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Schools are increasingly using technology to personalize instruction. Programs such as
Khan Academy and Zearn produce a vast array of data on students’ behaviors and
outcomes when engaged in technology-based instruction. However, these datasets
rarely include equally detailed information from when students engage in non-
technological learning activities. This study explores the implementation of an innovative
model for adolescent mathematics instruction that includes detailed data from both
technological and non-technological learning modalities. Much of the research on the
implementation of technology-based personalization has focused on the effects of
technology programs as isolated interventions rather than within blended models that
combine instructional technology with significant changes to teacher-led instruction.
Furthermore, existing studies of blended, personalized programs very rarely utilize
daily programmatic data to push inside the “black box” of day-to-day interactions
among students, teachers, and content. We attempt to address these gaps by using
hierarchical cluster analysis, cluster trees, and clustergram heatmaps to explore and
visualize data from 170,075 daily lesson assignments and assessments generated by
1,238 unique fifth through eighth grade students across five schools implementing an
innovative model for blended and personalized middle school math instruction. We
explore three research questions: (1) To what degree did the daily implementation
of this program reflect its stated goal of personalizing instruction? (2) Did student
outcomes vary based on exposure to each of the learning modalities utilized by this
program? (3) Did student outcomes vary based on the academic proficiency of students
entering the program? These analyses support three main findings: (a) The instructional
reform succeeds in creating a highly personalized student experience, but was likely
hampered in implementation by policy and logistical constraints; (b) Participation in a
learning modality focused on long-term projects was associated with a lower degree
of personalization but higher student outcomes than the other six learning modalities
utilized by the program, particularly for some latent clusters of students; and (c) Initially
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higher-performing students earned higher scores on daily assessments than initially
lower-performing students, despite the program’s intended goal of fostering equity in
student outcomes through personalization of content to meet each student’s supposed
level of readiness.

Keywords: cluster analysis, data visualization, heatmaps, personalized instruction, personalized learning,
blended learning, technology

INTRODUCTION

Educators have consistently grappled with the challenge of
meeting the varied academic needs of a diverse student body.
This challenge is a consequence of three fundamental realities
at the core of American public education: (1) the mandate
that all students up to a certain age attend school; (2) the
desire for all students to obtain a uniform, baseline level
of academic achievement; and (3) the stark disparities and
inequalities already present at the start of formal schooling
(Bidwell, 1965). Schools have historically explored a variety of
strategies to address cognitive diversity, including small group
and personalized instruction (McDonald, 1915; Bloom, 1984;
Tyack and Cuban, 1995; Keefe and Jenkins, 2000; Januszewski,
2001; Corno, 2008; VanLehn, 2011). However, modern American
schools were explicitly designed to promote standardization
and uniformity, not personalization (Tyack, 1991; Cuban, 1993;
Tyack and Cuban, 1995). This tension between the desire to
personalize instruction and the prevalence of structures that
promote consistency, such as age-grade cohorts and standardized
testing, has impeded the ability of schools to meet the unique
learning needs of every student.

Over the last 30 years, practitioners and researchers have
explored the potential of new technologies to personalize
instruction. Many of these technology-based tutoring systems
trace their origins to computer-assisted instructional tools that
were built at Carnegie Mellon University in the 1970s and
1980s (Yazdani, 1987; Murray, 1999). These systems began with
simple branching trees of instructional content, but eventually
expanded to include the ability to generate new questions
based on pre-set mathematical operations and general teaching
strategies. More recently, intelligent tutoring systems such as
Reasoning Mind, ALEKS, Cognitive Tutor, and ASSISTments
have been designed to provide immediate and customized
feedback to students, with the goal of replicating the experience
of customized, one-on-one tutoring while avoiding the cost of
procuring a human teacher. These programs have been found
to produce significant student academic gains in some contexts
compared to traditional instructional models (Koedinger et al.,
1997; Koeclinger et al., 2000; Hardy, 2004; Hagerty and Smith,
2005; Pane et al., 2013, 2014). These tools have been discussed
extensively in the learning analytics and educational data mining
literature, and the underlying mathematical principles used to
create them were essential in developing many of the technology-
based personalization programs that are currently being used in
classrooms across the country.

In some cases, technological tutoring tools have been
“blended” with traditional teacher-led instruction to created

hybrid instructional models (Horn and Staker, 2014; Murphy E.
et al., 2014; Murphy R. et al., 2014; Brodersen and Melluzzo,
2017). In this paper, we study one such anonymous blended
learning program, which we will refer to as Technology-Based
Personalization Program, or TBPP. Students participating in
TBPP begin each school year by taking a diagnostic mathematics
assessment. The results from these assessments are used to
generate individualized learning plans (“playlists”) for each
student, which can span skills from 2nd through 9th grade.
Upon entering class each day, each student is given a customized
lesson utilizing one of seven potential instructional methods
(“modalities”) followed by a short daily assessment. The results
of these assessments are used to update each student’s playlist
and determine the skill and modality assigned to that student
for the next day. Crucially, the available modalities include a mix
of teacher-led, technology-driven, and collaborative instructional
formats. TBPP also reorganizes the learning environment from
multiple isolated classrooms into one large space containing
between four and eight adult instructors and approximately
100 students, facilitating the dynamic grouping and re-grouping
of students each day based on their individual playlists.
TBPP’s theory of action is to maximize student learning by
customizing the difficulty of the content provided to each
student. More advanced learners will be given above-grade
level content, while learners with gaps in their knowledge
will receive targeted remediation. Leveraging technology to
provide students with their “just-right level” content will
replicate the benefits of one-on-one tutoring, but at a fraction
of the cost.

While blended programs like TBPP have been heavily studied,
the existing research focuses disproportionately on macro effects,
such as overall impact on learning over the course of a year
(Means et al., 2010; Murphy E. et al., 2014; Murphy R. et al.,
2014; Pane et al., 2015, 2017; Brodersen and Melluzzo, 2017;
Muralidharan et al., 2019). Comparatively little research on
blended learning has focused on the student-level and lesson-
level mechanisms that contribute to overall student achievement,
and those that do exist rely overwhelmingly on student and
teacher self-reports or observations rather than students’ daily
learning outcomes (Hollands, 2003; Murphy E. et al., 2014;
Murphy R. et al., 2014; Pane et al., 2017). The fact that TBPP’s
model captures detailed, lesson-level data on both content
assignment and student learning outcomes across technology-
based, collaborative, and teacher-led modalities makes it uniquely
well positioned for the application of quantitative methods
to explore ground-level implementation, an approach that has
been utilized relatively rarely when studying blended learning
programs (Krumm et al., 2018).
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We specifically explore the following research questions:

(1) To what degree did the daily implementation of this
program reflect its stated goal of personalizing instruction?

(2) Did student outcomes vary based on exposure to each of
the learning modalities utilized by this program?

(3) Did student outcomes vary based on the academic
proficiency of students entering the program?

To address our research questions, we utilize hierarchical
cluster analysis and data visualization heat maps to examine the
relationship between variation in students’ daily performance and
variation in instructional modality, instructional content, and
date within the academic year. We also compare these lesson-
level data points to end-of-year outcomes on two standardized
assessments. Finally, we explore whether these relationships vary
by students’ initial mathematical ability. Although hierarchical
cluster analysis and data visualization heatmaps have been
applied effectively across a wide range of fields, this paper
represents among the first applications to the daily instructional
assignment and student outcome data generated by a blended
learning program (Bowers, 2007, 2010; Bowers et al., 2016;
Krumm et al., 2018; Bowers and Krumm, 2021). Demonstrating
the efficacy of these techniques would be of great value to the field,
given the rapid growth of technology-driven learning programs
and the unique datasets they produce.

LITERATURE REVIEW

In the sections below, we discuss the research literature on
personalization, the use of technology for instruction, and
blended learning. Afterward, we discuss the TBPP program,
which falls at the intersection among all three.

