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An important feature of learning maps, such as Dynamic Learning Maps and Enhanced
Learning Maps, is their ability to accommodate nation-wide specifications of standards,
such as the Common Core State Standards, within the map nodes along with relevant
instruction. These features are especially useful for remedial instruction, given that accurate
diagnosis is available. The year-end achievement tests are potentially useful in this regard.
Unfortunately, the current use of total score or area sub-scores are neither sufficiently
precise nor sufficiently reliable to diagnose mastery at the node level especially when
students vary in their patterns of mastery. The current study examines varying approaches
to using the year-end test for diagnosis. Prediction at the item level was obtained using
parameters from varying item response theory (IRT) models. The results support using
mixture class IRT models predicting mastery in which either items or node scores vary in
difficulty for students in different latent classes. Not only did the mixture models fit better
but trait score reliability was also maintained for the predictions of node mastery.
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INTRODUCTION

Learning maps can potentially guide instruction for students if their mastery is assessed. Several
learning maps or learning progressions have been developed. Cameto et al., (2012) described various
types of organized learning models, including fine-grained learning maps to represent mathematical
skills. Learning maps provide a visual representation of hypothesized pathways to increase the
understanding of the learning targets (Hess, Kurizaki, and Holt, 2009), by representing successively
more sophisticated ways of thinking about the content (Wilson and Bertenthal, 2005). For example,
dynamic learning maps (DLM) and enhanced learning maps (ELM) for mathematics consist of
thousands of nodes and multiple pathways that organize the knowledge, skills, and aspects of
cognition related to performance.

An important feature of learning maps is to be able to accommodate nation-wide standards for
the various grade levels, such as the Common Core State Standards (CCSS). CCSS in mathematics has
the following five content areas: number sense, ratio and proportions, expressions and equations,
geometry, and statistics and probability. Standards are nested within a content area to define very
specific skills and knowledge for the grade level. For example, a seventh grade standard nested in the
number sense area is “Describe situations in which opposite quantities combine to make 0” (Kansas
State Department of Education, 2017, p. 58).

Both ELM and DLM were developed in a series of research projects (Kingston et al., 2016;
Kingston and Broaddus, 2017) to be a superset of state standards. ELM andDLM contain networks of
nodes that define prerequisite skills. Each standard for a particular state can be identified on the map
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as a major node (e.g., clusters of skills), along with its precursor
and successor skills. Importantly, major nodes in ELM and DLM
are related to instruction.

The beginning of a new school year is a particularly important
time to assess student mastery of skills to determine if remedial
instruction is needed. But how to determine the most appropriate
instruction for individual students? As noted by Kingston and
Broaddus (2017), determining relevant remedial instruction
involves at least two requirements: 1) providing sufficiently
precise diagnosis of skills, knowledge, and cognitive
competencies of students and 2) linking the results to
instruction. The first requirement involves the psychometric
procedures for diagnosis while the second requirement
involves linking the assessment to learning map nodes for
which relevant instructional resources are available.

Providing precise diagnosis of student mastery has inspired a
broad range of research and development, including formative
classroom assessments. Research efforts have led to the
availability of many formative tests (e.g., GMADE and
Pearson, 2018) that potentially could be linked to instruction.
However, since yearly accountability goals, such as CCSS, involve
many standards (e.g., 15 to 20 standards are not uncommon), it
would be inefficient to administer enough tests for a reliable
overview of a student’s mastery of the standards that are linked to
learning maps. Thus, a starting point is needed to diagnose
potential areas for remedial instruction.

The assessments for state standards from the previous year are
the tests that are most likely to be available to teachers as a new
school year begins. The content validity of the year-end tests rests
on representing the standards deemed by various educational
panels to cover the current grade level skills. These skills are
viewed as essential for the next grade level, as students falling
below a certain overall score level may not be promoted. Thus,
diagnostic information from the year-end test is important at the
beginning to the school year to uncover “prerequisite” areas
without mastery. The available overall test scores are deemed
reliable for diagnosing students’ overall mastery of the various
measured standards. When based on item response theory (IRT),
items for the standards can be placed on a scale of relative
difficulty. Overall test scores can be aligned with the scale,
thus indicating relative probability of solving specific items for
the standards; hence, a common scale alignment of scores and
items has direct implications for mastery of specific skills. The
NAEP mathematics skills maps (Nations Report Card, 2019) are
an example of such alignment.

But can the year-end test results be used to determine relevant
instruction for individual students? Unfortunately, diagnosis
based on overall test scores can be problematic (Popham et al.,
2014). A major issue is that the overall scores may not be
sufficiently precise to diagnose which standards a particular
student has mastered. That is, different instructional
backgrounds, different test-taking strategies, and other factors
can impact the relative item difficulties within and across nodes.
If students have varying patterns of skill competencies, diagnosis
of specific skill mastery based on total test scores is misleading.

