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The implementation of polytomous item response theory (IRT) models such as the graded
response model (GRM) and the generalized partial credit model (GPCM) to inform
instrument design and validation has been increasing across social and educational
contexts where rating scales are usually used. The performance of such models has
not been fully investigated and compared across conditions with common survey-specific
characteristics such as short test length, small sample size, and data missingness. The
purpose of the current simulation study is to inform the literature and guide the
implementation of GRM and GPCM under these conditions. For item parameter
estimations, results suggest a sample size of at least 300 and/or an instrument length
of at least five items for both models. The performance of GPCM is stable across
instrument lengths while that of GRM improves notably as the instrument length
increases. For person parameters, GRM reveals more accurate estimates when the
proportion of missing data is small, whereas GPCM is favored in the presence of a
large amount of missingness. Further, it is not recommended to compare GRM andGPCM
based on test information. Relative model fit indices (AIC, BIC, LL) might not be powerful
when the sample size is less than 300 and the length is less than 5. Synthesis of the
patterns of the results, as well as recommendations for the implementation of polytomous
IRT models, are presented and discussed.
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INTRODUCTION

The implementation of polytomous item response theory (IRT) models to inform instrument design
and validation has been increasing across social and educational contexts where rating scales are
usually used (e.g., Carle et al., 2009; Sharkness and DeAngelo, 2011; Cordier et al., 2019; French and
Vo, 2020). Examples include the use of polytomous IRT to develop parallel and short forms of
existing measures (e.g., Uttaro and Lehman, 1999) and to detect items that show different item
functioning (DIF; e.g., Eichenbaum, et al., 2019; French and Vo, 2020).

In practice, the most commonly used polytomous IRT models include the graded response model
(GRM; Samejima, 1969) and the generalized partial credit model (GPCM; Muraki, 1992). Compared
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to the traditional linear factor analytic (FA) approach intended
for continuous variables, the IRT models are developed
specifically for nominal and ordinal variables (e.g., rating
scales). For instance, Maydeu-Olivares et al. (2011) suggested
that IRT models yielded better model-data fits than FA models
when the data are polytomous ordinal because they involve a
higher number of parameters. In addition to the conventional
overall model fit and item parameters, the IRT modeling also
generates other statistics such as item information and model fit
at the person level that are useful in the process of instrument
development (see Glockner-Rist and Hoijtink, 2003 and Raju
et al., 2002 for further discussions regarding the comparison
between FA and IRT). Further, polytomous IRT is the major
technique used in computer adaptive tests, allowing for the
options of online adaptive measures that use rating scales such
as the Likert-type questions across contexts.

Despite the promising use of the polytomous IRT models for
instrument development (Penfield, 2014), their performance has
not been fully evaluated, especially in the presence of short
instrument length (e.g., three items, OECD, 2021), small
sample size (e.g., N < 200, Finch & French, 2019), and
missing data—characteristics common with rating scales. In
achievement tests such as large-scale assessment programs
where the IRT models are mainly applied, it is typical to find
sufficient instrument or test lengths (e.g., J > 10 items) and
relatively large sample sizes (e.g., N ≥ 500), as evidenced by
many previous studies that examined the performance of
polytomous IRT models (e.g., Reise and Yu, 1990; Penfield
and Bergeron, 2005; Liang and Wells, 2009; Jiang et al., 2016).
However, it is not uncommon that some instruments with rating
scales have as few as three items and are responded by a relatively
small number of respondents. For instance, the GPCM has been
used by the Programme for International Student Assessment
(PISA) to provide validity support for the contextual factors
(i.e., derived variables; OECD, 2021) and many of these factors
consisted of three to five items such as the perceived feedback—a
three-item measure. Examples of small sample sizes include Muis
et al. (2009) and Cordier et al. (2019) which reported sample sizes
of 217 and 342, respectively, in the application of the polytomous
IRT models. In the literature, to the best of our knowledge, there
are only three studies that examined the performance of
polytomous IRT models with instrument lengths shorter than
10 items across various sample sizes (i.e., Kieftenbeld and
Natesan, 2012 [GRM, J � 5–20, N � 75–1,000]; Luo, 2018
[GPCM, J � 5–20, N � 500–2000; Penfield and Bergeron, 2005
[GPCM, J � 6–24, N � 1,000]; see the next section for a detailed
review of existing literature). There is no systematic examination
on the application of IRT to rating scales across the
aforementioned conditions. Further, no studies were identified
to evaluate the impact of missing data in the implementation of
polytomous IRT models with rating scale data.

In light of this, the purpose of our study is to extend the
current literature by systematically examining the performance of
GRM and GPCM with rating scale data in the presence of short
instrument lengths, small sample sizes, and missing data to
various extent. We will also take into account item quality
(i.e., item discrimination) in the study.

BACKGROUND AND LITERATURE

Graded Response Model
GRM (Samejima, 1969) is one of the most commonly used
polytomous IRT models. It extends the dichotomous two-
parameter logistic (2PL) IRT model by allowing ordered and
polytomous item responses. As polytomous items have more than
two response categories, the response category function is
determined explicitly based on the number of response
categories (Nering and Ostini, 2011). That is, unlike the 2PL
dichotomous IRT models in which only one item difficulty
parameter is defined, the GRM specifies category boundary
and threshold parameters for the items according to the
number of response categories. Specifically, for an item with K
response categories, a number ofK-1 threshold parameters will be
specified in GRM. For instance, an item with four response
categories would have three threshold parameters. Below is the
equation of GRM (Embretson and Reise, 2000):

Pp
jy(θ) �

exp[aj(θ − δjm)]
1 + exp[aj(θ − δjm)]

(1)

where Pp
jy(θ) is the probability of an individual’s response y

falling at or above a given threshold m of item j, given their trait
level (θ), aj is discrimination parameter of item j, and δjm is the
item threshold of item j on response category m.

The threshold parameters in a GRM are calculated cumulatively by
modeling the probability that an individual will respond to a given
response category or higher (Penfield, 2014). For example, an itemwith
four response categories (e.g., never, sometimes, often, and always) is
indicated by Y � 0, 1, 2, 3, showing an ordered level of a latent trait or
construct. Then in GRM, three transition steps are used to obtain the
three threshold parameters using 2PL dichotomous IRT models that
model 1) probability of responding to categories 1 to 3 as compared to
category 0 (PY�1,2,3 vs.PY�0), 2)PY�2,3 vs.PY�0,1, and 3)PY�3 vs.PY�0,1,2.
Technically, the GRM is usually referred to as a cumulative model
(Penfield, 2014) and an “indirect”model (Embretson and Reise, 2000)
because of the cumulative nature of themodel and the fact that it takes
a two-step process to estimate the parameters. Similar to the 2PL
dichotomous models, GRM includes only one discrimination
parameter for each item (for more technical details of GRM, see
Embretson and Reise, 2000; De Ayala, 2013; Penfield, 2014).