Personalization
The necessity to personalize instruction to meet pupils’ unique
needs has existed for as long as education itself; Corno
(2008) cites references to educational differentiation in Chinese,
Hebrew, and Roman texts dating back more than two millennia.
However, this need for personalization conflicts with the “one
size fits all” structures of American schools, which were designed
at the turn of the 20th Century to accomplish the dual goals of
assimilating millions of young immigrants while preparing all
students to contribute to an industrial economy (Tyack, 1991;
Cuban, 1993; Tyack and Cuban, 1995). Dewey (1916) published
a strong philosophical rationale for personalized learning with
his landmark “Democracy in Education.” In this and other texts,
Dewey argued that children should not be marched lockstep
through a curriculum, but instead encouraged to nurture their
own learning through self-guided exploration and discovery
(Dewey, 1916). The theoretical justification for personalized
learning was buttressed in 1978 when Harvard University Press
published, for the first time in English, Lev Vygotsky’s framework
for personalizing content according to each student’s unique
“zone of proximal development” (Vygotsky’s work had been
published in the Soviet Union in the 1920s and 1930s, but did
not attract attention in the West until the late 1970s) Vygotsky
and Cole, 1978. In this model, the ascent to knowledge can

be compared to climbing a tree, with the teacher’s role as
helping each student climb to the branch just a little farther
than they could reach unaided (Corno, 2008). The zone of
proximal development serves as the next highest tree limb—just
out of the student’s independent grasp, but reachable with guided
support from a teacher.

Dewey’s vision, as well as that of other educators like
Maria Montessori, have been evidenced in multiple attempts
to build and implement personalized schooling models over
the last hundred years. One of the most prominent was the
Dalton Plan, a personalized model that generated intense interest
among educators and the general public during the 1920s and
1930s. The Dalton Plan did away with self-contained classes,
fixed times for discrete subjects, and annual promotions and
retentions of students. Instead, students were empowered to
negotiate monthly contracts with their teachers outlining both
their minimum, mandatory tasks and additional opportunities
for self-directed enrichment. Students moved at their own
pace through the curriculum and had significant latitude to
choose their own content, peer collaborators, and physical
workspaces. By 1932, nearly ten percent of American schools
reported that they had implemented some version of the Dalton
plan. However, this popularity would not prove durable; many
teachers objected to the significant time required to implement
individualized instruction, and parents complained that student
social and academic behaviors suffered (Tyack and Tobin,
1994). When a researcher attempted in 1949 to identify schools
that still utilized the Dalton Plan, she found it in use at
only a single site—the original Dalton School in Manhattan
(Tyack and Cuban, 1995).

Today, personalized instruction, also known as adaptive
teaching or differentiation, is one of the most prominent
classroom-level strategies for accelerating learning, and is backed
by strong evidence of effectiveness (Bloom, 1984; Tomlinson,
2001; Connor, 2019). Corno (2008) describes adaptive teaching
as the real-time assessment and differentiation which experienced
teachers utilize throughout instruction. In her words, “In
teaching adaptively, teachers respond to learners as they work.
Teachers read student signals to diagnose needs on the fly
and tap previous experience with similar learners to respond
productively” (p. 161). While differentiated instruction is widely
recognized as characteristic of good teaching, there is little
evidence that teachers are capable of implementing it successfully
at scale (Tomlinson et al., 2003; National Mathematics Advisory
Panel [NMAP], 2008; Suprayogi et al., 2017; Smale-Jacobse et al.,
2019). In one recent study, researchers provided teachers with
extensive professional development and ongoing coaching on
how to implement differentiation in their classrooms. However,
three years later, they found no increase in the level of
differentiation utilized by these teachers (Petrilli, 2012). Teachers
themselves admit that they struggle to implement differentiation
in their classrooms. In a 2008 national survey, more than eight
in ten teachers said that differentiated instruction was “very” or
“somewhat” difficult to implement (Farkas et al., 2008).

Given these challenges, it is not surprising that practitioners
and policymakers have seized upon technology as a tool to
support personalization. However, enthusiasm for technology-
based personalization may be outpacing clarity on the most
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effective pathways for implementation. A recent EdWeek report
suggested that “In the diverse and ever-changing world of
educational technology, the term ‘personalized learning’ seems to
be everywhere, though there is not yet a shared understanding
of what it means” (Cavanagh, 2014). A consortium of prominent
education philanthropies led by the Bill and Melinda Gates
Foundation published a “working definition” in 2017, which
named personalized learning environments as characterized by
(1) Individual learner profiles, (2) Personal learning paths,
(3) Competency based progression, and (4) Flexible learning
environments (Pane et al., 2017). In 2010, a symposium convened
by the Software and Information Industry of America (SIIA),
ASCD, and Council of Chief State School Officers published
an alternate list of essential elements for personalized learning,
including: (a) Flexible, Anytime/Everywhere Learning; (b)
Redefine Teacher Role and Expand “Teacher;” (c) Project-Based,
Authentic Learning; (d) Student Driven Learning Path, and
(e) Mastery/Competency-Based Progression/Pace (Wolf, 2010).
Although there is significant overlap between the definitions
produced by the Gates Foundation and the SIIA symposium,
there are also substantive differences. For example, the SIIA
definition includes a redesigned role for teachers, while the Gates
Foundation definition does not explicitly address teachers’ roles.
Similarly, the SIIA definition includes project-based, authentic
learning as a key component of personalized learning, but the
Gates Foundation definition does not. The overall impact of these
differences is to keep the Gates Foundation definition relatively
narrow, whereas the SIIA definition envisions a broader redesign
of the school experience.

The research literature has demonstrated that personalized,
technology-based tutoring programs can have significant positive
effects on learning, particularly in mathematics (Koedinger et al.,
1997; Koeclinger et al., 2000; Hardy, 2004; Hagerty and Smith,
2005; Barrow et al., 2007; Pane et al., 2013, 2014; Roschelle
et al., 2016). Muralidharan et al. (2019) offer a list of potential
channels of impact for technology-based tutoring, including
“circumvent[ing] limitations in teachers’ own knowledge;
delivering engaging (often game-based) interactive content
that may improve student attention; delivering individually
customized content for students; reducing the lag between
students attempting a problem and receiving feedback; and,
analyzing patterns of student errors to precisely target content to
clarify specific areas of misunderstanding.”

Blended Learning
Although the terms “blended learning” and “personalized
learning” are often used interchangeably, they actually represent
distinct but frequently overlapping constructs; a school may be
blended without being personalized, or personalized without
being blended (Picciano, 2014; Brodersen and Melluzzo, 2017).
For example, a school that is blended but not personalized might
include students alternating between in-person and technology-
based instruction, but learning the exact same content in each
modality, while a school that is personalized but not blended
might feature highly differentiated content delivered through
non-technological mechanisms like small group tutoring. The
Christensen Institute defines blended learning as “a formal

education program in which a student learns: (a) at least in
part through online learning, with some element of student
control over time, place, path, and/or pace; (b) at least in part
in a supervised brick-and-mortar location away from home;
and (c) the methods along each student’s learning path within
a course or subject are connected to provide an integrated
learning experience” (Horn and Staker, 2014). In addition, many
have used the term “competency-based learning” synonymously
with both personalized learning and blended learning, although
both the Gates and SIIA definitions included competency-based
advancement as only one element of the broader personalization
concept (Horn, 2017).

Unlike studies of technology-based tutoring programs, which
are able to isolate a highly specific intervention and describe
its function in great detail, the teacher-led nature of blended
learning means that students’ lived experiences and outcomes
can vary wildly across schools, or even across classrooms within
the same school. For example, one study of blended learning in
five charter school networks found a wide array of instructional
software and models in use, with a mixture of positive and
negative effects. It also found that schools exhibited an eagerness
to continually experiment with their models, meaning that even
within a single school, the vision for blended learning was likely
to change over time (Murphy E. et al., 2014). More recent studies
have similarly found some positive effects, but the diversity of
models, contexts, and methodologies make it difficult to draw
sweeping conclusions about blended learning models as a whole
(Brodersen and Melluzzo, 2017). One study of a blended learning
program utilizing the online program Khan Academy found
that implementation varied so significantly within schools that it
would be impractical to even attempt to estimate a uniform effect
on student achievement (Murphy R. et al., 2014).

Not surprisingly, this inconsistency in implementation has
made it difficult to isolate an effect for blended learning as a
whole. Instead, the term “blended learning” seems to apply to
a wide array of instructional activities, some effective and some
ineffective, with the specific daily relationships among teachers,
students, and content largely inside a “black box” that the existing
literature rarely explores (Means et al., 2010). The most typically
used methods for understanding the day-to-day implementation
of blended learning programs are student and teacher surveys
(Hollands, 2003; Murphy E. et al., 2014; Murphy R. et al., 2014;
Pane et al., 2017). However, this information is limited by its
self-report nature. In contrast, the use of technology within
blended models offers an underutilized opportunity to study their
implementation through examination of the daily programmatic
data that they produce, which are much larger in volume than
traditional education data, of a much finer grain-size, time-
specific and inherently longitudinal, and naturally integrated with
information on program delivery (Natriello, 2012, 2013; Krumm
et al., 2018). Of course, the vast majority of blended learning
programs capture daily data only on the technology-driven
portion of the model, not the parallel teacher-driven portion.
The lack of integrated, daily data spanning both technology-
driven and teacher-led learning modalities has been an obstacle to
understanding more deeply how blended learning models work,
for which kinds of students, and in which contexts. This paper
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offers the unique contribution of having access to exactly this type
of integrated, daily data.