Various psychometric approaches have been applied to
year-end tests to increase diagnostic relevancy. For example,

sub-scores for major areas within the CCSS are sometimes
reported with overall test scores to diagnose mastery.
Standards are typically clustered into global content areas, and
sub-scores on the items within the areas are computed for each
student. Because sub-scores are based on fewer items than overall
scores, they are less reliable. But worse, they are still not
sufficiently precise. That is, instruction based on learning
maps is relevant to more specific standards within the area.
However, sub-scores based on items representing each
standard, although more specific, would be based on too few
items to have sufficient reliability to diagnose mastery.

Alternatively, cognitive diagnostic models (Rupp et al., 2010)
sometimes have been applied to assess patterns of competency
(Li, 2011) and longitudinal growth (Pan et al., 2020). However,
the number of different attributes for a cognitive diagnostic
model cannot be large, as the number of possible patterns
increases exponentially with the number of attributes. Thus,
diagnosis is not sufficiently reliable for typical achievement
tests representing 15 to 20 standards.

The current study takes a somewhat different approach.
Rather than using area or node-specific sub-scores or attribute
patterns, diagnosis is based on item-specific predictions using
item response theory (IRT) estimated person and item
parameters on a year-end test.

Several psychometric models will be compared for overall fit and
diagnosis of mastery, including models that can accommodate
different patterns of mastery. For the traditional binary-scored
items, parameters for unidimensional, multidimensional, and
mixture class IRT models will be estimated. The multidimensional
and mixture class models can accommodate students’ varying
patterns of item responses. Also, two polytomous IRT models will
be applied to node-scored “items” from the overall test. That is, each
polytomous item response represents the number of node-specific
items passed by an examinee. Thus, the number of items is the
number of nodes represented on the test. The two polytomous IRT
models are the unidimensional partial credit model and the partial
credit mixture class model.

A year-end test for middle school mathematics will be used for
model comparisons. For this test, the blueprint categories are
linked to CCSS-based nodes on ELM for which instruction is
available. For each IRT model, mastery of the nodes will be
predicted for each student based on the model parameter
estimates. The models will be compared for fit, trait level
reliability, and differential diagnosis of node mastery. It is
hypothesized that the mixture class models will not only fit
substantially better but also maintain examinee score
reliability. Differential diagnosis of mastery versus non-
mastery of the nodes for students is also expected from the
models, with improved diagnostic accuracy resulting from
using better-fitting models.

ITEM RESPONSE THEORY–BASED
APPROACHES

In this section, the various IRT approaches are elaborated. Details
on the models and implications for node prediction are reviewed.
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For all models, predicted node mastery for individual students
involves comparing node predictions to a specified mastery
cutline.

Predictions Based on Item Accuracy
For the item accuracy data, mastery assessments will be based on
the mean predicted probability that an examinee solves items in a
particular node. Mastery will be determined by comparing these
probabilities to a predetermined cutline for mastery (e.g.,
probability of 0.70 or higher). For the unidimensional IRT
model, both the estimated mean difficulty for items within a
node (β−k ) and examinee overall trait level (θj) can be used to
compute the probability that examinee j solves items in node k,
P(Xjk � 1) as follows:

P(Xjk � 1) � eθj− β−k /(1 + eθj−β
−
k ), (1)

with an IRT Rasch model. In this case, the examinee’s trait level is
based on all the test items and is the most reliable trait estimate.

If examinees at the same overall trait levels have varying
patterns of area difficulties, however, then separate trait levels
to represent each area could be more appropriate. In this case, a
confirmatory multidimensional model, with specified trait areas,
would be expected to fit significantly better than the
unidimensional model. Thus, the trait level used to compute
the probabilities for nodes in area d for examinee j, θjd would be
given as follows:

P(Xjk � 1) � eθjd− β−k /(1 + eθjd−β
−
k ). (2)

However, the pattern of item responses may vary further
between examinees than permitted in calibrations of
probabilities in Eq. 2. That is, the varying patterns of item
difficulties may lead to latent classes of examinees. In this
case, a mixture distribution IRT model (e.g., Rost and von
Davier, 1995) is needed. Thus, the probability that examinee j
solves an item in node k depends the mean difficulty of the node
in class m, β−km, and the examinee’s trait level based on class
difficulties, θjm, as follows:

P(Xjkm � 1) � ∏mηmj (eθjm−β−km /(1 + eθjm−β
−
km)), (3)

where ηmj is the probability that examinee j belong to class m.
Latent classes may reflect pattern differences between

examinees for the various areas, similar to the
multidimensional IRT models in Eq. 2. However, the classes
also could reflect node differences within areas or even specific
item difficulty differences within the nodes when based on item
accuracy data.

Predictions Based on Node Scores
Another approach is to treat the nodes as polytomous items. That
is, if the items are classified into 18 different nodes, they become
18 polytomous items in which accuracy scores are obtained for
each node. Thus, if sn is the number of score categories in node n,
the probability that examine j obtains score x in node n is denoted
as P(Xjnx), where x � 0,. . .,sn. The partial credit Rasch is given as
follows:

P(Xjnx) � eΣ
x
k�0(θj− βn+ τnk)

Σsn
y�0e

Σx
k�0(θj− βn+ τnk), (4)

where βn is the difficulty location of node n, τnmk is the
threshold parameter for category k in node n, and θj is
examinee j’s trait level based on node scores and
corresponding parameters.