Applications of GRMhave been gaining attention in survey studies
to inform instrument development, evaluation, and revision (e.g.,
Uttaro and Lehman, 1999; Langer et al., 2008; Carle et al., 2009;
Sharkness and DeAngelo, 2011; French and Vo, 2020; Fung et al.,
2020). For instance, Uttaro and Lehman (1999) used GRM to analyze
theQuality of Life Interview scale and developed three 17-item parallel
forms of the instrument, as well as a 10-item short form, for the same
construct. Carle et al. (2009) applied GRM to United States (U.S.)
National Survey of Student Engagement (NSSE) data and evaluated
the psychometric properties of the three student engagement
measures, namely student-faculty engagement (five items),
community-based activities (four items), and transformational
learning opportunities (six items). Their findings demonstrated by
the GRM results suggested that the three scales offered adequate
construct validity and measured related but separable constructs.
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Another example is Sharkness and DeAngelo (2011), in which the
authors examined the psychometric utility of GRM for instrument
construction with data from the U.S. 2008 Your First College Year
(YFCY) survey data. In addition to its application in instrument
construction and development, GRM has been used for other
purposes such as differential item functioning (DIF) detection.
For instance, French and Vo (2020) used GRM to investigate
DIF between White, Black, and Hispanic youth on a risk
assessment. A convenience sample of over 1,400 adolescents
responded to a 4-point rating scale. A GRM was used to estimate
each of the six subdomains, respectively. Explicitly, the instrument
length of the subdomains ranged from five to eight items each, with a
total of 40 items. Though not a direct application of GRM, Edelen &
Reeve (2007) provided an example of how GRM can be used for
questionnaire development, evaluation, and refinement in a
behavioral health context. A 19-item Feelings Scale for Depression
was evaluated with the data from a national longitudinal study. The
results were also used to construct a 10-item short form that had a
high correlation with the original form (r � 0.96).

Generalized Partial Credit Model
Another popular polytomous IRT model is GPCM (Muraki, 1992). It
extends the partial credit model (Masters, 1982) by introducing a

discrimination parameter that varies across items. Although both
GPCM and GRM include the same number of parameters, including
item discrimination, item step/threshold, and person/theta parameters,
theymodel the responsedata in a different fashion.UnlikeGRM,GPCM
is a direct or adjacent category model (Embretson and Reise, 2000;
Penfield, 2014) in which the probability of responding to a specific
response category is modeled directly (see the model equation below).

P(θ) � exp[∑K
k�0 aj(θ − δjk)]

∑K
k�0 exp[∑

K
k�0 aj(θ − δjk)]

(2)

where k is a specific response category in the vector of 0, 1, . . . . . .,
K; aj is the discrimination parameter of item j; and δjk is the kth
step difficulty parameter of item J.

GPCM is also a popular polytomous IRTmodel that has been used
to develop and evaluate instruments across contexts such as education
(e.g., PISA; (OECD, 2021) and health-related areas (e.g., Gomez, 2008;
Li and Baser, 2012; Hagedoorn et al., 2018). PISA employs this model
to collect construct validity evidence for the contextual measures (or
derived variables as used by PISA) using the questionnaire data.
Examples of such variables include the four-item teacher-directed
instruction measure and the three-item perceived feedback measure.
After fitting the GPCM, estimates of person parameters are obtained

TABLE 1 | Previous Literature on the Performance of GRM and GPCM.

Study N J K α β θ Estimator

Graded Response Model (GRM)

Reise and Yu (1990) U (−2,−1), N (0, 1), U (−3, 3) with skewness �
1.25 & kurtosis � 1.50U (0.44, 0.75), U (−1, 0),

250, 500, U (0.58, 0.98), U (0, 1),
1,000, 2,000 25 5 U (0.75, 1.33) U (1, 2) MML

Kieftenbeld and
Natesan (2012)

75, 150, 300, 5, 10, Item parameters were obtained
from a real 20-item questionnaire

N (0, 1), U (−3, 3), N (0, 1) with
skewness � 1.25 & kurtosis � 1.50

MML,
500, 1,000 15, 20 5 MCMC

Jiang et al. (2016) U (−2, −0.67), Multivariate normal distribution with
specified correlations between
dimensions (0.2, 0.5, 0.7)

500, 1,000, 30, 90, U (−0.67, 0.67),
1,500, 2,000 240 4 U (1.1, 2.8) U (0.67, 2.0) Expectation-Maximization

Doostfatemeh et al.
(2016)

5, 10, 15, Normal distributions with variance �
1 and mean with specified effect100, 200, 400, 20, 50, 100 3, 5,

600, 1,000 7, 10 U (1, 2) N (0, 1)

Generalized Partial Credit Model (GPCM)

Penfield and
Bergeron (2005)

−1.5, −0.5, 15 levels: WML, ML,
1,000 6, 12, 24 5 0.4, 1.0, 1.6 0.5, 1.5 θ � −4.0, −3.5, . . ., 3.5, 4.0 EAP

Liang and Wells
(2009)

500, 1,000,
2,000

10, 20, 40 5 — — N (0, 1) —

Luo (2018) N (−1.5,0.5),
N (−0.5,0.5), N (0, 1), U (−3, 3), N (0, 1) with

skewness � 1.25 & kurtosis � 1.50500, 1,000, Log-normal: N (0.5,0.5), MML,
2,000

5, 10, 20

5 LnN (−0.5, 0.2) N (0.5,1.5) MCMC

Finch and French
(2019)

25, 50, 100, 10, 20, 30, Item parameters were obtained
from a real instrument

ML, MCMC,
250, 500, 1,000 40, 50 4 N (0, 1) Pairwise

Note. All studies are listed in chronological order for each model. Jiang et al. (2016) used the multidimensional GRM or MGRM. Finch and French (2019) also included dichotomous IRT
models and the partial credit model or PCM. N � sample size; J � instrument length; K � number of response categories; α � item discrimination parameter; β � item threshold/step
parameters; θ � person parameter; ML � maximum likelihood; MML � marginal ML; WML � weighted ML; MCMC � Markov chain Monte Carlo; EAP � expected a posteriori.
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and saved as derived composite variables in the data, while the
estimated item parameters are used to investigate measurement
invariance across countries and languages (OECD, 2021). Its
potential use and performance in the context of computer adaptive
testing have also been increasing, too (e.g., Pastor et al., 2002; Wang
and Wang, 2002; Burt et al., 2003; Zheng, 2016).