DATA AND METHODS

Description of the Program Under Study
This study examines the implementation of an anonymous
technology-based personalization program (TBPP). TBPP can
be described as both personalized and blended according to
the theoretical lenses described in the previous section. From a
technical perspective, TBPP has five key components. First is a
“concepts map” that charts the full set of discrete mathematical
skills spanning grades 2–9 (roughly corresponding to ages 7–
14) and the hypothesized relationships among those skills.
Second is each student’s unique “playlist,” which is generated by
mapping each student’s results on a beginning-of-year diagnostic
assessment against the concepts map to identify his or her zone
of proximal development. Third is TBPP’s instructional content,
which is sourced from a variety of curriculum developers,
online learning programs, and TBPP’s own in-house curriculum
department. Fourth are “exit slips,” short unique assessments that
students take at the end of each day to measure mastery of that
day’s instructional content. Fifth, a “learning algorithm” captures
and analyzes the data from each exit slip, updates the student’s
playlist, and generates that student’s assignment for the next day,
including both the mathematical content and modality.

Each 35 min TBPP lesson utilizes one of seven different
instructional modalities. In the Online Instruction (OI) and
Online Practice (OP) modalities, students work independently
on digital content that they access through the online TBPP
portal. OI introduces students to new content, whereas OP
provides practice opportunities with content to which students
have already been introduced. The Paper Practice (PP) modality
also sees students working independently using either online or
traditional paper/pencil content. In the Large Group (LG) and
Small Group (SG) modalities, students work in groups with one
to five peers to solve mathematical problems addressing a shared
skill. The Teacher Instruction (TI) modality is most similar to
traditional instruction, with teachers guiding groups of 6–30
students through a shared mathematical concept. Finally, in the
Long Term Projects (LTP) modality, students work with the same
peer group and teacher over multiple lessons to solve a complex,
real-world problem. This day-to-day consistency in both content
and student group makes the LTP modality different than all
other modalities, in which new groups are generated dynamically
each day. The TBPP algorithm intentionally assigns each student
to all seven modalities across the academic year, and at any
given time a typical TBPP classroom will simultaneously feature
some students learning independently using the OI, OP, or PP
modality, some students working in groups using the LG or SG
modality, and some students learning from teachers using the TI
or LTP modality. Students experience two 35-min lessons back to
back each day, usually addressing the same skill, followed by the
day’s exit slip, which they have ten minutes to complete.

Because the TBPP instructional experience is so different from
that of a traditional classroom, we will describe it in more detail

from the perspective of a typical student, whom we will call
Joseph. Joseph begins his daily TBPP experience by walking
into a large, open learning space that is approximately the
size of four traditional classrooms. Upon entering the learning
space, Joseph retrieves his personal laptop, logs onto the TBPP
portal, and checks his personal schedule for the day. Joseph was
introduced to the skill of multiplying decimals yesterday, but did
not demonstrate mastery on yesterday’s exit slip. As a result, the
TBPP algorithm today assigns him to spend 35 min practicing
decimal multiplication in a Large Group (LG) modality with four
other students who also need to master this skill, then assigns
him to a Paper Practice (PP) modality where he will work on
the skill independently using online content from Pearson that
he accesses via his computer. After seventy minutes, Joseph opens
his personalized exit slip through the TBPP portal and attempts
to answer five multiple choice questions on multiplying decimals.
Joseph is delighted to see that he has gotten four out of the five
questions correct, which TBPP interprets as indicating mastery.
Joseph logs off and closes his computer, knowing that he is now
ready to move on to the more complex skills, such as dividing
decimals, that TBPP will present to him tomorrow. Figure 1
provides an overview of Joseph’s schedule on the typical day that
we just described.

Technology-based personalization program qualifies as both
a personalized learning program and a blended learning
program according to the criteria that we cited in the previous
section. Crucially, both the technology-led and teacher-led
portions of the program are personalized; this makes TBPP
different from most blended learning programs, which typically
personalize the technology-led portion of instruction while
retaining the features of traditional schooling for the teacher-
led portion (Horn and Staker, 2014; Murphy E. et al., 2014;

FIGURE 1 | Sample student daily schedule.
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Horn, 2017). This high degree of personalization across both
the technology-led and teacher-led portions of the model makes
TBPP a uniquely interesting case study for better understanding
of personalized learning.

Data
Our data was generated by TBPP’s implementation in the 2015–
2016 academic year with fifth through eighth grade students
in five public K-8 schools in a mid-sized urban district in the
United States (i.e., approximately aged 10–14). The vast majority
of students were either black or Latino, and virtually all were
eligible for free or reduced-price lunch; the demographics of
these five schools were representative of their district. These
five schools implemented TBPP for all of their enrolled students
within fifth through eighth grade. In other words, TBPP
represented the full mathematics instructional program for the
full population of students in the eligible grades.

One embedded feature of the TBPP program is the ability to
collect detailed daily programmatic data that links exit slips and
lessons, including information on the modality, content, teacher,
curricular materials, date, and time of day for each instructional
event. Exit slips are in a multiple-choice format and machine-
scored. The vast majority of exit slips contain five questions, but
some contain four or six questions. Students must answer at least
75% of questions correctly in order to “pass” and advance in their
TBPP playlist. The questions on each exit slip are drawn from a
library of items written by content experts employed by the non-
profit organization that produces TBPP, which claims to test the
validity and reliability of these items.

Across these five schools in 2015–2016, TBPP recorded data
for 247,560 instructional events and 170,075 linked exit slips from
1,238 unique students and 48 teachers. Table 1 indicates the total
number of instructional events for each modality, as well as the
total number of linked exit slips.

Although our data contain complete information on all
independent variables, some instructional events lack data for
the dependent, exit slip variable. The most prominent reason for
absent exit slip data is related to the unique design of the Long
Term Project (LTP) modality. Unlike most modalities, which are
discrete, one-day instructional events, the LTP modality engages
students in a complex, real-world task that takes multiple days

TABLE 1 | Instructional events and exit slips per modality.

Modality Instructional events
(n = 247,560)

Exit slips
(n = 170,075)

Independent-led modalities

Online instruction (OI) 61,211 51,809

Online practice (OP) 31,154 26,104

Paper practice (PP) 31,675 26,172

Student-led modalities

Large group (LG) 12,975 11,132

Small group (SG) 18,729 15,305

Adult-led modalities

Teacher instruction (TI) 38,636 32,567

Long term projects (LTP) 53,180 6,986

to complete. Because these LTPs unfold over more than a week,
TBPP only assigns an exit slip for approximately one in seven LTP
lessons (usually on day two or three). Accordingly, we removed
from our analytic sample the 46,194 LTP lessons not paired with
exit slips, leaving a total of 201,366 instructional events and
170,075 exit slips linked to 1,238 students and 48 teachers, with
6,986 LTP lessons remaining in the dataset.

After the unmatched LTP lessons were removed, 31,291 of the
remaining 201,366 instructional events lacked corresponding exit
slip data. There are several reasons why an instructional event
could lack a linked exit slip, including timing issues (i.e., the
student ran out of time to complete the exit slip), technology
issues, behavior issues, a fire drill, or a partial absence/early
pickup. We tested for relationships between student-level exit
slip completion and measured student characteristics, including
school, grade level, gender, race/ethnicity, free- and reduced-
price lunch status, limited English proficiency, special education
status, and proficiency on the Fall 2015 MAP Math assessment.
These analyses revealed no patterns in exit slip missingness.

Our dataset also included student-level scores on two separate
standardized mathematics assessments administered during the
2015–2016 academic year. The first was the state-mandated
Spring 2016 PARCC (Partnership for Assessment of Readiness
for College and Careers) assessment. PARCC is criterion-based,
meaning that all students are assessed using a common set of
grade-level questions. We also included Fall and Spring scores
on the MAP (Measures of Academic Progress) assessment, which
is produced by the Northwest Evaluation Association (NWEA).
In contrast to the PARCC exam, the MAP assessment utilizes
a Rasch measurement model, with students measured on a
continuous scale ranging from kindergarten to high school level
skills. The MAP assessment is computer-adaptive, meaning that it
differentiates the questions presented to each student depending
on how that student performed on earlier questions. For this
study, we z-scored (standardized) MAP scores within each grade
at each administration.