The partial credit Rasch model also can be estimated as
mixture class model in which the pattern of node difficulties
varies across classes. In this case, the probability that examine j
obtains score x in node n is denoted as P(Xjnx), is given as
follows for the mixture partial credit Rasch model:

P(Xjnx) � ∏mηmj
⎡⎢⎢⎢⎣ eΣ

x
k�0(θjm− βnm+ τnkm)

Σsn
y�0e

Σx
k�0(θjm− βnm+ τnkm)

⎤⎥⎥⎥⎦ , (5)

where ηmj is the probability that examinee j belongs to class m,
βnm is the difficulty location of node n in class m, τnmk is the
parameter for category k in node n, and θjm is examinee j’s trait
level based on node difficulties in class m.

METHOD

Examinees
The examinees were 8,585 students in Grade 7. These students
took the same form of the state mathematics achievement test in
late spring.

Test
The test was the state accountability test for mathematics
achievement consisting of 70 multiple choice items. The items
represented blueprint categories for the major areas of
mathematics for Grade 7. The items were linked to ELM node
clusters that represented the various subareas in CCSS. Thus,
items were linked to nodes within specific subareas for five major
CCSS categories; 1) number sense (NS), 2) ratio and proportions
(RP), 3) expressions and equations (EE), 4) geometry (G), and 5)
statistics and probability (SP). A total of 66 items could be linked
to ELMwith a rater reliability of 0.876. The total number of nodes
represented by the test within the areas was 18. For all subsequent
statistics and analyses for the areas, number sense was combined
with ratios and proportions so that the number of items per area
was not less than 10. Table 1 shows the number of nodes per area
and the number of items within each node.

Procedures
Five different IRT models were estimated. All models were
variants of Rasch models to assure appropriate comparisons to
the mixture class models.

Models based on item accuracy. Three models based on item
accuracy were estimated: 1) a unidimensional Rasch model to
provide a single trait level, 2) a multidimensional Rasch model
consisting of independent trait level estimates for the major CCSS
areas, and 3) a mixture Rasch model. For these three models,
difficulties for each item were estimated using conditional
maximum likelihood followed by maximum likelihood trait
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levels estimates based on the individual item parameters. For the
multidimensional model, the dimensions correspond to areas for
the standards; thus, each trait level was estimated using only items
within an area. For the mixture Rasch model, the number of
classes used for these estimates depended on fit and class sizes.
Then, the mean estimated item difficulty was computed for each
node in the three models. Performance levels for each examine on
the 18 CCSS nodes was assessed using IRT parameter-based
predictions as shown in Eqs 1–3. That is, the probability of
passing the average item within each node was computed for each
examinee, P(Xjk � 1), using the mean item difficulty for node k.
For the mixture Rasch model, the parameters used depended on
the latent class for which examinee j had the highest probability of
belonging, as shown in Eq. 3.

Models based on node scores. Polytomous items were created
for the test by scoring items for the same node into “testlets”
(Thissen, Steinberg and Mooney, 1989). That is, accuracy
responses on items measuring the same node were summed,
thus creating 18 polytomous items.

Two models based on the node scores, the partial credit Rasch
model and the mixture partial credit Rasch model, were estimated
in a similar fashion as the binary itemmodels. In the partial credit
models, node scores are treated as polytomous items with
multiple thresholds. Estimates for location (i.e., mean node
threshold difficulty) and score category thresholds were
obtained for each node. The parameters for the partial credit
model were estimated as shown in Eq. 4. For the mixture partial
credit Rasch model, the number of classes used for these estimates
depended on fit and class sizes. Parameters were estimated as
shown in Eq. 5. No additional computations were needed, as
node parameters are directly estimated.

RESULTS

A significant issue for the data is whether or not the year-end test
indicates non-mastery, thus indicating a need for remedial
instruction. The percentage of the 66 items solved by each
student is shown on a histogram on Figure 1. A cutline of
70% correct is often used as a mastery cutline. Although many
students have very high percentage passed scores, it can be seen
that a substantial proportion of the students (actually, 33.7%) fall
below a cutline of 0.70 for mastery. Higher mastery cutlines (e.g.,
0.80) would have large numbers of students falling below it.
Determining potential areas for instruction is especially
important for students whose predicted scores fall below the
cutline. However, even students with total proportion of items
passed at 0.70 or above may have one or more areas of non-
mastery.

Models Based on Item Accuracy
Descriptive statistics. Table 1 shows the means and standard
deviations of the proportion of students passing the various items
(p-values) by overall area and by the nodes that represent the
standards. It can be seen that the mean p-values are very similar
across areas and above 0.70. Thus, an overall diagnosis of relative
weaknesses by area is not supported.