Literature on the Performance of GRM and
GPCM
Whereas the performance of the dichotomous IRT models (e.g.,
2PL, 3PL) has been well studied, the performance of GRM and

GPCM has not been fully investigated. Table 1 includes a
summary of previous studies that examined the performance
of the two models regarding levels of sample size, instrument
length, the number of response categories, as well as other
manipulated factors (i.e., distribution of both item and person
parameters and the estimation methods). In order to achieve our
purpose and better inform the study design, we also expanded our
selection of studies to those that used a different but relevant
model (e.g., multidimensional GRM; Jiang et al., 2016) or from a
different framework (e.g., power analysis, Doostfatemeh et al.,
2016). Highlighted results of these studies are presented in
Table 2.

TABLE 2 | Highlighted Results of Previous Literature on the Performance of GRM and GPCM Regarding Sample Size and Instrument Length.

Study N J Highlighted results

Item Parameters Person Parameters

Graded Response Model (GRM)

Reise and Yu (1990) 250, 1. Discrimination (a): N � 1,000 yielded 0.90 correlation between
true and estimated a; N � 500 yielded RMSE below 0.10

1. Sample size was not a major factor impacting the recovery
of θ500,

1,000, 2. Threshold (β): N � 500 yielded 0.85 correlation between true
and estimated β; More discriminative items yielded more
accurate β estimation

2,000 25

Kieftenbeld and
Natesan (2012)

75, 1. N was the most important factor in recovering item
parameters, and the difference in accuracy was smaller when N
was 300 or larger

1. J was the most important factor in recovering θ, and the
difference in accuracy was smaller when J was 15 or larger150, 5,

300, 10, 2. J impacted item parameter estimation only slightly
500, 15, 3. Trivial difference between MCMC and MML when N ≥ 300
1,000 20

Jiang et al (2016) 500, 1. Largest decrease in RMSEs for both a and β when N was 500
or larger; however, N � 1,000 was needed when J � 240

N/A
1,000, 30,
1,500, 90,
2,000 240 2. Little impact of J on both a and β

Generalized Partial Credit Model (GPCM)

Penfield and
Bergeron (2005)

6, N/A 1. Large impact of J on the estimators, especially when J ≤ 12
12, 2. Larger impact of a on ML than WML and EAP.

1,000 24

Liang and Wells
(2009)

500, 10,
1,000, 20, 1. The proposedmodel fit statistic performedwell across specified conditions regarding Type I error rates and power whenN ≥ 2,000
2,000 40

Luo (2018) 500, 5, 1. N showed significant impact with large effect sizes on RMSEs
of both a and β estimates but not on bias

1,000, 10, 2. J showed significant impact with medium to large effect sizes
on RMSEs but not on bias

1. MME and MCMC yielded no significant differences across
conditions

2,000 20 3. MCMC performed superior to MML only in estimating a

Finch and French
(2019)

25, 1. Results for item thresholds only N/A
50, 10, 2. No results for N ≤ 50 for MLE.
100, 20, 2. MCMC yielded better performance than Pairwise and MLE

when N ≤ 50 and J ≥ 40; Pairwise yielded similar performance to
MLE when N ≥ 250, and was superior to MLE when N ≤ 100

250, 30,
500, 40,
1,000 50

Note. All studies are listed in chronological order for each model. Jiang et al (2016) used the multidimensional GRM or MGRM. Finch and French (2019) also included dichotomous IRT
models and the partial credit model or PCM. N � sample size; J � instrument length; K � number of response categories; a � item discrimination parameter; β � item threshold/step
parameters; θ � person parameter; ML �maximum likelihood; MML �marginal ML; WML � weighted ML; MCMC �Markov chain Monte Carlo; EAP � expected a posteriori. Only results
related to the current study were included. Doostfatemeh et al (2016) was not included in the table given their different scope of the study (i.e., power analysis) and we refer readers to the
original article for the power tables.
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The investigation of the performance of GRM mainly lied in
Reise and Yu (1990) and Kieftenbeld and Natesan (2012). Reise
and Yu (1990) examined the performance of the GRM under
various conditions using an instrument consisting of 25 items
with five response categories. In addition to exploring the
distribution of the latent trait (or theta) and the item
discrimination parameter (three discrimination levels
representing poor, medium, and good item quality), the
authors investigated four sample size conditions (N � 250;
500; 1,000; and 2,000). Sample size had the most pronounced
effect on the correlations with larger sample sizes (i.e., 2,000)
producing α � 0.95, suggesting that 1,000 examinees were needed
to maintain an average true estimated α correlation of 0.90.
Sample size did not appear to influence the estimation
accuracy but did lead to lower average correlations in the
condition of 250 examinees. The authors concluded that at
least 500 examinees were needed to maintain RMSEs and
respectable correlations. However, small sample sizes as low as
250 demonstrated adequate item parameter recovery for
calibration samples.

In Kieftenbeld and Natesan (2012), the authors compared the
effectiveness of two estimation methods, including marginal
maximum likelihood (MML) and Markov chain Monte Carlo
(MCMC), in recovering the item and person parameter estimates
in GRM across instrument lengths (J � 5, 10, 15, and 20) and
sample sizes (N � 75; 150; 300; 500; and 1,000). In the study, three
levels of distributions of the person parameters were specified (a
standard normal distribution with and without the interval from
−3 to 3, plus a skewed normal distribution), whereas the item
parameters were generated from a real 20-item questionnaire.
Results of the study revealed that sample size was the most
important factor in item parameter recovery whereas the
instrument length did not impact the estimation of item
parameters. A minimum sample size of 300–500 was
suggested for the item parameters recovery accuracy. MCMC
performed better than MML in the presence of small sample sizes
(N � 75 and 150) but showed a comparable performance with
MML with a sample size of 300 or larger. In terms of the recovery
of person parameters, the results suggested a test length of at least
10 items (preferably 15) was needed.

Jiang et al. (2016) explored the impact of sample sizes on item
parameter recovery for the multidimensional GRM (MGRM). In
the study, the authors investigated the performance of a three-
dimensional simple structure MGRM across five levels of sample
sizes (N � 500; 1,000; 1,500; and 2,000) and three levels of
instrument length (J � 30, 90, and 240). The intercorrelation
between the dimensions was specified at 0.2, 0.5, and 0.7,
respectively. Results indicated that a sample size of 500
provided accurate parameter estimates with an instrument
length of 90 or shorter. When the test items increased to 240,
a larger sample size of 1,000 was required for accurate parameter
estimates.