The TBPP algorithm is designed to personalize the level of
assigned content to each student’s zone of proximal development.
However, the principals of the schools implementing TBPP
expressed concern that, while TBPP was potentially effective
at filling in gaps in students’ prior knowledge, it might
not sufficiently expose low-performing students to the grade-
level skills that would be covered by the state’s high-stakes
standardized PARCC assessments. Accordingly, TBPP provided
a dedicated test-prep period beginning several weeks prior to the
PARCC exam in which the skill-level personalization component
of TBPP was essentially “turned off” and all students worked
exclusively on grade-level content.

Methods
Cluster Analysis
We utilized cluster analysis to identify groups of students
with similar patterns of experiences across the year in both
daily content assignments and outcomes on daily exit slip
assessments. Cluster analysis is a descriptive data mining
procedure for uncovering latent groupings within unstructured
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data (Romesburg, 1984; Jain et al., 1999; Alfredo et al., 2010).
It has sometimes been described as a form of “quantitative
phenomenology” due to its ability to display detailed and rich
patterns of data within and across individual cases (Bowers
et al., 2017). We chose to utilize cluster analysis because it
presents several features that are well suited to our research
questions. First, it is well suited to educational datasets that are
highly interdependent, nested, and hierarchical, since it does
not rely upon the typical assumptions associated with ordinary
least squares (OLS) regression regarding multicollinearity,
heteroskedasticity, and case independence, (Howell, 2002;
Bowers, 2007, 2010). Since most educational data is inherently
nested – for example, this study features students nested within
five different schools – selecting an analytic technique that can
operate upon nested, hierarchical structures is ideal. Second,
it retains the granularity of the data rather than aggregating
to the mean and reporting generalized trends (Bowers, 2007,
2010). This is especially valuable when studying topics with
an underdeveloped research base, such as blended instructional
models utilizing technology-based personalization.

There are two types of cluster analysis: supervised analysis,
in which the researcher presupposes certain assumptions about
the character of the groups, and unsupervised analysis, in which
the nature of the groups is determined by the structure of the
data itself (Eisen et al., 1998; Bowers, 2007). We chose to utilize
unsupervised analysis due to the paucity of extant literature on
technology-based personalization that might provide guidelines
regarding the structure of the data (Wang and Woodworth, 2011;
Wendt and Rice, 2013; Murphy E. et al., 2014; Pane et al., 2015).

We chose hierarchical clustering over the two most prominent
alternatives, K-means clustering and self-organizing maps (Eisen
and DeHoon, 2002; Jaskowiak et al., 2014). The primary
disadvantage of K-means clustering is that it requires the
supposition of a pre-set number of clusters prior to initiating
the clustering algorithm. Since there is no reason based on
the literature or theory to assume a priori a specific number
of clusters, any choice would be arbitrary and could interfere
with obtaining the most accurate results (Jain et al., 1999; Eisen
and DeHoon, 2002). One alternative option could be to utilize
principal component analysis to identify a number of clusters
that represent a significant portion of data, then apply k-means
clustering for the classification (Ding and He, 2004). However,
there is evidence that the principal components that contain most
of the variation in the data do not necessarily capture most of the
cluster structure, and clustering with principal components does
not necessarily improve cluster quality (Yeung and Ruzzo, 2001).

Self-organizing maps, which were invented by Teuvo
Kohonen in the early 1980s, are a technique for mapping
high-dimensional vectors onto a smaller dimensional space
(Mangiameli et al., 1996; Eisen and DeHoon, 2002). One
advantage of self-organizing maps compared to K-means
clustering is that self-organizing maps do not require any prior
knowledge about the structure of the data. However, while
self-organizing maps are well suited to high-dimensional input
spaces like data on the structure of the human brain, our data
requires clustering only according to the exit slip score or
content gap. Accordingly, self-organizing maps would have

been a poor choice for this data, which is misaligned with the
type of continuous, high-dimensional input space for which
self-organizing maps are typically utilized.

Even within the family of hierarchical clustering methods,
there are several linking methods and distance measures from
which to select (Romesburg, 1984; Costa et al., 2002; Jaskowiak
et al., 2014; Nitkin, 2018). Following the recommendations from
the previous literature in this domain (Bowers, 2007, 2010;
Bowers et al., 2016; Krumm et al., 2018) we used uncentered
correlation as the distance metric, with average linkage as the
agglomeration method. Utilizing average linkages offers several
advantages over the alternative single linkage and complete
linkages methods. First, it is robust to missing data (Bowers, 2007,
2010). Second, it incorporates the full range of data from each
case rather than only the most similar or dissimilar measure,
making it a good fit for a research question that seeks to explore
the full yearlong experience for each student. Finally, average
linkages is widely used within the literature, and Romesburg
(1984) suggests it as the preferred hierarchical clustering method
(Eisen et al., 1998; Bowers, 2007).

We first grouped students according to the similarity of the
pattern of their standardized exit slip scores across the year.
In addition, since exit slip scores are directly associated with
each day’s assigned content, and content assignment is in turn
determined by each student’s unique progression through the
TBPP concepts map, we conducted a separate cluster analysis
using the “content gap” of assigned lessons as the relevant set of
data upon which to cluster. Because the grade-level of any given
skill students encounter can be either above, on, or below their
assigned (administrative) grade level, we generated a content
gap measure to indicate the difference between the grade level
of the instructional content for each lesson and the student’s
assigned grade level. For example, lessons delivered to a sixth-
grade student featuring fourth, fifth, or sixth grade content would
be coded −2, −1, or 0, respectively. In sum, keeping with Krumm
et al. (2018), we addressed our research questions by analyzing
the data in two different ways: first, with students grouped
according to similarity in the pattern of their exit slip scores, and
second, according to similarity in the pattern of the content levels
assigned to them by the TBPP algorithm.

Cluster Trees and Heatmaps
We utilized cluster trees and heatmaps as visual analytic
techniques to explore the clusters generated using hierarchical
cluster analysis. Our first data visualization technique utilized
cluster trees to represent the degree of similarity across clusters,
providing a physical representation of whether distinct groups of
students experienced TBPP in specific, disparate ways. Cluster
trees, which are sometimes also known as dendrograms, use
lines to link cases and clusters of cases based on their similarity
to one another (Romesburg, 1984; Eisen et al., 1998). The
algorithm places cases and clusters closest to those with which
they are most similar, enabling the reader to use the length of the
connecting line as a proxy for the quantitative similarity of the
underlying data.

Our second data visualization technique entailed a form of
heatmap known as a clustergram. First pioneered in the field of
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bioinformatics, clustergrams represent the variables of interest
with blocks of color, aiding the human eye in quickly and
efficiently detecting patterns across cases (Eisen et al., 1998;
van’tVeer et al., 2002; Bowers, 2007, 2010, 2021; Wilkinson
and Friendly, 2009). A clustergram typically displays cases as
rows and data categories as columns. For our analysis, rows
represent students and columns represent modalities, lessons,
days of instruction, or months of instruction. Each individual
data point is represented by a color that reflects its value, with
red indicating higher values and blue indicating lower values.
Accordingly, the clustergram enables us to visualize the complete
learning trajectory of each student longitudinally across the year.
Cluster analysis and heatmap visualization were completed using
RStudio 1.0.143 software using the ComplexHeatmap package
(Gu et al., 2016).

The list below summarizes our analytic process, drawing
heavily from Romesburg (1984) and Bowers (2007):

(1) Convert clustering variables (i.e., exit slip or content
assignment) onto a standardized scale

(2) Create a resemblance matrix by calculating a distance
measure between every case

(3) Combine the two most similar cases into a cluster
(4) Recalculate the resemblance matrix
(5) Iterate over steps 3 and 4 until all of the cases are clustered

into one cluster, e.g., n-1 times
(6) Rearrange the order of the cases on the basis of their

similarity according to the results of step 5
(7) Draw the dendrogram
(8) Draw the clustergram
(9) Interpret the clusters

The clustering algorithm begins by matching the most similar
cases based on the similarity of their respective data. These
two cases are then redefined as a cluster, and the resemblance
matrix is recalculated with the new cluster serving as a case. This
process continues iteratively, with cases grouped into larger and
larger clusters, until the clustering algorithm defines all cases as
belonging to a single cluster encompassing the entire population
of cases. This requires n-1 iterations, with n representing the total
number of student cases. The clustering process does not change
the underlying data for each case, but instead reorganizes them
so that similar cases are grouped together.