For nodes, Table 1 shows that the mean p-values of items in
the various nodes varies more substantially. That is, the mean
p-values of the items in the nodes range from 0.615 (RP3) to 0.885
(G6), indicating differences in relative mastery. That is, most
students are responding correctly to the four items in G6, but
many students are not responding correctly to items in RP3.
Table 1 shows similar findings within areas. Thus, differential

TABLE 1 | Mean and standard deviations for p-values for items within the areas and nodes from binary item accuracy data.

Node Number of
items

p-values Node scores

Mean SD Mean SD

Number Sense and Ratios 19 0.750 0.131 14.323 3.677
NS1 3 0.686 0.205 2.102 0.852
NS2 2 0.675 0.106 1.351 0.733
NS3 2 0.760 0.098 1.523 0.645
RP1 4 0.810 0.028 3.242 1.166
RP2 6 0.810 0.134 4.889 1.389
RP3 2 0.615 0.134 1.242 0.706
Expression-Equation 14 0.753 0.119 10.548 3.041
EE1 5 0.702 0.186 3.517 1.287
EE2 4 0.775 0.038 3.101 1.217
EE3 5 0.788 0.073 3.946 1.224
Geometry 22 0.766 0.141 16.851 4.284
G1 2 0.845 0.035 1.692 0.569
G2 4 0.750 0.132 2.995 1.023
G3 4 0.637 0.175 2.550 1.216
G4 4 0.677 0.104 2.717 1.302
G5 4 0.842 0.105 3.364 1.006
G6 4 0.885 0.071 3.558 0.827
Statistics-Probability 11 0.724 0.117 7.968 2.303
SP1 4 0.667 0.102 2.662 1.143
SP2 3 0.803 0.075 2.421 0.760
SP3 4 0.722 0.145 2.890 1.118
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focus on the nodes, rather than areas, for possible remedial
instruction is supported.

Model estimates. Some variability in the estimation software
used for the various models was necessary. That is, different
software was needed to estimate multidimensional and mixture
class models as noted below. To assure similarity, those models
(i.e., unidimensional models) that could be estimated by both
programs were compared and the parameter estimates were
virtually identical.

Item and person parameters were estimated for the three
different IRT models. The unidimensional and
multidimensional Rasch model was estimated in IRTPRO
(Thissen et al., 1989) using marginal maximum likelihood.
The mixture class IRT model was estimated with winMIRA
(Rost and von Davier, 1995) using conditional maximum
likelihood. In winMIRA, additional classes are based on
person fit statistics. Fit is determined by the likelihood of a
persons’ responses given the persons’ estimated trait level and
item difficulty parameters. Misfitting persons are placed in a new
class in which different item parameters are estimated and fit is
reassessed.

Unidimensional estimates. First, the unidimensional Rasch
model parameters were estimated to represent a method often
used for analyzing year-end test results. As typical with Rasch
models, the mean item difficulty was set to zero to identify the
model. Using estimated difficulty parameters for the 66 items,
person trait levels were estimated using the expected a posteriori
(EAP) method. The obtained estimates (Mn � 1.552; SD � 1.274),
when combined with item difficulties having a mean of zero,
yields predicted percentages of items passed at the levels seen on

Figure 1. Further, since total score is a sufficient statistic for
person estimates with the Rasch model, the trait distribution
shape would be similar that shown on Figure 1.

Multiple dimension estimates. Second, a multidimensional
Rasch model was fit to the data with the four areas defining the
dimensions. Thus, each item loaded on only one dimension.
Model fit was significantly better than fit for the unidimensional
Rasch model (Δχ2/df � 63.07; df � 9, p <0 .001). Thus, area-
specific calibrations led to an overall better-fitting model.

Sub-scores for trait level were estimated separately by EAP
using the Rasch model item parameters for the areas. It can be
seen in Table 2 that although the estimated trait levels for the
areas have strong correlations with total trait level, it is not quite
as high as would be expected if the test was fully unidimensional.
Further, the area intercorrelations of trait levels (0.60 and 0.70 s)
were more moderate. Table 2 also shows differences in empirical
reliabilities between areas and overall scores, which is related to
the number of items. Reliabilities were computed with the IRT-
based estimates as follows: rtt � σ2θ/(σ

2
SE + σ2θ), where σ2θ is the

FIGURE 1 | Distribution of students by percentage of test items passed.

TABLE 2 | Empirical reliabilities and trait level correlations for unidimensional and
multidimensional Rasch models based on item accuracy data.

NS EE Geo SP Reliability

Unidimensional Rasch 0.879 0.870 0.910 0.827 0.903
Multidimensional Model — — — — —

Number Sense and Ratios 1.000 0.700 0.720 0.648 0.685
Expressions and Equations 0.700 1.000 0.748 0.686 0.655
Geometry 0.720 0.748 1.000 0.687 0.765
Statistics and Probability 0.648 0.686 0.687 1.000 0.462
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variance in trait level scores and σ2SE is the average standard error
variance of trait level scores.