Another study is a simulation-based power analysis conducted by
Doostfatemeh et al. (2016), in which the authors investigated the
sample size issue on GRM in analyzing patient-reported outcomes
(PROs) in the context of health-related clinical trials. In the study,
five levels of sample sizes (N � 100; 200; 400; 600; and 1,000), six

levels of instrument lengths (J � 5, 10, 15, 20, 50, and 100), and four
numbers of response categories (K � 3, 5, 7, and 10) were included in
the design. Since clinical trials are usually used to evaluate the
effectiveness of new medicine or treatments based on PROs, the
authors also specified sample size allocation ratio across the
experiment and control groups (N1: N2 � 1:1, 1:2, and 1:3) and
the group effect (Cohen’s d � 0.2, 0.5, and 0.8). Additionally, the true
item discrimination parameters were sampled from a uniform
distribution of U (1, 2). The results revealed a large impact of
instrument length, group effect, and allocation ratio on the required
sample sizes. An instrument with a larger number of items would
make it possible to recruit fewer participants for the analysis with
prespecified effect size and power. For instance, assuming a medium
effect (i.e., d� 0.5) and a desired power of 0.8, a sample size of at least
400 is necessary for an instrument with five items. This requirement
of sample size could be decreased to 200 if the instrument consisted
of 10 items or more, whereas sufficient power could not be ensured
across conditions if the sample size was 100.

The investigation of the performance of GPCM mainly
focused on estimations methods (e.g., Penfield and Bergeron,
2005; Luo, 2018; Finch and French, 2019) and evaluating model
fit indices (e.g., Liang and Wells, 2009). Penfield and Bergeron
(2005) compared the performance of three methods, including
maximum likelihood (ML), weighted ML (WML), and expected a
posteriori (EAP), in estimating the person parameters on GPCM.
In the study, three levels of instrument length (J � 6, 12, and 24)
were specified while the sample size was fixed at 1,000.
Additionally, though three levels of item discrimination
parameters (i.e., 0.4, 1.0, and 1.6) were specified, they were
constrained to be equal across items of the same instrument.
Results of the study suggested that the instrument length had a
large impact on all three estimators while the item discrimination
levels showed a larger influence on ML than the other two.

Luo (2018) examined the recovery of both item and person
parameters on GPCM between the two estimation methods of
MML and MCMC. In the study, three levels of sample size (N �
500; 1,000; and 2,000), instrument length (5, 10, and 20), and
person parameter distribution (normal, uniform, and skewed)
were specified. The results showed that the sample size affected
the RMSEs significantly in the item location and discrimination
parameter estimations, regardless of the test lengths and person
distributions. To be more specific, a larger sample size resulted in
a smaller RMSE. Other than that, test length was found to have
significant effects on the RMSE in the person parameter
estimation, indicating more items would lead to more accurate
and stable ability estimates. When comparing the MMLE and
MCMC, there only appeared to be significant differences in
estimating item discrimination parameters, which was affected
by the instrument length. Under skewed latent distribution,
MMLE produced less biased estimates than MCMC; under
both normal and uniform latent distributions, however,
MCMC produced less biased estimates.

In Finch and French (2019), the authors compared the item
threshold parameter estimation accuracy across three estimators,
including MLE, MCMC, and the pairwise estimation, for both
binary and polytomous IRT models (i.e., Rash, 2PL, PCM, and
GPCM) under various levels of instrument length (J � 10, 20, 30,
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40, and 50) and sample size (N � 25; 50; 100; 250; 500; and 1,000).
To simulate the data with GPCM, item parameters were
generated using the data from the Learning and Study
Strategies Inventory. Results of the study on GPCM showed
that a sample size of at least 250 was recommended for MLE.
The pairwise estimation was comparable to the other methods
when the sample size was 250 or larger and superior toMLE when
the sample was 100 or fewer. An extremely small sample size (e.g.,
N � 25 or 50), however, might result in model non-convergence
issues (the convergence criterion was set at 0.001 in the study) for
both MLE and pairwise estimation, especially in the presence of a
long instrument length (e.g., 40 or more items), under which
situations the MCMC estimation method was favored.

The two simulation studies conducted by Liang and Wells
(2009) evaluated the performance of a nonparametric model fit
assessment (i.e., the root integrated squared error or RISE) under
GPCM. In both studies, the instrument length was specified at 10,
20, and 40, while the sample size at 500; 1,000; and 2,000. Results
revealed an acceptable performance (i.e., power ≥0.80) of the
proposed fit assessment when the sample size was 2,000,
regardless of the instrument length.

The previous literature has shed light on the implementation
of polytomous IRT models across contexts. The aforementioned
studies showed that the sample size is the most important factor
in estimating item parameters (e.g., Kieftenbeld and Natesan,

2012). It is to be noted, however, current recommendations on
sample sizes remain unclear in implementation of IRT models,
especially for polytomous IRT models (Finch and French, 2019;
Toland, 2014). Reise and Yu (1990) recommended a minimum
sample size of 500 for GRM applications. As one of the earliest
studies examining the sample size issue in polytomous IRT, their
work was cited and discussed in the two popular textbooks in IRT,
including Embretson and Reise (2000) and De Ayala (2013).
Embretson and Reise (2000) suggested that a sufficient sample
size was necessary for “reasonably small” (p.123) standard errors
in parameter estimations. The definition of “reasonably small,”
however, according to the authors, was arbitrary. In their
illustration example, the GRM did not yield satisfactory
threshold parameters for some items (J � 12) with a sample
size of 350. De Ayala (2013) suggested a sample of at least 500 for
GRM and GPCM (ideally N ≥ 1,200), and at least 250 for Rasch-
based polytomous models (e.g., PCM), for a successful calibration
with such models. More recent research (e.g., Kieftenbeld and
Natesan, 2012; Finch and French, 2019) suggested that a smaller
sample size, say 200 to 300, might also be feasible, especially when
a robust estimation method (e.g., MCMC, Pairwise) was applied.

These simulation studies also revealed the impact of
instrument length on the application of polytomous IRT
models, especially for the estimation of person parameters
(i.e., θ). A clear guideline for an optimal instrument length in

FIGURE 1 | Results of Model Convergence When Data Were Generated by GRM but Analyzed with GPCM. Note. MR � missing rate; Results for all the other
conditions were not included in the figure as they all reached 100% model convergence.
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the context does not exist, neither. Very limited support from
previous research (e.g., Kieftenbeld and Natesan, 2012; Penfield &
Bergeron; 2005) recommended an instrument of at least 12–15
items is adequate in recovering theta parameters, and this needed
to be taken into account together with the sample size. The
collective impact of sample size and instrument length on the
performance of the models cannot be ignored. The decision
should always be made by taking into account both factors as
well as others such as the quality of the items on the instrument
and vice versa. While further empirical support needs to be
collected for clearer guidelines, a synthesis of the studies
suggests that in general a minimum sample size of 200 is
needed for adequate parameter recovery when the instrument
consists of 10 or more items (e.g., Edwards, 2009; Kieftenbeld and
Natesan, 2012; Reise and Yu, 1990). In the presence of a shorter
instrument (e.g., J � 5), a sample size of at least 400 is necessary
(Doostfatemeth, et al., 2016).