One important feature of clustergrams is their ability to
link dichotomous outcome variables to individual cases. In
the bioinformatics literature, this technique is used to explore
whether groups of genes are associated with the appearance
of certain tumors, facilitating the development of diagnostic
methods and treatments (Eisen et al., 1998; van’tVeer et al.,
2002; Gu et al., 2016). Within the field of education, variables
like high school completion and ACT attempts have been used
as dichotomous outcomes (Bowers, 2007, 2010). For this study,
our clustergrams include three outcomes: (1) student scores
on the Fall 2015 NWEA MAP math assessment; (2) student
proficiency levels on the Spring 2016 PARCC math assessment,
and (3) a dichotomous variable reflecting whether a student
met the “typical growth” norm published by NWEA for the

period between Fall 2015 and Spring 2016. These analyses enable
exploration of potential relationships among various elements of
the TBPP model and student outcomes, and in particular, the
extent to which daily content assignment or exit slip data predict
end-of-year results on the PARCC and MAP assessments. They
also enable us to explore whether the results differ for clusters
of students, including latent groups that may not be identifiable
based on available indicators.

RESULTS

Results by Instructional Modality
We first explored the relationship between learning modalities
and student outcomes on daily exit slips (see Figure 2). This
data visualization displays the mean standardized exit slip score
for each student (rows) disaggregated by the seven instructional
modalities utilized by TBPP (columns). Mean exit slip scores are
represented by color blocks, with blue representing the bottom of
the scale (cooler), red representing the top of the scale (hotter),
and purple representing the population mean. The similarity or
dissimilarity of the patterns of exit slip outcomes is represented
on the far left of the heatmap by the hierarchical dendrogram,
or cluster tree, with longer horizontal lines indicating more
dissimilar patterns and shorter lines indicating more similar
patterns of student data. On the far left of the heatmap, we used
numbers to label each of the most apparent data clusters.

The three annotation columns on the right of the heatmap
indicate each student’s standardized score on the Fall 2015
MAP math assessment, growth from the Fall 2015 to Spring
2016 MAP math assessment, and performance on the Spring
2016 PARCC math assessment. These annotation columns
enable comparison between students’ exit slip patterns and their
baseline mathematical ability prior to entering TBPP, growth in
mathematical skills over the course of a year of participating in
TBPP, and mathematical ability after a year of participation in
TBPP, respectively.

Figure 2 features two large “super-clusters” of students:
one containing Clusters 1 and 2, and a second containing
Clusters 3, 4, and 5. Cluster 1 contains the highest performing
students. Given the heights of the cluster trees, the students
that perform highest on exit slips (Cluster 1) are more similar
to each other than students in any other cluster. Cluster
2 is typified by students who perform at the same high
level in the long-term project (LTP) modality as students in
Cluster 1, but lower in all other modalities and on PARCC.
Cluster 3 features high variance and includes multiple small
subclusters of students with common patterns in their exit
slip performance across modalities. For example, one subcluster
contains students who perform particularly well in the large
group (LG) modality, while another includes students whose
highest performance is in the small group (SG) modality.
Cluster 4 contains the lowest performing students. Like Cluster
2, Cluster 5 also contains students who performed better on
LTP than on any other modality, but students in this cluster
performed lower than those in Cluster 2 on all other modalities
and PARCC.
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FIGURE 2 | Standardized exit slip performance disaggregated by instructional modality.

There are several important takeaways here. First is the
high level of alignment among exit slip performance, Fall 2015
MAP score, and Spring 2016 PARCC level. This is evident
in the general consistency of the horizontal color bands, with
blue, purple and red appearing synchronized across the three
measures. For example, Students in Cluster 1 score high on
daily exit slips, Fall 2015 MAP, and Spring 2016 PARCC,
while students in Cluster 4 have lower scores on all three
measures. This consistency indicates that students who enter
TBPP with stronger mathematics skills are more likely to
succeed on daily exit slips and also more likely to end the
year proficient in grade-level mathematics content, as assessed
by PARCC. The relationship between beginning-of-year and
end-of-year mathematics performance is not surprising, given
the well-documented difficulty of disrupting entrenched student
achievement gaps. What is surprising, however, and absolutely
central to our understanding of this personalized learning
model, is that these measures are also related to daily exit slip

performance. TBPP is designed to match each student with daily
content at his or her precise zone of proximal development,
which should make all students equally likely to master that
day’s exit slip, regardless of their starting level. Figure 2 may
suggest that high-performing students are routinely matched
with “too-easy” content and low-performing students with “too-
hard” content. Alternately, it may indicate that there is some
quality possessed by higher-performing students beyond simple
mathematical ability, such as motivational levels or social-
emotional skills, that makes them more likely to succeed on the
daily exit slips.

Figure 2 also suggests close relationships between students’
performance across all modalities. In other words, students in
Cluster 1 are generally successful on exit slips in all modalities,
while students in Cluster 4 are generally unsuccessful in all
modalities. However, there are some exceptions to this rule.
For example, students in Clusters 2 and 5 appear to be more
successful in the LTP modality than in other modalities, while the
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FIGURE 3 | Content gap disaggregated by instructional modality.

students in Cluster 3 appear less successful in LTP than in other
modalities. We draw on existing literature to discuss potential
reasons for this pattern in Section “Lower Personalization but
Higher Performance in the Long-Term Project Modality” below.

The analysis in Figure 3 above is similar to that of Figure 2,
except that the heatmap data represents the content gap, or
mean difference between each student’s grade level and the grade
level of the instructional content assigned to them within that
modality rather than mean exit slip performance. This enables
an examination of the pattern of content assignment for each
student within each modality, as well as the relationships between
content assignments and performance on Fall 2015 MAP, year-
long MAP growth, and Spring 2016 PARCC.

Figure 3 contains four major student clusters of students.
Cluster 1 is typified by students who were generally assigned
above-grade-level content in all modalities; not surprisingly, they
scored high on both the PARCC and MAP. Cluster 2 also contains
students who scored high on PARCC and were assigned above

grade-level content, with the exception of the LTP modality,
where they were assigned mostly on-grade level content. Cluster
3 contains students who scored low on PARCC and received
mostly below-grade level content, and Cluster 4 contains students
who were assigned above-grade level content in only the LG, SG,
and TI modalities.

Figure 3 indicates several interesting trends. First, the higher
frequency of blue than red within the heatmap indicates that
more instructional content was assigned below students’ grade
levels than above their grade levels. This is unsurprising, given
that student achievement levels in this high-poverty district
are below national norms. However, a meaningful amount of
students – perhaps 10–20% – are also consistently assigned
content that is above their grade level. Even in this generally
low-performing district, a meaningful minority of students
appear ready for above-grade-level content. Second, the heatmap
indicates a close relationship between students’ Fall 2015 MAP
scores and the level of the content assigned to them. For example,
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students in Cluster 1 generally performed above the mean on Fall
2015 MAP and were assigned above-grade level content, which
is indicated by red shading on both measures, whereas students
in Cluster 3 were both more likely to perform below the mean
on Fall 2015 MAP and to be assigned below-grade level content.
This is in keeping with the theory of action for TBPP, which
uses Fall 2015 MAP data to initially assign “just right” content
to each student.

The heatmap also indicates a difference in the level of the
content assigned for the three modalities in which students work
independently (OI, OP, and PP) compared to those in which
students work in groups (LG, SG, TI, and LTP). Specifically,
students in Clusters 3 and 4, who are generally lower-performing,
were assigned lower content for the independent modalities than
the group modalities. This pattern may reflect the logistical
challenge of generating a “right-fit” assignment for each student
within group modalities. Although the TBPP algorithm can
assign students in the OI, OP, and PP modalities to work on any
content at any time, the TI, LTP, LG, and SG modalities all require
a critical number of students be able to work on the same content
simultaneously. Accordingly, TBPP’s scheduler may be forced to
routinely place lower-performing students in groups focused on
content that is too difficult (e.g., Cluster 3). Similarly, the fact that
Cluster 2 exhibits bluer shading for the LTP modality than the
other six modalities indicates that logistical constraints may have
routinely force these students into groups focused on content that
is below their zone of proximal development.

