
(
1− kp

)
∗ Bi,Error )

∣∣∣∣∣ (13)

=

∣∣∣∣∣
(
1− kp

)
∗ Bi,Error −P (Ei) ∗ βi,Error

(1− kp) ∗ Bi,Error

∣∣∣∣∣
=

∣∣∣∣1− P (Ei) ∗ βi,Error

(1− kp) ∗ Bi,Error

∣∣∣∣
The utilization of the absolute value for αi und βi is inspired by

the chi-square statistic in contingency analysis. The idea behind
this approach is that the more a system is behind the observed
data, the more data values deviate from a data set generated by
random guessing. With this in mind, the final iota is defined as
shown in Equation 14.

Ii =
αi + βi

2
(14)

Ii can be roughly interpreted as the average probability that no
error occurs. It is 1 in the case of no error, and 0 if the errors
equal the amount of errors expected by guessing.

Iota describes the reliability of every single category. In
some situations additional information on the reliability of the
complete scale is necessary. In order to aggregate the single

Frontiers in Education | www.frontiersin.org 8 May 2022 | Volume 7 | Article 818365

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/
https://www.frontiersin.org/journals/education#articles


feduc-07-818365 May 19, 2022 Time: 9:38 # 9

Berding et al. Performance and Configuration of Artificial Intelligence

FIGURE 4 | Design of the simulation study.

iota values, the Iota Concept suggests the average iota and the
minimal iota as possible indicators. The average iota represents
the mean of all iota values taking all available information
into account. This, however, implies the opportunity that the
reliability is overestimated as a low reliability in one category
can be compensated by a high reliability in other categories.
This problem is addressed with the minimum iota using only the
information of the category with the lowest reliability.

The following chapter presents the results of a simulation
study aiming to generate cut-off values for the new reliability
measure, and provides insight into its statistical properties.

SIMULATION STUDY OF THE NEW
RELIABILITY CONCEPT

Simulation Design
A simulation study was conducted with R to provide an answer
to the following questions:

(1) How strongly are the reliability values of the new concept
correlated with the true reliability of a coding scheme?

(2) How does the distribution of the data influence the
reliability values?

(3) How does the number of categories influence the reliability
values?

(4) How does the number of coders influence the reliability
values?

(5) How does the new measure perform in comparison to
other reliability measures?

(6) Which cut-off values should be used for judging the
reliability of a coding scheme?

A simulation study was performed to answer these questions.
Figure 4 shows the design of the simulation.

The first step generated coding units. For modeling the
distribution of the categories of the coding units in the
population, an equal distribution (probability for every category
1/k), a symmetric binominal distribution (probability 0.5, size
k− 1), and an asymmetric binominal distribution (probability
0.2, size k− 1) were used. For every distribution, a sample was
drawn with different sample sizes n = 10, 20, 30, 40, 50, 100, 250,
500, 1000, 1500. This procedure was repeated 50 times.

The coding process was simulated after generating samples
of true data, i.e., every coding unit was coded by a coder who
applied a coding scheme. The coding scheme guided a coder
to recover the true category with the probability p. If the coder
failed, a category was randomly assigned to the coding unit. To
simplify the simulation, it was assumed that p was equal for
each category. In the case of p = 0, there was no reliability, with
a coder randomly assigning a category to a coding unit. The
coding fluctuated unsystematically. In the case of p = 0.99, the
coding scheme led a coder to assign the same category if the
coding unit offered the corresponding indication. The coding
systematically provided stable results. The value of p represented
the reproducibility of the coding scheme and could be interpreted
as true reliability. This process was repeated for different p values
ranging from “0” to “0.99” and for every coder.

The coding of every coder provided the basis for computing
different reliability measures. The new iota values, Krippendorff ’s
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alpha, and the percentage agreement were applied in the
current simulation. Krippendorff ’s alpha and percentage
agreement provided comparison standards for the new measure.
Percentage agreement represented a more liberal measure,
and Krippendorff ’s alpha a more conservative one (Zhao
et al., 2013). The average iota and the minimum iota were
computed to generate a measure for the complete coding
scheme. The process described above was repeated for up to
eight categories and up to eight coders. This simulation helped
answer questions 1–5.

A dependent variable was simulated in a similar way to
answer question 6. The idea behind this attempt was that the
cut-off value for judging the reliability of a coding scheme
should consider the effects of further statistical computations and
derived decisions. As a result, the correlation of the true data
in a sample was compared to the correlation estimated based
on the coded data. This attempt allowed the estimation of the
expected deviation between the true and the observed correlation
for different reliability values. The correlation was measured with
Kendall’s tau, which is applicable for ordinal data. As a result,
this simulation focused only on ordinal data, using a simple
relationship. The strength of the correlation was simulated with
the probability r. The corresponding values for tau are outlined in
Supplementary Appendix B, and the results are reported in the
following sections.

Results of the Simulation Study
Results on the Scale Level
A data set of 808,500 cases was generated. Table 2 shows the
results of an ANOVA focusing on the effect sizes. According
to Cohen (1988), an η2 of at least 0.01 represents a small
effect; of at least 0.06 a medium effect; and of at least 0.14
a strong effect.