Although the trait level estimates using unidimensional Rasch
model had a high reliability, the area-specific reliabilities are not
strong, as expected. Thus, although multidimensionality was
supported overall, score reliability decreased substantially.

Class-specific estimates. Mixture distribution Rasch models
were also fit to the data. A series of models were estimated to
determine the number of distinct latent classes. The single-class
solution is the unidimensional Rasch model, as described above.
With large sample sizes as in the current study (N � 8,585), the
statistically significant changes with increased numbers of classes
can lead to many small, but practically insignificant classes. Thus,
additional class solutions were estimated until either fit was not
significantly improved or the percentage of the sample in one or
more classes was small (i.e., below 10%).Table 3 shows increasing
fit as indicated by the significant change in χ2 up to four classes.
The final four-class solution fit significantly better than the single-
class solution (Δχ2/df � 53.58, p <0 .001). Person fit, as indicated
by a person’s highest class probability (i.e., ηmj in Eq. 5 above),
had a mean of 0.884, supporting strong fit.

Table 4 presents the intercorrelations of item difficulties
between the four classes and with the overall item difficulties
from a single-class Rasch model. Item difficulties were estimated
separately using maximum likelihood for each class using a fixed
mean of 0.000 for model identification. It can be seen that the
difficulties of the 66 items are only moderately correlated between
classes (0.394 ≤ r ≤ 0.677). Further, the class item difficulties also
vary significantly in their correlations with Rasch model item
difficulties estimated from the single-class model (0.632 ≤ r ≤
0.913).

Table 5 presents descriptive statistics on trait level estimates
by class. Class 1 contains more than 50% of the examinees, and
the remaining examinees are split between the other three classes.
In each class, the mean item difficulty is set to zero for model

identification. Trait levels were estimated using the within class
item difficulties for examinees within the class. The trait level
empirical reliabilities were moderately high for all classes.
Further, based on all examinees, trait levels estimated using
the appropriate within class parameters correlated 0.999 with
estimates based on a single class. However, the mean trait levels of
examinees in the classes varies substantially, which has
implications for item-solving probabilities. Examinees within
Class 1 have the highest mean trait level. When calculated
with mean item difficulty (i.e., 0 in each class), examinees in
Class 1 have a predicted mean item-solving probability of 0.933.
The trait level mean for examinees in Class 3 is the lowest and
leads to a predicted mean item-solving probability of 0.519.

Although the mean item difficulty within each class is fixed to
0.000, as standard for identifying Rasch models, the relative
difficulties for the various CCSS areas and nodes can vary
within classes. Figure 2 presents the item difficulty means
within the four classes and also for a single class. The areas
differ substantially in relative difficulty across classes. For Class 1,
the most difficult items are in the statistics and probability area,
but the next most difficult items are in number sense and ratios.
For Class 2, the number sense and ratio items are the easiest.
Similar differences can be seen for the other classes. Thus, the
relative difficulty of items in the four areas varies across classes.

Figure 3 presents the mean item difficulties at the CCSS node
level. Similar patterns of CCSS node differences within areas are
observed for some areas but not for others. For example, the
greatest difference between classes is for the nodes associated with
ratios and proportions. That is, the RP2 node is much easier for
Class 2, but relatively harder for Class 3. Similarly, the RP1 node is
much harder for Class 4 than the other classes. Thus, area
differences between classes in Figure 2 do not fully describe
node differences within areas.

Differential diagnosis. With multiple dimensions and
multiple classes leading to different results on the relative
difficulty for the areas and nodes, what is the impact on
diagnosing mastery for individual students? To understand
mastery, it is necessary to specific a cutline. A typical cutline
for mastery is that the proportion of items solved in the area
equals or exceeds 0.70. The three IRT models, unidimensional,
multidimensional, and mixture models, were used to predict the
probability for each student that items would be solved in each of
the CCSS node categories. If the probability equaled or exceeded
0.70, the student was deemed to have mastery. Probabilities below
0.70 define non-mastery.

TABLE 3 | Log likelihoods and fit indices for the mixture Rasch model from item
accuracy data.

Number classes −2lnL AIC Δχ2 Δdf #Parms

1 506,176.68 506,310.68 — — 67
2 500,165.26 500,435.25 6,011.42* 68 135
3 497,047.34 497,453.35 3,117.92* 68 203
4 495,244.72 495,786.73 1,802.62* 68 271

Note: * is p < 0 .001.

TABLE 4 | Item difficulty correlations for the four latent classes from item
accuracy data.

Class Rasch mixture model Rasch model

C1 C2 C3 C4 Single Class

C1 1.000 0.677 0.400 0.461 0.913
C2 0.677 1.000 0.444 0.394 0.844
C3 0.400 0.444 1.000 0.414 0.666
C4 0.461 0.394 0.414 1.000 0.632

TABLE 5 | Trait level means, standard deviations, and empirical reliabilities in the
unidimensional and four latent-class solution from item accuracy data.