In practice, as stated previously, it is not uncommon that
instruments consist of as few as three items (e.g., PISA) and/or a
small sample size of less than 200 (Finch & French, 2019). The
performance of the polytomous IRT models under such conditions,
however, has not been fully investigated. For GRM, Kieftenbeld and
Natesan (2012) was the only study we noticed that investigated the
parameter estimation accuracy in the presence of small sample sizes
(e.g., N � 75, 150, and 300) and short instrument length (e.g., J � 5,

10, and 15). The item parameters in the study, however, were
obtained from the calibration of a real 20-item questionnaire,
which might impact the generalizability of the results to
instruments with a shorter length or varying item quality. For
GPCM, Luo (2018) specified a short instrument length of five
items but the minimal sample size used was 500. On the
contrary, Finch and French (2019) took into account a broader
selection of small sample sizes that ranged from 25 to 1,000. In their
study, however, the instrument length was specified to be at least 10
and only the results of item thresholds were studied.

Further, no study investigated the impact of missing data in
the application of the models. Missing data is a common issue
with rating scale data across contexts and its presence could
impact the performance of IRT models and lead to biased
parameter estimates (Mislevy and Wu, 1988; Mislevy and Wu,
1996; De Ayala et al., 2001; Peng et al., 2007; Finch, 2008;
Cheema, 2014). Additionally, no simulation study, to the best
of our knowledge, was found that evaluated and compared the
performance of GRM and GPCM.

Despite the increasing applications of the polytomous IRT models
in instrument development and evaluation, further research is needed
to guide the implementation of the models across sample size,
instrument length, and missing data. Thus, the purpose of the
current study is to inform the literature on expectations of
performance under these conditions that have not been examined.

FIGURE 2 | Bias of Item Parameter Estimations for GRM. Note. MR �missing rate; bias values of some conditions with N � 150 are out of bounds (i.e.,>2) and not
shown in the graphs.
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METHODS

Simulation Design
To investigate the performance of both GRM and GPCM with
rating scale data across conditions, we conducted a Monte
Carlo simulation study. Specifications of the manipulated
design factors were informed not only by previous studies
(e.g., Reise and Yu, 1990; Finch and French, 2019) but also by
applications of the selected IRT models across education and
social science contexts (OECD, 2021).

Sample Size (N)
Four levels of sample size,N� 150; 300; 600; and 1,200, were specified
to cover from relatively small to moderately large sample sizes.

Instrument Length (J)
Five levels of instrument length (i.e., number of questions), J � 3, 5, 7,
10, and 15, were investigated. Specifically, an instrument length of 3
questions was included because it has been used in practice (e.g.,
OECD, 2021) but has not been studied in the literature yet.
Additionally, it is also the minimum requirement in the context of
confirmatory factor analysis for the purpose of model identification.

Item Discrimination
Following Reise and Yu (1990), three levels of item discrimination
levels were specified for both GRM and GPCM to cover items of

poor, moderate, and good quality. Specifically, item
discrimination values were randomly selected from a uniform
distribution of U (0.44, 0.75) for poor items, U (0.58, 0.98) for
moderate items, and U (0.75, 1.33) for good items.

Missing Rate (MR)
Three rates of missing data (MR � 10, 20, and 30%) were considered
and they all followed the mechanism of missing at random (MAR,
Little and Rubin, 1989; Finch, 2008). Results for complete data
(i.e., MR � 0%) were used as the baseline for comparison.

In addition to the aforementioned design factors, other factors were
fixed in the current study. Specifically, the number of categories (K) on a
scalewasfixed atfive, a commonlyused rating scale (1� strongly disagree
to 5 � strongly agree) across contexts. The four Item threshold/step
parameterswere randomly selected from uniform distributions ofU (−2,
−1),U (−1, 0),U (0, 1), andU (1, 2), while the person parameters followed
a standard normal distribution. Themissing datawill be handledwith the
default method in the IRT analysis software package (i.e, the ltm package
in R; Rizopoulos, 2018) used for the study, which is listwise (or casewise)
deletion. A fully crossed design for the current study resulted in a total
number of 960 conditions and each condition was replicated 500 times.
The model convergence was observed and reported, too.

Data Generation
Using the simdat () function from the R package irtplay (Lim
and Wells, 2020), complete item responses were generated

FIGURE 3 | Bias of Item Parameter Estimations for GPCM. Note. MR � missing rate.
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under both GRM and GPCM for each of the conditions and
replications. Following Dai et al. (2018) and Finch (2008), a
hypothetical variable was firstly generated from N (0, 1) and
used to generate missing responses of MAR of different rates.
The variable was assumed to be inversely related to an
individual’s probability of responding behavior. That is, the
higher value on the hypothetical variable, the easier for the
individual to leave blank on the item. The actual proportions of
the simulated missing data were then examined to ensure
accuracy in data generation.

Analyses and Outcome
The functions grm () and gpcm () with default settings from the
R package ltm (Rizopoulos, 2018) were used to analyze each of
the simulated data set with both GRM and GPCM. That is, each
data set was analyzed by the two polytomous IRT models,
respectively, regardless of its data generation model. By
default, the ltm applies a marginal maximum likelihood
estimation (MMLE) approach with the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm in fitting the model
(Rizopoulos, 2018). Then the functions coef () and factor.
scores () in the package were used to retrieve the item and
person parameters, respectively. Explicitly, the person
parameters were obtained with the Empirical Bayes (EB)
method—a default setting in the function factor. scores ().

In the presence of missing data, by default, the package uses
the available cases for the analysis (Rizopoulos, 2018). To achieve
the purpose of the study, the outcomes of model convergence,
parameter recovery, and model fit indices as well as test
information were obtained and evaluated.

1) Model convergence. The average rate of model convergence
across replications was collected for each condition using the
binary convergence identifier as returned by the package.

2) Parameter recovery. Both the mean bias and root mean
squared error (RMSE) over the 500 replications were used
to evaluate the recovery of the item and person parameters
across conditions. The mean bias was obtained as the average
difference between the estimated and true parameters across
items and replications. It was computed in a way that positive
values suggested that the parameters were overestimated while
negative values the opposite. Following Finch and French
(2019), bias and RMSEs of the item step/threshold parameter
estimates were averaged across the five categories for each
condition.

3) Model fit indices. Log-Likelihood (LL), Akaike information
criteria (AIC), and Bayesian information criteria (BIC), and
test information statistics from the models were obtained to
evaluate the model selection between the two IRT models (De
Ayala, 2013; Finch & French, 2015).