About 87–90% of the variance can be explained by the true
reliability for the average iota and Krippendorff ’s Alpha. The true
reliability can explain about 84% of the variance of the minimal
iota values. Average iota, minimum iota, and Krippendorff ’s
alpha show a very strong relationship with the true reliability, and
are able to provide an adequate indication of it. In contrast, the
true reliability can only account for about 74% of the variance
of the percentage agreement; percentage agreement is more
problematic than the other measures since it may be influenced
by construct irrelevant sources.

Whereas Krippendorff ’s alpha is not influenced by any
other source of variance (e.g., the number of categories or the
number of coders), the number of coders influences average iota.
However, this effect is very small, with an η2 of 0.05, making
it practically not important. Minimum iota shows a small bias
with respect to the number of categories, with an η2 of 0.03,
which is also of minimal practical relevance. In contrast, the
number of coders heavily influences the reliability estimation by
the percentage agreement, with an η2 of 0.15. Thus, the values for
percentage agreement are not comparable across coding with a
different number of coders.

The simulated distributions, the sample size, and the number
of categories do not bias the values of Krippendorff ’s alpha,

TABLE 2 | Effect sizes of the impact of different factors in the reliability measures.

Factor Average
Iota

Minimum
Iota

Krippendorff’s
Alpha

Percentage
Agreement

η η η η

Observed
Concentration

0.00 0.00 0.00 0.00

True Reliability (p) 0.87 0.84 0.90 0.74

Number of
Categories (k)

0.00 0.01 0.00 0.03

Number of Coders (c) 0.05 0.03 0.00 0.15

Sample Size 0.00 0.00 0.00 0.00

Distribution 0.00 0.00 0.00 0.00

True Reliability:
Categories

0.00 0.01 0.00 0.00

True Reliability:
Coders

0.01 0.01 0.00 0.03

True Reliability:
Sample Size

0.01 0.01 0.00 0.00

True Reliability:
Distribution

0.00 0.00 0.00 0.00

Categories: Coders 0.00 0.00 0.00 0.00

Categories: Sample
Size

0.00 0.00 0.00 0.00

Categories:
Distribution

0.00 0.00 0.00 0.00

Coders: Sample Size 0.00 0.00 0.00 0.00

Coders: Distribution 0.00 0.00 0.00 0.00

Sample Size:
Distribution

0.00 0.00 0.00 0.00

the average iota, and the minimum iota. In contrast, percentage
agreement is influenced by the number of categories, but not by
the sample size. However, this effect is very small.

Figure 5 shows the estimated marginal means for the
different configurations of the true reliability and the deviation
of the estimated values from the true reliability. It becomes
clear that no measure stands in a linear relationship with the
true reliability; all measures underestimate this. Average iota,
minimum iota, and percentage agreement show the highest
degree of underestimation near 0.75, while Krippendorff ’s alpha
shows the maximum deviation near 0.50. In this sense, all
measures can be classified as rather conservative.

Polynomial functions from degree one to four are calculated to
describe the relationship between the reliability measures and the
expected deviation of Kendall’s tau. Table 3 reports the R2 values
for the different functions to select an appropriate model.

R2 increases when r increases, regardless of which
performance measure is under investigation. This means the
impact of reliability on the data is more important in situations
where a strong relationship exists than in situations where there
is only a weak relationship. For the average and minimum iota,
a polynomial function of degree two accounts for more variance
as a linear function (degree one). However, polynomials of
degree three and four do not noticeably improve the R2. The
relationship between the iota measures and the deviation can
therefore be characterized best with a polynomial of degree two.
In contrast, Krippendorff ’s alpha and percentage agreement can
be best characterized by a linear relationship.
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FIGURE 5 | Estimated marginal means of the measures and their deviation from true reliability.

Figure 6 shows the polynomials for the different reliability
measures describing the expected deviations from the true
correlation within a sample. The horizontal lines in Figure 6
show where the deviation between the estimated expected
Kendall’s tau, and the true Kendall’s tau is 0.20. This information
can be used to derivate cut-off values for judging the quality of a
coding scheme. If a researcher allows an expected deviation of at
most 0.20 between the true and the estimated Kendall’s tau, the
average iota should be at least 0.474, the minimum iota should be
at least 0.377, Krippendorff ’s alpha at least 0.697, and percentage
agreement at least 0.711. This can be seen by the intersection of
the horizontal line for 0.20 and the curve for r = 1.0.

Results on the Categorical Level
An ANOVA was performed to describe the relationship between
the true reliability and the estimated iota values on the level
of single categories. The effect sizes eta and omega are: true
reliability (p): 0.84, number of categories (k): 0.00, number of
coders (c): 0.03, true reliability: categories: 0.00, true reliability:
coders: 0.01, and categories: coders: 0.00. First, the true reliability
is the central source of variance for iota on a categorical level. It
explains about 84% of the variance. Iota is thus a strong indicator
of the reliability on the categorical level. Only the number of
coders slightly influences iota, but according to Cohen (1988),
only with a minor effect.

In order to describe the relationship between the true
reliability and the caused iota values, several functions are fitted to
the data. The function f (x) = x3.861705 reveals a residual standard
error of 0.1231 by 3,891,774 degrees of freedom. This function has
the advantage that it comprises the extreme points of the scale
“zero” and “one,” which is why this function is used for further
modeling: it is invertible in the necessary range of values. The
inverse function is:

f (x)−1
=

3.861705√x

Applying this inverse function on iota will produce linearized
iota values which allow an interpretation as probabilities.
Based on the new measure, the following chapter analyzes
the performance and configuration of AI in the context of
business education.