Solution Proportion in class Mean SD Empirical

Reliability

Single Class 1.000 1.590 1.372 0.903
Four Class — — — —

C1 0.536 2.636 1.085 0.750
C2 0.196 0.794 0.808 0.856
C3 0.137 0.075 0.900 0.897
C4 0.130 1.232 0.908 0.855
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Figure 4 presents the proportion of students in the sample for
whom their predicted probabilities of solving items equals or
exceeds the cutline of 0.70 bymodel and node. The horizontal line
shows the 66.3% of students exceeding the cutline based on the
overall test score as in Figure 1. It can be seen that the nodes
within areas vary substantially in the predicted proportion of
students who exceed the mastery cutline. For example, CCSS
geometry node G3 has a much lower proportion of students with
mastery than do the other five geometry nodes. Similar
differences are shown in the other areas. However, the
predicted sample proportions for the nodes are quite similar
across the three models. These results seemingly suggest that
which model is applied does not make a difference in diagnosing
mastery.

However, although the data in Figure 4 show that the same
overall percentages of students are diagnosed with mastery from
the three models, we should not assume that the models diagnose
the same students. Figure 5 presents the proportion of the sample
with differential diagnosis by the models. As for the data in
Figure 4, the three models predicted the probability that items
would be solved in the various nodes for each student and
compared the predictions to a cutline of 0.70 to determine
mastery. Then a crosstabulation of the mastery predictions for
students from pairs of models was calculated: multiple versus
single trait levels and multiple versus single class diagnosis. A case
was counted as differential diagnosis with respect to the single-

class/trait model if either 1. masters were non-masters or 2. non-
masters were masters in the comparison model.

It can be seen in Figure 5 that the mastery diagnosis differs by
about 5% from the multiple versus single-class comparisons for
expressions and equations, geometry and number sense nodes.
The ratio and proportions and statistics and probability nodes,
however, differ more substantially in diagnosis from multiple
versus single classes. More substantial differences in mastery
diagnosis were observed using multiple versus single traits,
which may reflect in part the decreased reliability of the
multidimensional trait level estimates (see Table 2). The
minimum difference is 5%, but most nodes are much higher.
Thus, which students are diagnosed with mastery versus non-
mastery of specific nodes depends on the IRT model that used for
the prediction. Some differences are observed for multiple versus
single classes, but multidimensional assessments based on node
area lead to stronger differences.

Which students are differentially diagnosed by the varying
IRT models? Person fit indices from the unidimensional and
single-class solution were correlated with differential diagnosis
for both multiple traits and multiple classes. For differential
diagnosis from predictions based on multiple versus
unidimensional traits, the correlations varied across nodes
(0.060 < r < 0.428), with a mean correlation of r � 0.090. The
correlations also varied across nodes for multiple versus single
class differential diagnosis (0.113 < r < 0.348), with a mean

FIGURE 2 | Mean item difficulty by area by class for item accuracy data.
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FIGURE 3 | Mean item difficulty for nodes by class for item accuracy data.

FIGURE 4 | Proportion of students with mastery based on cutline 0.70 by method and CCSS node for item accuracy data.
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correlation of r � 0.079. Thus, person fit index is not a strong
predictor of differential diagnosis by model.

Models Based on Node Scores
Descriptive statistics. Table 1 presents the means, standard
deviations, and ranges for the node scores. Since the number
of items per node varies from 2 to 6, the standard deviations as
well as the means vary. However, Table 1 also shows that the
mean p-values for items within the nodes also vary in relative
difficulty.

Model estimates. The two polytomous models were estimated
with winMIRA. That is, the partial credit Rasch model was
estimated with a single class and the mixture partial credit
model was estimated with multiple classes. The
multidimensional model defined by area was not estimated,
due to the small number of node-scored items per area.

Partial credit model. The partial credit model estimates include
node location parameters and threshold parameters. Thresholds are
estimated between the adjacent total scores within a node. For
example, for a node-scored with three items, the following
threshold parameters are involved; between 0 and 1, 1 to 2, and
2 to 3. In winMIRA, location and all but the last threshold are
estimated directly. The last threshold is computed such that the
mean of the thresholds equals the location.

Table 6 shows the log likelihoods and AIC indices for the partial
credit model, which is shown as the 1-Class model. Notice that the

number of parameters estimated is the same as for the unidimensional
Rasch model; however, 18 parameters are node locations, and
remaining parameters are category thresholds. Table 7 shows the
location parameters for the partial credit model for each node. These
parameters are very similar to the mean item difficulties for the nodes
onTable 1 from the Raschmodel. In fact, they are highly correlated (r
� 0.940), and the mean difference is 0.032. However, unlike the Rasch
model, the partial credit location parameters representing node
difficulty have standard errors, all of which are quite small
(0.012< βn <0.021). For trait levels (Mn � 1.269, SD � 1.403), the
empirical reliability is high (rtt � 0.896).