FIGURE 4 | RMSE of Item Parameter Estimations for GRM. Note. MR �missing rate; RMSE values of some conditions with N � 150 are out of bounds (i.e.,>3) and
not shown in the graphs.
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At last, analyses of variance (ANOVAs) were conducted to
investigate the effect of the design factors and their interactions
on the outcomes. The significance level was controlled at the 0.05
level and η2p was used as the effect size measure with 0.01, 0.06,
and 0.14 indicating a small, medium, and large effect, respectively
(Cohen, 2013).

RESULTS

Results of ANOVAs on the outcomes revealed significant high-
order interactions across most of the conditions. Thus, given the
large number of conditions in the study and to better describe and
investigate the results, we present the results through profile plots
with four main sections for 1) model convergence, 2) item
parameter recovery, 3) person parameter recovery, and 4)
model selection.

Part I: Model Convergence
Model convergence was monitored and recorded when
analyzing the data. Results revealed no issues for either
model when a correct model was selected to analyze the
data (i.e., when the data were both generated and analyzed
using the same model). Almost 100% convergence rate was
achieved across all conditions of sample size, instrument
length, item quality, and missing rate. Surprisingly, the

same pattern was detected in conditions when the data
were generated by GPCM but analyzed using GRM. Issues
of model non-convergence arose, however, when the data were
generated by GRM but analyzed using GPCM (see Figure 1).
As can be noticed in the figure, generally, large sample sizes
and longer scales (J ≥ 10) were more likely to result in model
non-convergence, especially in the presence of low item
discrimination power or poor item quality. Under
conditions of J ≥ 10, especially when J � 15, nearly no
convergence was achieved for instruments with poor or
moderate items.

Part II: Recovery of Item Parameters
Figures 2, 3 present mean bias of item discriminations and
thresholds for GRM (i.e., data were generated and analyzed by
GRM) and GPCM (i.e., data were generated and analyzed by
GPCM), respectively.1 Bias results in Figure 2 indicated a large
impact of the design factors on the recovery of item
discrimination parameters for GRM. Generally, when the
missing rate was 10% or lower, minimal bias of the item

FIGURE 5 | RMSE of Item Parameter Estimations for GPCM. Note. MR � missing rate.

1In this section, we only present item parameter recovery results when data were
generated and analyzed by the same model. Due to the different nature of the two
models (indirect vs. direct), the estimated item parameters and the true values are
not comparable if a wrong model is selected to analyze the data.
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discrimination parameters was observed across all conditions,
except for the conditions of J � 3. When the missing rate was
large (MR ≥ 20%), a shorter test length was associated with a
larger bias in item discriminations. For example, in the MR �
20% condition, an instrument length of 7 or shorter resulted in
greater bias. Regarding recovery of the item thresholds, a small
bias was observed across conditions, especially when item
quality was moderate or good (i.e., medium or high item
discrimination levels). However, when item discrimination
was low, bias in the thresholds was larger, particularly when
there was a smaller sample size (i.e., <300).

Results of GPCM in Figure 3 showed that, regardless of item
quality, short instruments (J � 3) and small sample sizes (N ≤ 300)
yielded relatively large bias for item discrimination parameters,
especially when the missing rate was 20% or higher. Regarding
item threshold estimates, bias stayed minimal across all
conditions except that small sample sizes (N ≤ 300) resulted in
relatively greater bias.

Figures 4, 5 present the RMSEs of the item parameters for GRM
(i.e., data were generated and analyzed byGRM) andGPCM (i.e., data
were generated and analyzed by GPCM), respectively. Figure 4 shows
that a smaller sample size, a shorter instrument length, lower item
quality, and/or a larger missing rate would result in greater RMSEs in
both item discrimination and threshold estimations for GRM.
Generally speaking, larger RMSEs were found across the

conditions for item thresholds, especially for small sample sizes
(N � 150) and large missing rates (MR � 30%). The impact of
instrument length and sample size on both item parameters was small
when items were of good quality (i.e., high discrimination) and there
was nomissing data, even in conditions with J � 3 and/orN � 150. As
the missing rate increased and the item quality decreased, RMSEs
increased when the instrument length was shorter and the sample size
was smaller. For example, in conditions with high item quality but
10% missingness, the RMSEs increased drastically as the instrument
length decreased from five items (RMSEs � 0.12–0.42 across sample
sizes) to three items (RMSEs � 0.86–1.19 across sample sizes).
Similarly, J ≥ 7 and N ≥ 300 were recommended when the
missing data rate reached 20%, and at least J ≥ 10 and N ≥ 300
when the missing rate was 30%.

Figure 5 reports the RMSE values for item parameter
estimations under GPCM. No substantial impact of item
quality was found on the RMSEs for the item discrimination
parameter estimations. Other factors affected the RMSEs for the
item discrimination estimation more substantially—a smaller
sample size, a shorter instrument length, and a larger missing
rate tended to result in higher RMSE values, especially in
conditions of J � 3 and N � 150 (RMSEs � 0.51–1.27 across
item quality and rates of missing data). The trend was more
obvious when the missing rate was 20% or higher (RMSEs �
0.64–1.27 across item quality). For example, when J � 3, RMSEs

FIGURE 6 |Bias Results of Person Parameter Estimations for Both GRM and GPCM (correct Model Selection). Note. MR �missing rate; Data were generaged and
analyzed by the same model.
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for the discrimination parameters were always the largest across
conditions, and they kept increasing as the missing rate became
higher. For the estimation of item thresholds, larger sample size
and higher item quality resulted in smaller RMSEs in general, and
missing rates did not impact the RMSE values substantially.
Regardless of instrument length, a sample size of 150 yielded
the largest and constant RMSE values.

Part III: Recovery of Person Parameters
Figures 6, 7 present mean bias and RMSE results of the person
parameters when a correct model was selected and used for the
analyses (i.e., data were generated and analyzed by the same IRT
model). Bias results in Figure 6 suggested a larger impact of the
design factors on the person parameter estimations of GPCM
than those of GRM, as indicated by larger absolute bias values
across the graphs (e.g., lines further away from the reference line
of 0). Explicitly, bias values for the GRM estimated person
parameters ranged from −0.07 to 0.11 while those for the
GPCM ranged from −0.27 to −0.92. Under GPCM, a longer
scale tended to yield underestimated thetas with larger absolute
bias values (descending lines in the graphs), which was contrary
to the impact of the sample sizes, item quality, and missing data,
yielding smaller absolute bias values. Under GRM, the same
pattern was found across all conditions. The bias values

showed nearly no impact of item quality, instrument length,
and missing data on the estimation of person parameters for
GRM. A small sample size (N ≤ 300) yielded larger bias values in
GRM, but the magnitude (bias � −0.07–0.11) was very small
compared to those generated by GPCM (bias � −0.27 ∼ −0.92).