ANALYZING THE PERFORMANCE AND
CONFIGURATION OF ARTIFICIAL
INTELLIGENCE

Simulation Design
Several algorithms of AI exist to analyze textual data. The
current study focuses on decision tree-based algorithms and
neural nets; these two kinds of AI show different characteristics.
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Decision trees are well-suited for classification tasks and have
the advantage that the results are understandable for people
(Lanquillon, 2019; Richter, 2019). This is a very important feature
because the results of a learning analytics application should be
understood by students and educators as they foster confidence

TABLE 3 | Modeling the relationship of different reliability measures and the
absolute deviation for Kendall’s tau.

Measure r R2

Polynomial
Degree 1

Polynomial
Degree 2

Polynomial
Degree 3

Polynomial
Degree 4

Average Iota 0.00 0.068 0.069 0.072 0.076

0.10 0.093 0.093 0.095 0.097

0.20 0.153 0.157 0.157 0.157

0.30 0.227 0.241 0.241 0.241

0.40 0.303 0.329 0.332 0.332

0.50 0.374 0.412 0.415 0.415

0.60 0.440 0.488 0.492 0.493

0.70 0.501 0.557 0.561 0.561

0.80 0.556 0.617 0.621 0.621

0.90 0.604 0.669 0.673 0.673

1.00 0.646 0.714 0.716 0.716

Minimum Iota 0.00 0.080 0.082 0.083 0.086

0.10 0.103 0.107 0.108 0.110

0.20 0.156 0.168 0.168 0.168

0.30 0.221 0.244 0.244 0.244

0.40 0.288 0.324 0.326 0.326

0.50 0.352 0.401 0.405 0.405

0.60 0.414 0.475 0.481 0.481

0.70 0.472 0.545 0.552 0.553

0.80 0.525 0.609 0.617 0.618

0.90 0.573 0.666 0.675 0.677

1.00 0.617 0.717 0.726 0.728

Krippendorff’s
Alpha

0.00 0.101 0.103 0.111 0.111

0.10 0.131 0.132 0.138 0.138

0.20 0.198 0.200 0.203 0.203

0.30 0.281 0.285 0.285 0.286

0.40 0.368 0.373 0.373 0.375

0.50 0.452 0.457 0.458 0.460

0.60 0.533 0.540 0.542 0.545

0.70 0.609 0.618 0.620 0.624

0.80 0.680 0.689 0.693 0.697

0.90 0.744 0.755 0.759 0.764

1.00 0.802 0.814 0.818 0.824

Percentage
Agreement

0.00 0.073 0.074 0.077 0.077

0.10 0.095 0.095 0.097 0.098

0.20 0.145 0.145 0.148 0.149

0.30 0.209 0.209 0.211 0.212

0.40 0.276 0.277 0.279 0.281

0.50 0.342 0.344 0.346 0.348

0.60 0.407 0.409 0.412 0.414

0.70 0.469 0.472 0.475 0.477

0.80 0.526 0.531 0.534 0.537

0.90 0.578 0.584 0.587 0.590

1.00 0.626 0.632 0.636 0.639

in the recommendations derived. Understanding the way an AI
produces a result is also crucial within a legal context whenever
the results provided by the software are used for decisions that
potentially have a strong impact on the further education of
students. Although neural nets are very powerful concepts of AI,
understanding the transformation from input data to output data
is more difficult. In the current study, the concept of decision
trees is implemented using the packages rpart (Therneau et al.,
2019) and ranger (Wright and Ziegler, 2017). To realize neural
nets, the study uses the package nnet (Venables and Ripley,
2007). The current study analyzes the performance of these
three implementations in an attempt to find hyperparameter
configurations optimizing their performance. Figure 7 presents
the corresponding research design.

The simulation study is based on real empirical textual data
which was analyzed in several studies. Table 4 provides an
overview of the different data sets. A detailed list of the inter-
coder reliability can be found in Supplementary Appendix A.
Every data set is divided into training and evaluation data. 75%
of the complete data is used for training, and the remaining data
for evaluation. AI performance can be tested here with textual
data that is unknown by AI. The iota concept, Krippendorff ’s
Alpha, and percentage agreement are used for performance
evaluation. Data splitting is repeated 30 times by applying
stratified custom sampling.

A numerical representation of the texts was created based on
the training data of a sample. Here, the texts were transformed
into a document-term matrix (DTM) showing the documents
in the rows and the frequency of the words in the columns
(bag-of-words approach). This was done by applying the package
quanteda (Benoit et al., 2018). The words were reduced to nouns,
verbs, adjectives, and adverbs, helping reduce the dimension of
the DTM, and limiting the analysis to the words carrying the
most semantic meaning (Papilloud and Hinneburg, 2018). The
words were also lemmatized. These steps were performed with
UDPipe (Straka and Straková, 2017; Wijffels et al., 2019), using
the HDT-UD 2.5 created by Borges Völker et al. (2019).