Mixture partial credit model. Table 6 also shows the log
likelihoods, AIC values, and significance tests for increasing
numbers of classes. For example, estimating two classes with
varying patterns of node location difficulties resulted in a highly

FIGURE 5 | Proportion of students with differential diagnosis by method and CCSS node at cutline 0.70 for item accuracy data.

TABLE 6 | Log likelihoods and fit indices for the partial credit and mixture partial
credit models from node scores.

Number classes −2lnL AIC Δχ2 Δdf #Parms

1 323,900.99 324,034.99 — — 67
2 321,508.32 321,644.32 2,392.67* 68 135
3 320,511.06 320,647.06 997.26* 68 203
4 320,071.44 320,207.44 439.62* 68 271

Note: * is p <0 .001.
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significant difference in fit as compared to the single-class
solution (Δχ2 � 2,392.67, df � 68, p <0 .001). Significant
differences were found increasing the number of classes up to
four. However, beyond this point, increasing the number of
classes yielded classes involving fewer than 10 percent of the

students. With the four-class solution, person fit, as indicated by a
person’s highest class probability (i.e., ηmj in Eq. 5 above), had a
mean of 0.811, supporting strong fit.

Table 7 presents the node location difficulty levels for the
partial credit model and the partial credit mixture model in the

TABLE 7 | Item difficulty locations for the partial credit models for node scores.

Node Node difficulty locations

Partial Credit Mixture Model

Credit C1 C2 C3 C4 Parms

NS1 0.124 −1.094 1.988 −0.299 −0.770 3
NS2 0.362 −1.844 3.439 −0.839 −0.799 2
NS3 −0.162 −0.302 −0.349 0.151 −0.154 2
RP1 −0.103 0.610 −0.581 −0.571 0.291 4
RP2 −0.155 0.360 −0.557 −0.471 0.281 6
RP3 0.587 1.120 0.108 0.289 0.543 2
EE1 0.257 0.628 −0.152 0.673 0.277 5
EE2 0.042 0.177 −0.224 −0.152 0.490 4
EE3 −0.226 −0.026 −0.666 0.127 −0.162 5
G1 −0.597 −0.837 −0.848 −0.247 −0.607 2
G2 −0.074 0.199 −0.540 0.183 0.073 4
G3 0.505 0.636 0.134 1.084 0.744 4
G4 0.390 0.577 0.092 0.324 0.956 4
G5 −0.353 −0.177 −0.673 −0.516 0.210 4
G6 −0.602 −1.033 −1.078 −0.200 −1.080 4
SP1 0.322 0.762 −0.044 0.436 0.334 4
SP2 −0.456 0.064 −0.792 −0.369 −0.779 3
SP3 0.140 0.181 −0.256 0.399 0.152 4

FIGURE 6 | Node difficulty locations by class for node score data.
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four-class solution, which are also plotted on Figure 6. As for
binary data, the mean item difficulty is zero in the partial credit
model and within classes of the mixture model. However,
substantial differences in the relative difficulty of the nodes
within the four classes was observed. Figure 6 shows that the
node difficulty locations vary the most between the classes in the
number sense and ratio area. Class 2, for example, had much
higher estimated difficulties for two number sense and ratio
nodes. The most extreme difference is for NS2, which ranges
from −1.844 to 3.439 across classes. However, differences between
the classes in many other areas, although much smaller, also
could be sufficient to produce estimated differences in student
mastery.

Table 8 presents results on trait levels in the four-class solution
for node scores. It can be seen that Class 1 has the highest
proportion of students and substantially higher mean trait levels
as compared to the other classes. The lowest trait level mean is for
students in Class 3. The empirical reliabilities of trait level scores
in the various classes are high, although Class 1 had a somewhat
lower reliability. Table 8 shows that the mean probability for
solving items in Class 1 was very high. Thus, few items in the
nodes were sufficiently difficult for their trait levels which led to
relatively larger standard errors and lower overall reliability.

Differential diagnosis. Parameter estimates from the two
models, the partial credit model and the four-class mixture
partial credit model, were used to predict the expected node
scores for each student based on trait level and node difficulty
thresholds. These scores were divided by the number of items in
the node to yield a probability for item solving in each node. As
for item accuracy scoring above, if the probability equaled or
exceeded 0.70, the student was deemed to have mastery.

Themastery versus non-mastery expectations for each node were
then compared between the two models. Figure 7 shows the
proportion of students for which the two models yielded different
mastery expectations for each node. It can be seen that several nodes
in number sense and ratios differed substantially. For NS2, for
example, more than 30% of the students had a different
diagnosis of mastery from the two models. Nodes in other areas,
such as SP1 andG6, also differed in predictions from the twomodels.

DISCUSSION

The purpose of the current study was to examine the use of
varying IRT models to predict students’ mastery of specific

learning map nodes from a comprehensive achievement test.
Such tests are routinely administered in elementary and middle
schools to assess overall achievement at the end of the school year.
The wide availability of the tests could make them practical for
determining needed remedial instruction. However, the available
overall scores are useful for diagnosing mastery of specific
learning map nodes only if the various total score levels have
the same implications for area and node mastery. Typically, this is
not the case. Sub-scores are often computed to examine
performance in various achievement areas. These scores are
typically less reliable but also not sufficiently precise,
particularly if the pattern of mastery of nodes within areas
varies across students.