As indicated in Figure 7, RMSEs of GPCM revealed a
constant pattern across all conditions except for the
condition of N � 150, which yielded the lowest RMSEs.
This was probably due to the contrary effect of instrument
length (tended to yield underestimations) and other factors
(tended to yield overestimations). Under GRM, greater RMSEs
were noticed in the presence of a shorter scale, poorer item
quality, and a larger missing rate. The impact of sample size on
GRM person parameter estimations was trivial when the
missing rate was 10% or less. A smaller sample size,
however, tended to result in larger RMSEs when the
missing rate was over 20%. RMSE results revealed a
different pattern as suggested in the previous figure when
comparing the two models, but what remained the same
was that GRM yielded better performance in estimating the
person parameters than did GPCM, as suggested by the smaller
RMSEs across most of the conditions. Explicitly, RMSEs for
the GRM estimated person parameters ranged from 0.44 to
1.33 while those for the GPCM ranged from0.89 to 1.40.

FIGURE 7 | RMSE Results of Person Parameter Estimations for Both GRM and GPCM (Correct Model Selection). Note. MR �missing rate; Data were generaged
and analyzed by the same model.
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Exceptions occurred in all the conditions with a 30% missing
rate and with J ≤ 5 when the missing rate was 20%.

Figures 8, 9 display mean bias and RMSE results of person
parameter estimations when an incorrect model was used for the
analyses (i.e., data were generated by one model such as GRM but
analyzed using a different model such as GPCM). According to
the bias results in Figure 8, overall, the design factors showed no
impact for GRM in estimating the person parameters for a sample
size of 600 or larger when the data were generated by GPCM (the
left four columns in the figure). Smaller sample sizes (N ≤ 300)
yielded larger bias values, but the magnitude was small, and the
pattern remained constant across all the other conditions. When
GPCM was used to analyze GRM-generated data (the right four
columns in the figure), the largest bias was obtained when N �
150. Meanwhile, higher discrimination (i.e., good item quality)
would lead to smaller bias except when J � 3,N � 1,200 andMR �
10%, and J ≤ 7 and MR � 30%. Between the two data analysis
models, GRM was related to a smaller bias and more stable
performance across conditions in estimating person parameters.

Figure 9 presents the RMSEs of person parameter estimations
for both models in the presence of incorrect model selection.
When GRM was used to analyze GPCM-generated data and
when there was no missing data, longer instruments yielded
smaller RMSEs while only a trivial impact was detected across
levels of sample sizes and item quality. As the missing rate

increased, short instruments and small sample sizes resulted in
greater RMSEs. This pattern became obvious in conditions with
J � 3 whenMR � 10%, J ≤ 5 andN � 150 whenMR � 20%, and J ≤
7 when MR � 30%. On the other hand, when GPCM was used to
analyze GRM generated data, greater RMSEs were detected across
almost all conditions, especially in conditions of small sample
sizes (N ≤ 300) and larger missing rates.

Part IV: Results of Model Selection
Model selection was evaluated for both models by obtaining
the rate of correct model selection across conditions using
AIC, BIC, LL, and test information. Specifically, a model was
selected for smaller AIC and BIC values and larger LL and test
information values. Figure 10 presents the results for GRM.
Similar patterns were detected across AIC, BIC, and LL. In
general, longer instruments and larger sample sizes yielded a
higher rate of correct model selection, whereas the impact of
missing data and item quality was relatively small. It became
more demanding for small sample sizes (N ≤ 300) and short
instruments (J ≤ 7) to reach a desired rate of 80%. For instance,
when there was no missing data, the rate was above 80% across
all conditions when N � 1,200. When N � 600, an instrument
length of at least five items (J ≥ 5) was needed to maintain the
same rate. When N � 300, at least seven items (J ≥ 7) were
recommended. When N � 150, at least 10 items (J ≥ 10) were

FIGURE 8 |Bias Results of Person Parameter Estimations for Both GRM andGPCM (Incorrect Model Selection). Note. MR �missing rate; The left four columns are
results when date were generated by GPCM and analyzed by GRM, while the right four columns the opposite.
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necessary. The model selection criterion of test information
was more impacted by item quality than other factors except
for conditions with J � 3 and N � 150. When items of an
instrument were of good quality (i.e., high item
discrimination), only conditions with J � 3 and N � 150
reported a correct model selection rate below 80% when
MR ≥ 20%. When items were of moderate quality, a similar
pattern was detected across all missing data rates. The pattern
was a bit off when items were of poor quality, especially for
small sample sizes and both short (J ≤ 5) and long (J � 15)
instruments.

Figure 11 presents the results for GPCM, and similar patterns
were detected for AIC, BIC, and LL as those reported for GRM
but with relatively higher rates of correct model selection in the
same conditions. The largest discrepancy of results lied in those of
test information, in which GPCM was rarely favored.

CONCLUSION AND DISCUSSION

The current study investigated the performance of GRM and
GPCM with rating scale data across various instrument lengths,
sample sizes, item quality, and missing data rates. Results from
the simulation study revealed different impacts of the designed
factors on the item and person parameter estimations.

Synthesizing the results of item parameter estimations for both
GRM and GPCM, we identified the following patterns: 1) The
estimation of item parameters for GPCM was more stable than
for GRM. 2) In general, a small sample size, a short instrument
length, poor item quality (i.e., lower item discrimination), and a
high missing rate, tended to adversely impact the estimation
accuracy of both item discrimination and threshold parameters
collectively, especially for the item thresholds. 3) The item
parameter estimation accuracy was lower in the presence of a
short instrument (J � 3) and/or a small sample size (N � 150),
especially when items were of poor quality and the missing rate
was 20% or higher. 4) Generally, the impact of missing data was
acceptable when MR � 10% or less. When the missing rate was
high (MR ≥ 20%), a larger sample size of at least 300 and an
instrument length of at least five items were required for
acceptable item parameter estimations.

Regarding person parameter estimations across correct and
incorrect model selections (Figures 6–9), we noticed the
following patterns: 1) In general, GRM revealed more accurate
theta estimates than GPCM regardless of the data generating
model, as indicated by the smaller bias and RMSEs. The exception
happened when there was a high rate of missing data (MR �
30%), in which GPCM yielded better performance. 2) The
performance of GPCM was more stable than GRM across
conditions, especially those of missing data. A large impact of

FIGURE 9 | RMSE Results of Person Parameter Estimations for Both GRM and GPCM (Incorrect Model Selection). Note. MR �missing rate; The left four columns
are results when date were generated by GPCM and analyzed by GRM, while the right four columns the opposite.
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missing data, especially when MR ≥ 30%, was detected on GRM
in estimating person parameters. 3) Longer instrument length
tended to yield more accurate person parameter estimates for
GRM while it had only a small impact on those for GPCM. 4) An
incorrect model selection had an adverse impact on the
estimation of person parameters for both models but only
with a very small size, especially for GRM.