In a next step, the words were filtered with the two
approaches of joint mutual information maximization (JMIM)
(Bennasar et al., 2015) and information gain, each provided
by the praznik package (Kursa, 2021). With the help of these
filters, the number of words was reduced to 5, 10, 15, 20,
and 25% of the initial number. This step was very important
for neural nets in light of how they typically have the curse
of dimensionality.

The training of the different forms of AI was conducted based
on the filtered DTM. The data was here again divided into
training data and test data to perform hyperparameter tuning,
with the aim to find the best configuration for the different
algorithms. The hyperparameter tuning used 50 custom samples
of training and test data. 75% of the data was for training,
and the remaining part for testing. The hyperparameter tuning
was done with random search (Bergstra and Bengio, 2012)
because it was not clear which hyperparameters were the most
important for analyzing didactical and pedagogical texts. Table 5
reports the standard configuration and the search space for
the different parameters. A description of the meaning of the
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FIGURE 6 | Reliability values and expected deviation from true correlation.

different parameters can be found in the documentation of the
applied R packages.

A central problem for most algorithms of AI is that
they achieve good performance for categories with a high
frequency, and low performance for categories with a low
frequency (Haixiang et al., 2017). This is problematic in the
context of learning analytics, because extreme characteristics
of relevant learning concepts imply individualized learning
processes, even though these extreme characteristics usually have
a low frequency. For example, underachievers and overachievers
need individual learning processes to fully develop their potential.
However, this requires a reliable diagnosis of characteristics.
Different approaches exist to solve this problem of imbalanced
data. The current study applied an oversampling strategy where
artificial data sets were generated to balance the frequencies of
the different categories. According to Haixiang et al. (2017), this
approach should be used if the frequencies of some categories are
very small and can be implemented using the synthetic minority
oversampling technique (SMOTE). The relevant parameters for
SOMTE were also added to the hyperparameter tuning. All

computations were done with the mlr3 interface (Lang et al.,
2019). The following section reports the results.

Results
An ANOVA was performed using the SPSS software to generate
first insights. Table 6 reports the effect sizes for the different
factors. A detailed list of the achieved performance measures for
every construct can be found in Supplementary Appendix A.

About 90% of the variation in the percentage agreement and
the average iota is explained by the factors shown in Table 6.
In contrast, the investigated configuration explains about 87% of
the variation of minimum iota, and only 78% of Krippendorff ’s
Alpha. In each case, it depends on the operationalization of the
construct under investigation, as this is the most important factor
for explaining the performance of AI. The construct explains at
least 72% of the total variation. Thus, the configuration of AI only
slightly affects its performance. The AI configuration explains
between 3.6% of the total variation of the percentage agreement,
and up to 7.8% of the minimum iota.
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FIGURE 7 | Research design for testing AI performance.

TABLE 4 | Empirical data for the simulation.

# Concept/Model/Label # Constructs # Categories Sample
size

Kind of text Characteristics of
writers

Source

Texts produced by apprentices, students of business administration, and pre-service teachers for business education

1a Basic ideas of expenses 9 2 632 Written essays Apprentices and students
(EQR-Level 4–7)

Berding, 2019; Berding
and Jahncke, 2020

1b Formal strategies for expenses 5 2 632 Written essays Apprentices and students
(EQR-Level 4–7)

Berding, 2019; Berding
and Jahncke, 2020

2a Basic ideas of earnings 8 2 640 Written essays Apprentices and students
(EQR-Level 4–7)

Berding, 2019; Berding
and Jahncke, 2020

2b Formal strategies for earnings 5 2 640 Written essays Apprentices and students
(EQR-Level 4–7)

Berding, 2019; Berding
and Jahncke, 2020

3 Basic ideas of capital, equity capital,
and debt capital

16 2 149 Written essays Students (EQR-Level 6–7) Berding et al., 2021

4 Basic ideas of costs and performance 11 2 112 Written essays Students (EQR-Level 6–7) Berding et al., 2021

5 Self-reflection competence 3 4 265 Written essays Students (EQR-Level 6) Jahncke, 2019

6 Quality of lesson plans 3 4-5 455 Written lesson plans Students (EQR-Level 7) Riebenbauer, 2021

Texts representing learning materials in business education

7 Quality of learning tasks in accounting
education

14 2–3 1,707 Textbook tasks for apprentices Berding et al., 2021;
Kühne, 2021

8 Quality of learning tasks for sustainable
business administration

7 2–3 1,468 Textbooks tasks for apprentices Slopinski et al., in
preparation

9 Sustainable Development Goals (SDGs) 9 2 435 Instructional textbook texts and tasks for apprentices Slopinski et al., in
preparation

Surprisingly, the operationalization of a construct is more
important for the percentage agreement and the average
iota than for the minimum iota and Krippendorff ’s Alpha.
Krippendorff ’s Alpha is the least influenced by the constructs
under investigation. In this context, operationalization means the
quality of how a construct is defined and described in the coding
scheme of a content analysis.

Shifting the focus from the total variation to the variation
within a construct (“ETA Square Within”), there is a clear
impact of the algorithm on determining AI. The main effect

of the algorithm varies from 1% for Krippendorff ’s Alpha to
21% for average iota. In some cases, the interaction between the
construct and the algorithm is more important than the main
effect. For example, the interaction explains about 24% of the
within variation for minimum iota, while the main effect explains
only 16%. The other configurations are less important. Again,
Krippendorff ’s Alpha is least influenced by the different options
for the configuration of AI.