The results of the current study confirm these problems, as
both model fit and score reliability varied across models. That is,
using binary-scored items, a multidimensional IRT model based
on the content areas fit significantly better than a unidimensional
model. Thus, varying patterns of content area mastery for the
students was supported. However, as expected, score reliability
was substantially reduced. The unidimensional model trait scores
had reliability of 0.903 while the multidimensional trait score
reliabilities ranged from 0.462 to 0.765. Worse, however, the less
reliable area sub-scores can be used to predict item probabilities
for ELM learning map nodes only if students have the same
pattern of node mastery within areas. This was not supported in
the analysis with mixture IRT models.

That is, the analysis with mixture class IRT models suggested
that at least four distinct latent classes of examinees were needed
to fit the varying patterns of item accuracy data. The latent classes
varied not only in the relative difficulty of the four areas of the test
items, consistent with the multidimensional IRT model, but also
differed in the relative difficulty of specific nodes within areas.
Importantly, the observed differences in mastery patterns
between the classes were not strongly impacted by unreliable
estimates of trait level. That is, the reliabilities of trait scores for
the four-class mixture model were acceptable, ranging from 0.750
to 0.897. Thus, the mixture class model for item accuracy not only
fit substantially better, but also the node-specific predictions of
mastery were based on more reliable trait scores.

Further analysis showed differential diagnosis of node mastery
between the three IRT models for item accuracy. Approximately
the same overall proportion of students were found to have
mastery of the various nodes across models; however, the
models differed in which students were predicted to have
mastery.

TABLE 8 | Trait level means, standard deviations, empirical reliabilities, and item-solving probabilities in the partial credit and partial credit mixture models.

Model Proportion in class Trait level Empirical Mean item

Mean SD Reliability Probability

Partial Credit 1.000 1.269 1.403 0.896 0.831
Mixture Partial — — — — —

C1 0.504 2.123 0.994 0.782 0.933
C2 0.229 0.359 1.326 0.923 0.689
C3 0.149 0.727 1.100 0.910 0.519
C4 0.118 0.776 0.647 0.842 0.774
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Similar results were found for mixture IRT models using
the polytomous items that represented node scores.
Statistically significant improvements in fit were found by
increasing the number of latent classes for the partial credit
IRT model. As for the binary-scored item data, four latent
classes were supported to improve model fit. Thus, varying
patterns of node difficulty for different students was
supported. Also, as for the binary item data, the reliability
of trait level scores was acceptable across classes, ranging
from 0.782 to 0.923. However, for the polytomous items, node
difficulty differences were more directly relevant to defining
the latent classes. The difficulty of nodes within number sense
and ratio areas differed most strongly between classes.
Further, differential diagnosis of these nodes in the
mixture model, as compared to the unidimensional partial
credit model, was especially strong.

Overall, the results indicate that using mixture class IRT
models, in conjunction with parameter-based predictions,
improves the prediction of mastery at the node level from
comprehensive achievement tests. Particularly interesting are
the results using polytomous node-scored items to provide the
parameter estimates in the latent classes. That is, reliable trait
scores were obtained and the latent classes were based directly on
the varying patterns of node difficulty for different students. The
results are also likely to apply to more area-specific interim tests
for diagnosing mastery because node differences within areas
were found.

However, the results from the polytomous mixture model
did vary somewhat from the binary mixture models. That is,
the classes and subsequent differential diagnosis obtained
from the polytomous data (i.e., Figure 7) differs somewhat
from the classes and diagnosis from the binary data
(i.e., Figure 5). If the goal is to determine node differences,
the polytomous data is preferable, but it must be assumed that
the items within the nodes all represent the specified
standards. In contrast, the classes resulting from the binary
data will reflect both node pattern differences and
unintentional within node item differences. Future research
should examine further the impact of item correspondence to
node definitions on these models.

One area for future research is to explore the basis of
varying patterns of mastery, especially as defined by the
mixture IRT models. Variables that may impact instruction,
such as urban versus rural districts or teacher training, should
be examined for relationship to the latent class membership of
their students. Student background variables, such as gender,
race-ethnicity, and native language, may also impact varying
patterns of node difficulty and should be examined in future
studies.

Importantly, future research also should examine the
usefulness of mastery diagnosis of specific learning map
nodes from comprehensive achievement tests using the
modeling approaches in this study. Two outcome variables
that are especially important to relate to mastery diagnosis

FIGURE 7 | Proportion of students with differential diagnosis by method and CCSS node at cutline70 for node score data.
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are 1) the predictability of mastery based on longer tests
that are associated with specific nodes and 2) the relative
outcomes of remedial instruction for different mathematical
standards. The results of the current study would suggest
that the mixture models would be more useful than either
the unidimensional and area-specific multidimensional
approaches.
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