Longitudinal Analyses
We also generated several heatmaps to examine longitudinal
patterns of student performance across the academic year. In
Figure 4 below, the heatmap displays standardized exit slip
scores for each student (rows) for each of 165 instructional days
ranging from September 24, 2015 to June 20, 2016 (columns).
As in Figure 2, standardized exit slip scores are represented by
color blocks, with blue representing the bottom of the scale,
red representing the top of the scale, purple representing the
population mean, and gray representing missing data. The other
elements of Figure 4, including the cluster trees, Fall 2015 MAP
math data, MAP growth data, and Spring 2016 PARCC data
are also generated and displayed in the same manner as in the
previous analyses.

Figure 4 indicates the presence of several distinct clusters of
students. Students in Cluster 1 appear to have been generally
successful on exit slips at the start of the year, but to have
experienced declines in performance as the year progressed.
This may be related to the implementation of PARCC test prep
around Day 130 of instruction, which is indicated by the vertical
bar labeled “5;” in other words, these students may have been
successful when matched with (appropriate) below-grade level
content at the start of the year, but struggled when the launch of
test prep forced them to work exclusively with grade level content.
Alternately, it may reflect an increasing level of challenge as the
rigor of lessons gradually increased over the course of the year,
or general fatigue as the year wore on. In contrast, the students
in Cluster 2 continued to experience significant success across
the entire year, while the students in Cluster 3 struggled across

the entire year. It is worth noting, however, that the vast majority
of students appear to have experienced both high and low scores
on exit slips, indicating that each individual’s performance could
vary greatly from day to day. In contrast to the modality-based
heatmaps in Figures 2, 3, there does not appear to be a strong
relationship between year-long outcomes and the clusters of
longitudinal data.

Figure 4 also contains several distinct vertical bands in which
significant amounts of data appear to be missing. These bands
occur throughout the year, with obvious sets of missing data
during the December/January holidays and in the months of
March, April, and May. This second segment may be associated
with the implementation of test prep during the run-up to
Spring PARCC testing. For example, teachers may have had
students “take a break” from using TBPP so that they could take
practice tests or otherwise ready themselves for the high-stakes
PARCC exam. Missing data are also more common in June, when
students were likely to be engaged in non-instructional activities
such as field trips or end-of-year celebrations. It is worth noting
that this pattern of missing data at specific times in the year would
likely have been difficult to identify had we not used clustergram
data visualization as an exploratory statistical technique. This
underscores the power of visual analytics to reveal otherwise
unexpected trends in large, unstructured datasets.

Figure 5 also displays data longitudinally, but uses the
instructional content level of each lesson to cluster students
rather than standardized exit slip scores. As described above and
as in Figure 3, the content gap is calculated as the difference
between the content level assigned for a daily lesson and the
student’s grade level, enabling apples to apples comparisons
across grade levels. In this heatmap, the color red is associated
with content that is assigned above the student’s grade level,
the color blue is associated with content that is assigned below
the student’s grade level, and the color purple is associated with
content assigned at the student’s grade level.

The clustergram in Figure 5 contains several distinct clusters
of students. Cluster 1 represents students who spent most of the
year working with on-grade level content, and for whom a sub-
cluster moved to mostly above-grade level content in the final
third of the year. Fittingly, the MAP growth data indicates that
these students were slightly more likely to meet their annual MAP
growth goals than was the student population as a whole. The
students in Cluster 2 began the year working with mostly below-
grade level content, but were assigned above-grade level content
once test prep began in February, and for the most part continued
to work with above-grade level content for the remainder of the
year. In contrast, the students in Cluster 3 began the year working
with below-grade level content, shifted to on-grade level content
in February, then reverted to below-grade level content once
PARCC testing was complete in May. The blank space between
Clusters 2 and 3 represents an area of many small subclusters for
which we did not detect clear patterns. Interestingly, some of the
students in Cluster 3 appear to have met or exceeded expectations
on the Spring 2016 PARCC assessment. This may validate TBPP’s
theory of action that personalized instruction that “backfills”
below-grade level skills can support students’ performance on
assessments of grade-level standards.
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FIGURE 4 | Standardized daily exit slip scores displayed longitudinally.

Figure 5 also contains a very clear marker for the period
when test prep began, which we have labeled as vertical
Cluster 4. During this period, almost all students were assigned
content that was on or above their grade level. This is
evidence of how the policy constraint of high-stakes testing may
have forced a modified implementation of TBPP by requiring
students to engage in on- or above-grade level content even if
the personalized algorithm assigned lower content during the
rest of the year.

Longitudinal Analyses Grouped by Month
We also conducted a second set of longitudinal analyses with
exit slip scores and content levels aggregated by month rather
than displayed individually for each day (see Figures 6, 7).
Aggregating the data by month improves the function of the
clustering algorithm and supports the generation of clearer and
more distinct clusters. This is apparent in the longer horizontal
lines in the dendrograms of Figures 6, 7 compared to Figures 4, 5,
indicating a greater degree of distinctiveness across clusters. It

is also apparent in the tighter relationship between the heatmap
data and the PARCC data in both Figures 6, 7. Aggregating
the data by month also eliminates the “blotchiness” created by
missing data in Figures 4, 5, making the heatmaps easier to read
and more visually accessible.

The clusters of students in Figures 6, 7 are similar to those
found in Figures 4, 5, but more distinctly demarcated. Students
in Figure 6, Cluster 1 mostly began the year with high exit
slip scores, but their performance gradually declined, perhaps in
tandem with the assignment of increasingly challenging content
during PARCC test prep. Students in Cluster 2 experienced the
highest exit slip scores across the year, while students in Cluster
3 experienced relatively low exit slip scores in every month
but September. The relationship between exit slip scores and
PARCC performance in all three clusters provides a striking
demonstration that different groups of students appear to have
widely divergent experiences with TBPP. For the students
in Cluster 2, engagement with TBPP seems associated with
significant daily success, as indicated by high average exit slip
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FIGURE 5 | Content gap displayed longitudinally.

performance every month. Unsurprisingly, these consistently
high-performing students were also the most likely to be
proficient on the end-of-year PARCC assessment. However, the
students in Cluster 3 had very different experience with TBPP.
They typically scored lower on exit slips and were also much less
likely to pass the PARCC assessment. Their relatively low exit
slip performance suggests either that TBPP routinely matched
these students with content that was above their zone of proximal
development, or that there was some factor other than content
difficulty that made them less likely to succeed on exit slips than
the students in Cluster 2.

Figure 7 also features several distinct clusters of students.
Individuals in Cluster 1 began the year with content below or
on grade level, but experienced rapid increases in the level of
content assigned to them. Students in this cluster were most likely
to pass the PARCC math assessment, and also appear most likely
to achieve their MAP math growth targets. Students in Clusters 2
and 4 also experienced some longitudinal increases in the level of
content assigned to them, but their content assignments did not
rise as quickly or as high as the students in Cluster 1. In contrast,
the students in Cluster 3 were assigned below grade-level content

all year long, with the exception of March and April, where the
effects of test prep on content assignment are clearly apparent,
and June, when the algorithm may have previewed content for
the upcoming year. Students in Cluster 3 were also much more
likely to fail the PARCC math assessment than all other students.
Unlike in Figures 2, 3, there is a relatively low level of relationship
between Fall MAP Math scores and the other measures reflected
in the heatmap. A final interesting feature in Figure 7 is the
considerably lower level of content assigned to all students in
September compared to the rest of the year. This suggests that
the TBPP algorithm may intentionally begin the year by assigning
below grade-level content to backfill missing skills or to boost
students’ confidence with a new learning system. The very low
level of content assigned in September is likely the root cause of
the relatively high exit slip scores during that month in Figure 6.

Although our research questions focus on daily, rather than
monthly, implementation, we chose to include these additional
visualizations for two reasons: because applying the lens of the
monthly school calendar underscores the ways that the policy
constraint of state testing likely interferes with the ability of TBPP
to fully personalize learner experiences (research question #1),
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FIGURE 6 | Standardized exit slip scores displayed longitudinally with monthly groupings.

and because they clearly illuminate the relationships between
students’ initial academic proficiency and their outcomes within
TBPP (research question #3).

DISCUSSION

This study utilized relatively novel applications of hierarchical
cluster analysis and heatmap data visualizations to explore the
implementation of a technology-based instructional program
that featured characteristics of both personalization and blended
learning. We addressed three research questions: (1) To what
degree did the daily implementation of this program reflect
its stated goal of personalizing instruction? (2) Did student
outcomes vary based on exposure to each of the learning
modalities utilized by this program? (3) Did student outcomes
vary based on the academic proficiency of students entering the
program? Our analyses support three main findings: (a) The
instructional reform succeeds in creating a highly personalized
student experience, but was likely hampered in implementation

by policy and logistical constraints; (b) Participation in a learning
modality focused on long-term projects was associated with a
lower degree of personalization but higher student outcomes
than the other six learning modalities utilized by the program,
particularly for some latent clusters of students; and (c) Initially
higher-performing students earned higher scores on daily slip
assessments than initially lower-performing students, despite
the program’s intended goal of fostering equity in student
outcomes through personalization of content to meet each
student’s supposed level of readiness.