A three-level structural equation model was computed with
MPlus 8.6 using the Bayes estimation to generate more detailed
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TABLE 5 | Hyperparameter configuration and search space.

rpart Ranger Nnet

param S Search space param S Search space param S Search space

Min Max Min Max Min Max

cp 0.01 0 0.01 replace True True False decay 0 0 0.2

maxdepth 30 25 30 maxdepth 30 25 90 size 5 2 20

minbucket 7 1 5 splitrule gini gini, extratrees

minsplit 20 1 5

dup_size 1 1 5 dup_size 1 1 5 dup_size 1 1 5

smote.k 1 1 6 smote.k 1 1 6 smote.k 1 1 6

S, standard, param, parameter.

TABLE 6 | Effect sizes of the influence of different factors and the achieved performance measures.

Factor ETA Square ETA Square Within

Minimum Iota Average Iota Kalpha Percent Minimum Iota Average Iota Kalpha Percent

Algorithm 0.027 0.027 0.002 0.016 0.159 0.213 0.008 0.194

Algorithm * Construct 0.041 0.028 0.033 0.013 0.239 0.219 0.140 0.160

Filter 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.006

Filter * Construct 0.003 0.002 0.009 0.002 0.016 0.014 0.037 0.021

Filter Percentage 0.000 0.000 0.001 0.000 0.001 0.001 0.002 0.000

Filter Percentage * Construct 0.002 0.001 0.003 0.001 0.011 0.009 0.013 0.007

Tuned 0.000 0.000 0.006 0.000 0.000 0.000 0.027 0.000

Tuned * Construct 0.000 0.000 0.005 0.000 0.000 0.000 0.022 0.000

Algorithm * Filter 0.000 0.001 0.000 0.001 0.002 0.004 0.002 0.007

Algorithm * Filter * Construct 0.003 0.003 0.004 0.002 0.020 0.020 0.017 0.019

Algorithm * Filter Percentage 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000

Algorithm * Filter Percentage * Construct 0.002 0.002 0.002 0.001 0.014 0.014 0.010 0.012

Filter * Filter Percentage 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001

. . .

Construct 0.787 0.844 0.719 0.901 –/– –/– –/– –/–

Total Eta Square 0.869 0.909 0.801 0.938 0.474 0.507 0.350 0.439

Only factors with a relevant eta square are shown.

The column “Eta Square” represents the proportion of the total variation that a factor explains.

insights into the configuration of AI. In the current case, a
multi-level modeling approach is more appropriate because the
generated data is nested within construct and sample selections
(see Figure 7). As Wang and Wang (2020) summarize, Bayes
estimation has many advantages. The most important ones are
that models can include both categorical and continuous data,

TABLE 7 | Example for assignment-error-matrices for different Sub-Groups.

Assigned Category

All participants Men (n = 73) Women (n = 71)

0 1 0 1 0 1

True Category 0 0.134 1.00 0.143 1.00 0.127 1.00

1 1.00 0.390 1.00 0.320 1.00 0.5

This is only an example for illustration based on one iteration of the
underlying sample.
Six people did not provide information on gender.

that estimation of complex models is possible, and that this
kind of estimation prevents problematic solutions (e.g., negative
residual variances). Table 8 reports these findings.

As the values for R2 indicate, the hyperparameter tuning does
not explain much of the variation of the different performance
measures. In most cases, the application of the filter method
“information gain” leads to decreased performance values,
meaning that JMIM is the superior filter method. Regarding the
number of features included in the training, most coefficients
are negative. This means that including a smaller number
of words leads to an increased performance for all three
algorithms. The following section discusses the approach, results,
and implications.

DISCUSSION

Learning analytics is an emerging technology that supports
stakeholders in the improvement of learning and teaching
(Larusson and White, 2014; Rienties et al., 2020). The current
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TABLE 8 | Standardized coefficients for decision trees (rpart), RandomForest (ranger), and neural net (nnet).

N Optimization Evaluation

1,350,000 27,000

Measure Minimum Iota Minimum Iota Average Iota Krippendorff’s Alpha Percentage Agreement

Decision trees (rpart)

R2 0.004 0.009 0.008 0.008 0.001

Filter 0.002 0.085* 0.075* –0.077* 0.015*

Filter Percentage –0.017* –0.037* –0.035* 0.015* –0.023*

cp 0.026* 0.005 0.003 0.026* 0.002

maxdepth –0.001 –0.002 0.005 0.008 0.002

minbucket 0.035* 0.014* 0.014* 0.005 0.012

minsplit 0.003* –0.002 –0.003 0.009 –0.006

Dup size –0.040* –0.009 –0.008 –0.022* –0.007

Smote K –0.003* 0.011 0.008 0.019* 0.003

Filter: 0 = jmim; 1 = information gain

RandomForest (ranger)

R2 0.027 0.002 0.003 0.017 0.008

Filter –0.152* –0.015* –0.035* 0.011 –0.077*

Filter Percentage –0.005* –0.037* –0.034* –0.084* –0.016*

Replace 0.001 –0.007 –0.005 –0.001 –0.001

splitrule –0.014* 0.010 0.013* 0.080* 0.020*

maxdepth 0.015* 0.002 0.004 0.037* 0.002

Dup size –0.060* –0.003 0.001 0.013 0.003

Smote K 0.008* –0.002 0.006 0.037* 0.015

Filter: 0 = jmim; 1 = information gain Replace: 0 = false; 1 = true splitrule: 0 = gini; 1 = extra trees