We also investigated the impact of the selected factors on
model convergence and model selection. While model
convergence was not of an issue especially when a correct
model was selected, model non-convergence was observed
when data were generated by GRM but analyzed using GPCM,
especially in the presence of small sample sizes and longer
instruments. In other words, GRM seemed to be more robust
than GPCM when it comes to model convergence. The use of
AIC, BIC, and LL in model selection is recommended as
compared to that of test information. But these indices might
not be as powerful as expected in the presence of short
instruments and small sample sizes (N ≤ 300), especially as
the missing rate increased. The test information favored GRM
across most of the conditions.

In general, the results of the study under conditions with no
missing data are in line with those reported in previous studies.
As stated previously, a rule of thumb from existing literature
suggests a sample of 200–300 with an instrument length of 10 or

more items for accurate parameter estimation. Similarly, our
results support that a sample size of at least 300 in the
implementation of both GRM and GPCM. An N � 150 might
be feasible when the purpose is to obtain the person parameters as
it will lead to inaccurate item parameter estimations and inflated
type II error rates for the model fit indices.

Our results also reveal different performances of GRM and
GPCM under various instrument lengths. Previous studies that
showed the impact of the instrument length on the person
parameters mostly lied in Kieftenbeld and Natesan (2012)
work on GRM (see Table 2). Their results suggested that the
difference in the accuracy of person parameter recovery was
smaller when J was 15 or larger. While the maximum J in our
study is 15, the results do show a notable improvement of person
parameter estimations when J increases (see Figure 7). Further,
based on our results, an instrument of as few as 3 items could be
feasible in recovering the person parameters, especially for the
GPCM. As for item parameters, J � 3 is only feasible on at least a
moderate sample size (say 600). In the presence of a small sample,
an instrument of at least 5 items is recommended.

Additionally, the results revealed an impact of missing data on
the performance of polytomous IRT models. The impact is small
when the proportion of missingness is under 10%. As the missing
proportion increases, so does the requirement for a larger sample
size and an instrument with more items. Although the GPCM

FIGURE 10 | Results of Model Specification/Selection for GRM. Note. MR �missing rate; AIC � Akaike information criterion; BIC � Bayesian information criterion;
LL � Log Liklihood.
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showed a stable performance under missing data, specific
approaches are still recommended to handle missingness. The
application of missing data methods such as treating missing
responses as incorrect, Expectation-Maximization (EM)
imputation, and multiple-imputation (MI) has been studied in
the context of dichotomous IRT models (e.g., De Ayalya et al.,
2001; Finch, 2008; Mislevy and Wu, 1988; 1996). Their
performance in the application of polytomous IRT models
with rating scale data, however, remains unclear.

The present study contributes to the literature regarding our
understanding of the polytomous IRT models, especially for
GRM and GPCM, and their implementations. Polytomous IRT
is a family of models. How to select an optimal model is often the
first question for those who are tasked with IRT modeling. In
practice, it is usually recommended to make the decision based on
theoretical assumptions (e.g., restrictions on the item
parameters), model fit, sample size (e.g., models with fewer
parameters when the sample size is small), and practical
concerns (e.g., useable programs; Embretson and Reise, 2000;
Penfield, 2014). When it comes to the choice between GRM and
GPCM, however, the issue gets complex due to the similarities of
the two models such as restrictions on the parameters, which
results in the same number of item parameters, and the fact that
they are often equipped in the same programs (ltm, mirt, etc.).
Therefore, in practice, the decision is usually made either based

on the comparison of the model fit (e.g., AIC, BIC, LL,
information) or arbitrarily (Edelen & Reeve, 2007).

Our results suggest that, despite the similarities of GRM and
GPCM, an appropriate selection of the two models can help
avoid inaccurate parameter estimations. First, in line with the
literature, a model fit assessment is still recommended in general
based on relative indices such as AIC and BIC. The model fit
indices are less helpful, however, when the sample size is fewer
than 300 and the instrument length is 5 or less. The comparison
based on test information is not recommended to guide the
selection of an optimal model. Second, the decision should be
made in considering the factors that have different impacts on
the performance of the two models, especailly for sample size,
instrument length, and the presence of missing data. It is also
important to note that the models performed differently with
respect to the accuracy of item and person parameters.
Decisions should also be made with caution in the presence
of a small sample size (N � 150) and/or a short instrument
length (J � 3), especially in the presence of missing data and
poor item quality. When the rate of missing data is 20% or
lower, GRM could be a good choice as it yields more accurate
parameter estimations, especially for the person parameters.
When the missing rate is over 30%, however, GPCM is
recommended as its performance is relatively more stable
under large missingness. Further, GRM could be an

FIGURE 11 | Results of Model Specification/Selection for GPCM. Note. MR �missing rate; AIC � Akaike information criterion; BIC � Bayesian information criterion;
LL � Log Liklihood.
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alternative in the presence of a non-convergence issue in the
implementation of GPCM.

We acknowledge that the generalizations of the findings are
limited to the selection of design factors in the current
simulation study. As Embretson & Reise (2000, p.123)
pointed out “Yet simulation studies are useful only if the
data matches the simulated data.” In practice, in considering
whether a polytomous IRT model should be used to analyze the
rating scale data and further, which model should be selected,
the decision should be always made collectively with caution by
taking into account multiple factors. While our results suggest
the use of GRM or GPCMwhen the sample size is as small as 150
under certain conditions (e.g., no missing data, high item
discrimination, long instrument length), it is important to
note that we used the MML estimation method to obtain the
parameters. In practice, there might be situations with very
small sample sizes such as 100 or 50. With such a small sample
size, either of the models might not even converge and return
any results with MML. For example, the GPCM did not yield
results for conditions N ≤ 50 in Finch and French (2019). In the
presence of such situations, other estimation methods that are
more robust to small sample sizes such as MCMC or pairwise
estimation might be considered. Future research should be
conducted to examine the effectiveness of different
estimation methods for both GRM and GPCM. Further, we
only considered a rating scale with five response categories while
in practice it could vary from three to many. Additionally, in the
study, we assumed the missing responses to the MAR
mechanism and handled the missing data with the default
procedure in the software package (i.e., listwise deletion).

Future studies should also take these factors such as the
impact of different missing data handling approaches into
account to further investigate the performance of both
models across contexts.
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