A Personalized Experience, With Some
Limitations
The literature on instructional improvement describes the gaps
that often emerge between the intentions of policymakers and
the realities of classroom-level implementation (Cuban, 1986,
1990, 1993; Cohen, 1990; Tyack, 1991; Tyack and Tobin, 1994;
Tyack and Cuban, 1995; Elmore, 1996, 2010; Honig and Hatch,
2004). However, these gaps have traditionally been hard to
observe or measure, leading to a “logic of confidence” in which
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FIGURE 7 | Content gap displayed longitudinally with monthly groupings.

delegation and good faith replace coordination, inspection, and
evaluation of the work of teaching and learning (Weick, 1976;
Meyer and Rowan, 1977, 1978). This paper demonstrates how
the application of data visualization techniques to the data
produced by technology-based blended learning models can
efficiently and effectively illuminate implementation hurdles,
supporting administrators and policymakers in understanding—
and resolving—gaps between avowed intention and lived reality.

Our results suggest that TBPP generally succeeds in its stated
goal of personalizing the content assigned to each student. For
example, within Figure 3 we see several distinct clusters of
students, including one super-cluster of students who received
mostly above grade-level content and a second, larger super-
cluster of students who received mostly below grade-level content
(both groups of students also received some on-grade level
content; we offer possible explanations for this heterogeneous
content assignment in Section “Policy and Logistical Constraints”
below). Furthermore, we see that the level of content assigned
correlates with students’ beginning-of-year mathematics ability,
as indicated by the Fall MAP Math assessment. This represents

a significant divergence from a traditional classroom, in which
all of these students would presumably be studying the same
grade-level content.

It’s particularly noteworthy that this personalization occurs
not only within the technology-driven and independent
modalities, such as OI, OP, and PP, but also the collaborative
modalities of LG and SG and the teacher-led modalities of TI
and LTP. While technology-based tutoring programs like ALEKS
and Cognitive Tutor have succeeded in creating personalized
online experiences for students, these data suggest that TBPP has
created a learning experience that is personalized across both
online and face-to-face instructional modalities.

Because the district under study has been historically low-
performing and its students come from predominantly high-
poverty backgrounds, it is not surprising that the majority of
content was assigned below grade level. However, the cluster
analysis in Figures 3, 5, 7 clearly reveals a subgroup of
approximately 10–20% of students who are capable of success
with above grade-level content. It is extremely noteworthy
that even low-performing school districts contain meaningful
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numbers of young people who are capable of very high levels of
math achievement if they are presented with suitably challenging
content. Too often, American schools and society write off
low-income, African-American and Hispanic communities as
uniformly low-performing. These cluster analyses suggest that
low average performance levels mask the existence of significant
numbers of brilliant, high-potential students, and that these
communities would benefit from personalized learning programs
that allow these exemplary learners to push beyond grade-
level standards.

Policy and Logistical Constraints
Our results also indicate that policy and logistical constraints
may limit the ability of TBPP to fully personalize content to the
degree that it aspires. This finding manifests itself most clearly
in the data from March, April, and May, when students who had
been assigned below-grade level content for the bulk of the year
transitioned in unison to grade-level content in preparation for
the high-stakes PARCC assessment. While TBPP’s intention is
that students engage only with content at their unique zone of
proximal development, the clear purple vertical bar in the month
of March in the longitudinal heatmap in Figure 7 demonstrates
that many students are pushed to work with grade-level content
immediately prior to PARCC testing. The decision to focus on
grade-level standards during the spring is not an inherent part
of TBPP’s design; on the contrary, it was imposed unwillingly
upon the non-profit that manages TBPP by school and district
administrators who feared the consequences of low PARCC
scores. The policy constraints posed by high-stakes standardized
testing clearly inhibit the ability of TBPP to function as intended
during these spring months, a finding that is in keeping with
other examples in the literature (Murphy E. et al., 2014; Hyslop
and Mead, 2015).

Similarly, the higher incidence of missing exit slips in
Figure 4 during March, April, and May indicates intermittent
implementation, perhaps due to teachers replacing TBPP
instruction with practice tests, test prep workbooks, or other
activities specifically designed to maximize performance on
the PARCC assessment. In other words, the policy constraint
posed by high-stakes testing may not only be incentivizing
schools to reduce the personalization of content for part of
the year, but also to partially abandon the use of TBPP
altogether. This is a powerful example of coercive isomorphism
(Meyer and Rowan, 1977, 1978; DiMaggio and Powell, 1983).
The imposition of government-mandated assessments of student
achievement, paired with the threat of sanctions or school closure
in the case of low results, creates a powerful incentive for
educators to abandon TBPP’s model of skill-based differentiation
and instead expose all students to a common set of grade-level
standards that will appear on the PARCC exam (Hyslop and
Mead, 2015; Pane et al., 2015, 2017). In other words, while TBPP
may succeed in its state goal of personalizing learning during
most of the year, instruction seems to snap back to the status
quo during the window of time when the pressures of test-based
accountability are most acute.

Logistical constraints may also inhibit the ability of TBPP to
fully personalize content. The heatmap of content levels within

each instructional modality in Figure 3 suggests that it may be
easier to match students with far-below grade level content in the
OI, OP, and PP modalities than in the other four modalities. This
could be attributable to the fact that the OI, OP, and PP modalities
do not require any other students to be simultaneously working
on the same skill. In contrast, assigning a student to LG, SG, TI, or
LTP typically requires between five and fifteen other students who
are also ready to be matched to the same skill. To give a practical
example, if only one student needs practice with a specific 3rd
grade geometry skill, it is logistically impossible for her to ever
work on that skill in a TI, LTP, LG, or SG, since there will not be
any peer students to work on it with her. Even with more than
one hundred students in a class, it may simply be impractical to
match every student with his or her ideally leveled content every
day. This logistical constraint likely inhibits the ability of TBPP
to offer the fully personalized experience that it aspires to create,
particularly within the group-based and teacher-led modalities.

The relatively high prevalence of purple coloring for the
LTP modality in Figure 3 suggests that it may be particularly
difficult to match students with content in their zone of
proximal development for LTP lessons. This is true for both low-
and high-performing students. Students in the high-performing
Cluster 2 were mostly assigned above-grade level content in
the first six modalities, but their LTP assignments were more
likely to be colored purple, indicating that they worked on
comparatively lower-level skills within LTP lessons. Conversely,
lower-performing students in Cluster 3 also exhibit a mismatch
between the coloring of their content assignments for LTP
lessons compared to the other six modalities, but in the opposite
direction, with non- LTP lessons predominantly colored blue for
“below-grade-level” while LTP lessons feature a higher prevalence
of purple coloring. The LTP modality’s multi-day nature likely
makes it particularly difficult to generate groups of students who
all need the same above- or below-grade level skill for an extended
period of study. The fact that the LTP modality is most similar to
traditional forms of instruction means that it also least reflects the
radical personalization at the heart of the TBPP model.

Lower Personalization but Higher
Performance in the Long-Term Project
Modality
We found that participation in the learning modality focused on
LTP was associated with a lower degree of personalization but
higher daily exit slip performance than the other six learning
modalities utilized by the program. As discussed above, the
unique, multi-day nature of the LTP modality likely makes it
more difficult to assign students to content within their unique
zone of proximal development within this modality. Despite this
shortcoming, Figure 2 suggests that students scored higher on
exit slips following LTP lessons than following lessons taught
through any other learning modality. In particular, the students
in Clusters 2 and 5 were much more successful on exit slips
following LTP lessons than those associated with the other
six modalities. This suggests that for approximately 10–20% of
students, the LTP modality may be a uniquely effective learning
modality, while for the remaining 80–90% of students it is
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equally as effective as other learning modalities. Increasing the
amount of LTP assigned to this latent group of students could
have a significant positive effect on learning, while reducing the
amount of LTP assigned to other students may have little or no
negative effect.