Neural net (nnet)

R2 0.075 0.007 0.016 0.013 0.034

Filter –0.258* –0.069* –0.120* –0.066* –0.182*

Filter Percentage 0.013* –0.044* –0.036* –0.081* –0.014*

Decay 0.053* –0.011 –0.015* 0.048* –0.010

Size 0.003* 0.006 0.007 –0.009 0.002

Dup size –0.074* 0.006 0.006 –0.001 0.002

Smote K 0.009* 0.002 0.000 0.008 0.001

Filter: 0 = jmim; 1 = information gain

state of that technology uses data from different sources
providing valuable knowledge and recommendations (Ifenthaler
and Widanapathirana, 2014; Liu et al., 2018; ElSayed et al.,
2019). However, the currently used kinds of data only represent
students’ learning actions on a surface-level and provide only
a limited insight into students’ cognition and motivation
(Reich, 2015). Textual data can close this gap and further increase
the value of learning analytics for learning and teaching by
providing a deeper insight into students’ knowledge, concepts,
attitudes, and beliefs.

Realizing this potential requires the application of AI, since
learning analytics applications have to understand and to
interpret textual data in order to generate valuable knowledge
based on scientific models and theories (Wong et al., 2019; Luan
et al., 2020). In other words, AI has to conduct parts of a content
analysis with a sufficient accuracy as the interpretation leads to
corresponding interventions and recommendations. This paper
has developed an original contribution to the field of content
analysis and its application with AI in several forms:

(1) Previous measures often used in content analysis such as
Krippendorff ’s Alpha, percentage agreement, Scott’s Pi, and
Cohen’s Kappa (Lovejoy et al., 2016) are based on the basic
ideas of classical test theory and describe the reliability
of a scale with one single numeric value assuming that
the reliability is constant for the complete scale (Feng and
Zhao, 2016). The Iota Concept is based on the basic ideas
of modern test theory (de Ayala, 2009; Baker and Kim,
2017; Bonifay, 2020; Paek and Cole, 2020) and provides
a measure for every category and for the complete scale
allowing a deeper insight into the quality of content
analysis. Furthermore, the new Iota Concept provides
a gate to apply other tools developed in item response
theory for content analysis (see theoretical implications
for more details).

(2) The previous measures are based on problematic
assumptions as Zhao et al. (2013) worked out. The
Iota Concept avoids these problematic assumptions
since it is based completely on the mathematical
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concept of conditional probabilities which allows a
clear interpretation. Of course, the basic assumptions
have to be discussed in further research. For example, the
current version of iota assumes complete randomness as
a kind of random selection with repetition. This could be
problematic as complete randomness does not occur in
practice (Zhao et al., 2013). However, the Iota Concept
provides other measures that do not make a chance
correction and thus avoid this problematic assumption.
Thus, false conclusions can be avoided with the help of
the new concept.

(3) Besides contributions to a progression in the field of
content analysis, the current study offers insights in how
well AI can interpret textual data from educational contexts
and how the judgment of the quality depends on the
chosen measure of reliability (see theoretical implications
for more details). For practical applications this paper
offers suggestions for the optimal configuration of AI that
save researchers and users of AI both time and costs (see
practical implications for more details).

(4) The Iota Concept can be used to evaluate possible
bias in the recommendations of AI-supported learning
technologies. Thus, this concept contributes to fill a gap
identified by Luan et al. (2020). They determined that AI
can reproduce bias and disadvantages minorities. With
the help of the assignment-error-matrix these systematic
errors can be discovered (see theoretical implication
for an example).

In comparison to Krippendorff ’s Alpha, the new iota concept
captures a similar amount of true reliability (84 and 87% in
comparison to 90%) on a scale level. The main advantage of this
new concept is that it provides reliability estimates for every single
category. Here, iota is determined to be 84% of the true reliability.
Similar to Krippendorff ’s Alpha, iota is not biased by the number
of coders, the number of categories, the distribution of the data,
or the sample size. As a consequence, it can be considered an
adequate performance measure for inter-coder reliability.

Another advantage is that this new measure is based on less
problematic assumptions (for details, see Zhao et al., 2013).
Although the equations for αi, αi,Rel, βi, and βi,Rel appear similar
to equations 3 and 6 in Zhao et al. (2013), the definition of
its components is different. For example, αi,Rel compares the
number of units where all coders agree on with the number of all
units of that category. This conceptualization prevents paradox
3 of “comparing apples with oranges” (Zhao et al., 2013). In the
current study, only a few cases show results that can be clearly
described as paradox, as Supplementary Appendix A shows. For
example, the construct “validate” of the content analysis of tasks
in accounting textbooks achieves a Krippendorff ’s Alpha near
zero, and a percentage agreement of about 99%. The reliability
estimates of every single category with iota show that both
categories are measured reliably.

Surprisingly, Krippendorff ’s Alpha is the least influenced by
the different constructs (72%), whereas percentage agreement is
most influenced (90%) by them. Average iota and minimum iota

land in between. Intuitively, a strong influence of the constructs
should be seen as a good characteristic of a reliability measure, as
it reflects how sensitive the measure is for the operationalization
of the constructs. The same results occur for the within-subject
factors. The different configurations can explain about 35%
of the within-subject variation for Krippendorff ’s Alpha, and
between 44 and 51% for the remaining measures. As the different
configurations lead to different predictions of AI, a performance
measure should be sensitive to the configuration. The new
iota concept as a result can help to understand how different
configurations of AI affect data.

The simulation study also provides first insights into
meaningful cut-off values for different measures. By applying
Figure 6, researchers can determine which amount of reliability is
at least necessary for their study: Figure 6 provides an estimation
of the expected deviation between the true and the estimated
sample correlation. If a researcher is interested in accurate results,
the necessary reliability value can be defined. For example, the
results of this simulation study show that the proposed cut-
off value for Krippendorff ’s Alpha of at least 0.67 results in an
expected deviation of 0.225, and the recommended cut-off value
of 0.800 leads to an expected deviation of 0.105 (Krippendorff,
2019). Cohen (1988) does not explicitly develop effect sizes for
Kendall’s tau, although he does describe a classification system
where the impact of correlations changes every 0.20 units (lower
0.10: no practical relevant effect, 0.10 to lower 0.30: small effect,
0.30 to lower 0.50: medium effect, 0.50 and above: strong effect).
An Alpha of at least 0.67 ensures that the deviation has only a

TABLE 9 | Cut-off values for different measures, and number of constructs that
reach the different cut-off values.

Cut-Off Values

Measure Maximum Deviation 0.20 Maximum Deviation 0.10

Average Iota 0.474 0.601

Minimum Iota 0.377 0.478

Krippendorff’s Alpha 0.697 0.805

Percentage Agreement 71.132 82.903

Number of constructs (rpart)

Measure Maximum Deviation 0.20 Maximum Deviation 0.10

Average Iota 70 55

Minimum Iota 67 58

Krippendorff’s Alpha 12 2

Percentage Agreement 79 58

Number of constructs (ranger)

Measure Maximum Deviation 0.20 Maximum Deviation 0.10

Average Iota 77 60

Minimum Iota 73 63

Krippendorff’s Alpha 13 2

Percentage Agreement 80 63

Number of constructs (nnet)

Measure Maximum Deviation 0.20 Maximum Deviation 0.10

Average Iota 64 46

Minimum Iota 65 44

Krippendorff’s Alpha 9 2

Percentage Agreement 73 52
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small practical effect; and of at least 0.800, no practical effect.
Similar results can be derived accordingly for the other measures,
as shown in Table 9.

The performance of AI can be discussed based on the
cut-off values for the different reliability measures. Based on
Supplementary Appendix A, Table 9 reports the number of
constructs that reach the different cut-off values.

According to Table 9, only 9–13 out of 90 constructs reach
the minimal level for Krippendorff ’s Alpha. The recommended
reliability level is only reached by two constructs. In contrast,
between 73 and 79 out of 90 constructs achieve the cut-off values
according to the percentage agreement. The evaluation of the AI
performance for content analysis therefore largely depends on the
chosen reliability measure. This finding is in line with the results
generated by Hove et al. (2018) who found that different measures
produce different numeric values for the same data.

As shown in this study, iota recovers an amount of reliability
similar to Krippendorff ’s Alpha, is not practically influenced
by other sources of variance, and relies on less problematic
assumptions. The results of the new measure therefore appear
more valid. According to average iota, between 64 and 70
constructs, and according to minimum iota, between 65 and
73 constructs achieve the minimal reliability requirements. In
particular, minimum iota ensures that every single category is
measured with a minimum degree of reliability. Based on this
measure, AI can provide useful information about students’
learning by analyzing textual data. The following section derives
theoretical and practical implications of these findings.

CONCLUSION

Theoretical Implications
The Iota Concept provides a first step in the application of
item response theory concepts to content analysis by providing
a reliability measure for each category. Further research can
build upon this approach and transfer further analytical tools
to content analysis. From the different measures provided
by the Iota Concept the assignment-error-matrix seems to
be very promising. This matrix describes how coding units
belonging to different true categories are assigned by coders
to a specific category. Thus, this matrix represents how the
data is generated.

Since the assignment-error-matrix characterizes the
functionality of a coding scheme it can be used in the context of
learning analytics to characterize if a content analysis produces
similar data for different groups of people. In item response
theory this problem is describes with the term “subgroup
invariance” (e.g., Baker and Kim, 2017). Further research
can address this idea for content analysis by developing
corresponding significance tests.

As Seufert et al. (2021) found, at least two challenges occur
when using AI for educational purposes. Firstly, AI may become
so complex that humans are unable to understand the results
generated. Secondly, AI may reproduce a bias which is part of a
data set. As a result of these challenges, AI-literacy – defined as a
“set of competencies that enables individuals to critically evaluate

AI technologies; communicate and collaborate effectively with
AI; and use AI as a tool online, at home, and in the workplace
[italic in the original]” (Long and Magerko, 2020) – includes
the ability to understand how AI processes data and generates
implications (Long and Magerko, 2020). The assignment-error-
matrix can address both challenges since this matrix describes
the data generation process. This idea can be illustrated with
the following example based on the dataset from Berding and
Jahncke (2020).