This finding stands in contrast to the popular conception
of personalized learning, which imagines a student leveraging
a computer or tablet to focus on their own unique “just-right”
content. The LTP modality is unique in that it is the only modality
in which the teacher, students, and content remain consistent for
more than one consecutive day. By the time that students take
their exit slip on the second or third day of the LTP, teachers
will have had several days to build or strengthen relationships,
informally assess students’ knowledge of the material, and adjust
instruction in response. In all other modalities, teachers are
assigned a new and unique group of students each day.

One might interpret this finding as suggesting that project-
based learning, rather than personalization, offers the potential
to improve learner success. However, we should note that the
LTP modality features significantly smaller group sizes and far
greater student homogeneity than a typical classroom, neither
of which would be possible outside the context of the TBPP
model. The intimate group size of the LTP modality is enabled
by the fact that TBPP simultaneously assigns many other
students to independent or collaborative learning modalities.
Our results indicate that the combination of project-based
learning and personalization appears more impactful than
personalization alone. Furthermore, the fact that some students
are disproportionately successful in LTPs while others are equally
successful across all modalities suggests the possibility that
educators may be able to unlock significant efficiencies by better
identifying these otherwise hidden student groups and planning
learning modalities accordingly.

Relationship Between Students’
Experiences and Initial Mathematics
Ability
Our third major finding is that students who enter the program as
already higher-performing are more successful on daily exit slips
than students who enter the program with lower performance.
This is apparent in Figure 2, which groups students into clear
clusters based on their performance on exit slips; the students
who consistently perform higher on daily exit slips are also more
likely to have performed at a high level on the beginning-of-year
NWEA MAP assessment, and vice versa. While this finding is
to be expected in a typical instructional model, it is unexpected
within TBPP, which is designed to match each student with
content at his or her unique zone of proximal development; if
every student is working on content that is at the exact right
difficulty for him or her, then they should all be equally likely to
be successful each day, regardless of their mathematical skills at
the start of the year.

While it may seem tautological to demonstrate that students
who entered the program as higher-performing are more likely
to continue to be successful, this finding stands in stark
contrast with the program’s avowed intention to promote equity

by personalizing content for each student. By offering more
challenging content to advanced students and lower level content
to struggling students, TBPP intends to erase inequities in the
rates of growth across students. We did not find this to be the
case – a stark contrast with the intended goals of the program.

One potential explanation for this trend could be the
combination of peer effects and homogeneous grouping. Given
that the TBPP algorithm is explicitly designed to organize
students into similarly leveled groups, TBPP could be understood
as a form of tracking that accelerates higher-performing students
while denying lower-performing students the opportunity to
learn from mathematically more-capable peers (Barr and
Dreeben, 1983; Wenglinsky, 2005; Lee and Ready, 2009; Philip
and Olivares-Pasillas, 2016). The heatmap in Figure 2 may
support this theory, since high-performing students performed
particularly well on exit slips when working within the LTP
modality, one of the modalities in which students have the
most opportunities to interact with other students in the
course of learning.

A second potential root cause could be that the significant
autonomy afforded to students by TBPP increases the importance
of non-cognitive factors like motivation and perseverance, which
may be more commonly found among higher-performing than
lower-performing students. This would be in keeping with some
of the extant literature related to on-task behavior in personalized
learning environments, as well as the broader literature on non-
cognitive skills and “success at school” factors in general (Bowers,
2007, 2010; Duckworth et al., 2007; Baker and Gowda, 2010;
Rodrigo et al., 2013; Murphy E. et al., 2014). In other words,
a student who is more diligent or able to maintain focus for
long periods of independent work may score higher on the Fall
MAP math exam, but may also be more prepared to succeed in
student-directed modalities regardless of his or her mathematical
skill. Motivation or self-management skills may be correlated
with initial mathematics ability, but also produce an independent
effect reflecting higher-performing students’ greater ability to
remain on-task and focused on mastering the mathematical
content assigned to them. If true, this would have significant
implications for the design of personalized programs; simply
customizing instructional content to each student’s “just right”
zone of proximal development would be insufficient to unlock
equitable rates of student growth. Instead, programs would need
to consider the broader range of skills and mindsets that enable
student success.

In interpreting this finding, we should stipulate that inequality
is not necessarily an unabashed evil if it is caused primarily by
accelerating the growth of high-performing students. One of the
key arguments in favor of personalized learning is that it allows
curious, diligent, and intelligent students to race ahead and meet
their full potential rather than languish bored in a class that
moves too slowly for them. One could imagine a scenario in
which TBPP promotes the growth of high-performing students
in a way that expands inequality while having only very small
negative effects on low-performing students, or even no negative
effect at all. This is a classic example of the kind of value-
laden trade-off that is endemic to both education and the social
sciences more broadly (Carnoy and Levin, 1985; Labaree, 1997;
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Stone, 2002). How should we weigh the importance of
individual success vs. collective achievement, autonomy vs.
equality, or high-performers meeting their full potential vs. low
performers not being left behind? While quantitative analyses
can provide useful evidence for evaluating the magnitude
and direction of these trade-offs, the solutions will always
involve philosophical questions that cannot be resolved through
statistical analysis alone.

Limitations and Future Work
Readers should be mindful of several important limitations
when interpreting our results. The first is the significant
diversity among models, contexts, and demographics of learners
utilizing technology-based personalization, which may limit the
applicability of these findings to other programs and conditions
(Cavanagh, 2014; Horn and Staker, 2014; Murphy E. et al.,
2014; Picciano, 2014; Pane et al., 2015; Brodersen and Melluzzo,
2017). In other words, what is true of TBPP may not be true
of other personalized and blended models that utilize different
strategies or technologies for assessing student learning, grouping
students, and/or delivering instruction. They may also not be
true of implementations in contexts different than this study,
which focused on one urban district populated primarily by
black and Latino students who qualified for free and reduced
price lunch. A second threat to the external validity of these
findings is that they encompass only a single district and a
single year. If there were some factor that made this district
unique, or some reason that the 2015–2016 academic year were
different than a typical academic year, it could provide a bias
that would reduce our ability to generalize these findings across
other contexts. Finally, the short, multiple-choice format of exit
slips means that they are more likely to evaluate procedural and
didactic skills than more complex skills related to theoretical
understanding or evaluation. While this represents a limitation
in this study, it may also represent a limitation within the
TBPP model itself, since its algorithm entirely depends upon
exit slips and the NWEA MAP math assessment as proxies
for learning.

This study also suggests several valuable avenues for future
research. The most straightforward of these is to broaden our
dataset to include data from the implementation of TBPP in
other districts, or within this same district across multiple
years. Expanding the study’s reach in this way might address
some of the concerns related to external validity that arise
when studying a single program in a single context. Similarly,
it would be very useful to apply the analytical techniques
from this dissertation to other blended learning programs
utilizing technology-based personalization. Because the data
from other programs is probably structured differently, it
seems unlikely that the data could or should be pooled.
However, it would be very useful to apply similar analytic
techniques and research questions to data produced by alternate
technology-based, personalized, and blended programs in order
to explore whether the key findings from this study are also true
in those contexts.

A second avenue for future research would be to complement
the quantitative approaches highlighted here with qualitative
approaches, including classroom observation and interviews

with teachers and students. Our findings suggest that TBPP
may accelerate inequality by enabling motivated or high-
performing students to move ahead of their lower-performing
peers. Interviews with those students could help confirm or refute
those findings. Similarly, observing lower-performing students
when working within modalities that provide a high degree
of autonomy could illuminate whether their comparatively low
performance on exit slips is attributable to off-task behavior or
authentic struggles with math content.

Finally, it would be worthwhile to further explore the
characteristics of some of the otherwise “hidden” groups that
we found in our cluster analyses: the 10–20% of students who
performed higher in the long-term project modality than other
modalities and the 10–20% of students who succeeded with
above grade-level content. American education was built more
than a hundred years ago upon the principles of standardization
and consistency. Our cluster analyses indicate the limitations
in these founding values. This is particularly salient for low-
income, African-American, and Hispanic communities, where
low average performance levels and societal biases can obscure
significant numbers of young people who are ready and eager to
succeed with above grade-level content.

Policymakers and researchers are eager to explore the
outcomes from blended instructional models utilizing
technology-based personalization. However, they risk
missing important data trends if they limit their research
to end-of-year outcomes on state-mandated standardized
assessments. This paper demonstrates the usefulness of
also using non-regression-based statistical techniques
to investigate the student- and lesson-level factors that
affect learning at a daily level. Continuing this avenue of
research may generate insights into not only technology-
based personalization, but the phenomenon of teaching and
learning more broadly.
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