The dataset comprises 450 essays written by apprentices of
business education. The corresponding coding scheme includes a
scale for assessing whether the students acquired the concept that
“expense” in accounting means that values are used for creating
products and services, or not. After training an AI with the data
from 300 participants, AI should assign the categories for the
remaining 150 students. Based on these coding and the coding of
a human coder, Table 7 reports the resulting assignment-error-
matrix.

As can be seen in Table 7, the alpha error is relatively
low for both categories. Regarding the different sub-groups
of men and women, the assignment-error-matrices differ. For
example, the alpha error for the women in category 1 (concept
is acquired) is about 0.18 percentage points higher than for the
men. Thus, the coding scheme guides human coders more often
to assign the texts of women to category 0 (concept not acquired)
although the text truly indicates the acquisition of that concept.
This bias in reproduced by the AI with the consequence that
women are not correctly represented in the data. Furthermore,
the data generation underestimates the performance of women
in comparison to men. This can lead to false conclusions
in research studies or biased recommendations in learning
analytics applications.

Referring to the AI literacy of Long and Magerko (2020),
the assignment-error-matrix could be a tool that is easy to
interpret for understanding how AI may be biased and to foster
the AI literacy of students. Furthermore, the assignment-error-
matrix can help mitigate the problem of bias in learning analytic
applications which currently remains a great challenge for that
technology (Seufert et al., 2021).

The requirements for a reliable assessment of students’
characteristics for learning analytics can be further discussed
from another perspective. If the results generated by AI are
used for judging the qualifications of learners, the demand for
objectivity, reliability, and validity must be very high (Helmke,
2015), as errors can dramatically affect the educational path of
learners. If the results are used only for fostering individual
learning processes, the standards can be lower because the
results provide orientation for teachers and educators in daily
practice (Helmke, 2015). In daily practice, a high precision is
not important as long as the direction of the conclusion leads to
the right decisions (Weinert and Schrader, 1986). Here, the sign
is more important than the concrete value. Thus, for fostering
learning processes, less strict cut-off values are sufficient. Further
studies should address which level of reliability is necessary for
learning analytics applications to support individual learning
(to be sure, the reliability of scientific studies has to adhere to
higher standards).
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Practical Implications
By providing information on every single category, developers
of coding schemes gain orientation whenever a coding scheme
needs revision. This allows a straighter process of development,
can reduce costs, and improves the quality of content analysis.
Furthermore, readers of studies using content analysis gain
deeper insights into the quality of the data. They can form
an opinion regarding which parts of the data correctly reflect
a phenomenon, and where the data may be biased. A very
helpful tool for evaluating the quality is the assignment-error
matrix which provides information on how the categories may
confound one another.

Based on the results of this study, the authors of this
paper recommend complementing the data of learning analytics
by using the textual data of students. This approach offers
the opportunity to gain deeper insights into the cognition of
learners while building a bridge to the conceptual work of
different scientific and vocational disciplines. Furthermore, AI
applications should present the reliability of every single category
by using the new Iota Concept. It appears reasonable that
the content analysis used in scientific studies should report
the reliability of every single category using the cut-off values
presented in Table 9. We recommend using the minimum iota, as
this value ensures a minimal reliability standard for every single
category that cannot be compensated by the superior reliability of
other categories.

The calculation can be easily done with the package iotarelr
which was developed simultaneously to this paper. Currently the
package is only available at github. A submission to CRAN is
planned in the future. News, introductions, and guides on how
to use the package can be found via the project page2.

Regarding the configuration of AI, the results in Table 9
show which hyperparameters should be explicitly configured,
and which parameters should be minimized/maximized. Of
particular importance are the filter method and the number
of features/words used for creating AI, since the standardized
coefficients are relatively large. The aim of training AI under
the condition of small sample sizes is the creation of a
compressed textual representation relying on the most important
information. Based on this study, JMIM can be used for selecting
relevant words. The number of words should then be clearly
filtered to about 5% of the initial number or even lower. Further
research could focus the impact of other methods to create
compressed textual representations. Technically, factor analysis,
latent semantic analysis, latent Dirichlet allocation, and global
vectors may be interesting for this purpose.

LIMITATIONS AND FURTHER RESEARCH

The limitations of this study point toward the need for
future research. First, the simulation study uses only a simple
linear relationship for ordinal data to derive cut-off values
for the new measures. Further studies could investigate more
complex relationships for ordinal and nominal variables. Second,

2https://fberding.github.io/iotarelr/

the dependent variable is assumed as being measured with
perfect reliability. This assumption does not hold in practice.
Consequently, the cut-off values have to be higher. To derive
more meaningful cut-off values, further simulation studies
should therefore vary the reliability of the dependent variable.
Third, the simulation study assumes that the true reliability is the
same for all categories. Further research should investigate the
relationship between iota and the true reliability for more varying
values between the categories. Forth, the data for training AI was
gathered from existing studies. The structure of the data did not
allow to include an indicator of the quality of the initial data into
the analysis although the study by Song et al. (2020) showed that
this is a critical factor. Therefore, future studies should include
corresponding indicators in their analysis.

In the current study, only a limited number of filter methods
and kinds of AI could be applied. Additional research should
include more of these different methods to find the best
algorithms for varying conditions.
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