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Multistage test (MST) designs promise efficient student ability estimates, an indispensable
asset for individual diagnostics in high-stakes educational assessments. In high-stakes
testing, annually changing test forms are required because publicly known test items
impair accurate student ability estimation, and items of bad model fit must be continually
replaced to guarantee test quality. This requires a large and continually refreshed item pool
as the basis for high-stakes MST. In practice, the calibration of newly developed items to
feed annually changing tests is highly resource intensive. Piloting based on a representative
sample of students is often not feasible, given that, for schools, participation in actual high-
stakes assessments already requires considerable organizational effort. Hence, under
practical constraints, the calibration of newly developed items may take place on the go in
the form of a concurrent calibration in MST designs. Based on a simulation approach this
paper focuses on the performance of Rasch vs. 2PLmodeling in retrieving item parameters
when items are for practical reasons non-optimally placed in multistage tests. Overall, the
results suggest that the 2PL model performs worse in retrieving item parameters
compared to the Rasch model when there is non-optimal item assembly in the MST;
especially in retrieving parameters at the margins. The higher flexibility of 2PL modeling,
where item discrimination is allowed to vary, seems to come at the cost of increased
volatility in parameter estimation. Although the overall bias may be modest, single items
can be affected by severe biases when using a 2PLmodel for item calibration in the context
of non-optimal item placement.
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INTRODUCTION

Multistage test (MST) designs promise efficient student ability estimates by adaptive testing
(Hendrickson, 2007; Yan et al., 2014). MST designs consist of several parts (i.e., stages), which,
in turn, include multiple item sets—called modules—of varying difficulty (Zenisky et al., 2010; Yan
et al., 2014). Students’ performance in the first stage determines whether they receive an easier or
more difficult module in the second stage. The decision is based on predefined routing rules. Across
test stages, the students are routed based on their performance (i.e., preliminary ability estimates or
number of correct items) to item sets of difficulty that match the range of their abilities. Compared to
a linear test, this procedure allows for estimating student abilities more precisely (e.g., Yan et al.,
2014) and prevents students from becoming discouraged; it assesses their skills based on items which
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are neither too easy nor too hard (Asseburg and Frey, 2013). Due to
the adaptive multistage design, not all items included in the
complete test design are solved by all students. The students only
encounter item sets that match their ability. Therefore, MST designs
are also known as incomplete designs in the literature (Mislevy and
Wu, 1996; Eggen and Verhelst, 2011). MST designs have been
widely used in practice as they allow for efficient student ability
estimates (e.g., Yan et al., 2014), while not requiring the huge item
pool a computer adaptive test (CAT; e.g., van der Linden and Glas,
2010) needs, meeting resource constraints in practice (Berger et al.,
2019). However, as is with CAT, all item parameters must be known
for their optimal test assembly in the MST.

The main goal when designing an MST is to allocate items in
such a way that students of differing abilities encounter test
modules that encompass items with matching difficulty levels.
Hence, setting up an efficient MST requires the optimal
placement of items in the test design. Therefore, for optimal
item placement within such an MST design, test developers need
to know the item difficulties (Glas and Geerlings, 2009). Practical
constraints may not yet allow for piloting representative samples
prior to actual testing, such as when the parameters of the newly
developed items are not known in advance of setting up the MST
design (Berger et al., 2019). Thus, the optimal placement of newly
developed items may depend mainly on the expertise and
experience of the test developers and/or other involved
experts. Several studies have investigated the accuracy with
which experts, such as test developers, content experts, or item
authors, can rate item difficulty, and they have found moderate to
high correlations between ratings and empirical item difficulties
(e.g., Bejar, 1983; Hambleton and Jirka, 2006; Sydorenko, 2011;
Wauters et al., 2012). We conclude from these findings and from
our own practical experiences that the distribution of items across
modules of different target difficulties can deviate in a practical
setting from the optimal distribution observed in a theoretical
setting, where the difficulty of all items is known in advance (see
also Berger et al., 2019).

The aim of this study was to evaluate howwell item parameters
of newly developed test items can be recovered within concurrent
calibration in incomplete designs (Mislevy and Wu, 1996; Eggen
and Verhelst, 2011) using the Rasch and 2PL models (e.g., De
Ayala, 2009; Wu et al., 2016). In particular, we investigated how
the non-optimal placement of new items impairs the estimation
of the item parameters. In a simulation approach embedded in a
practical context, we compared Rasch and 2PL modeling in
recovering item parameters in a simple two-stage design: i)
when the newly developed items for calibration are placed to
match the student’s ability range during encounters with
respective test modules and ii) when placement is non-
optimal. We formulated tentative assumptions on bias issues
arising in MST calibration under the practical constraints of
unknown item placement.

Linking Periodic High-Stakes Assessments
Over Time
In periodic high-stakes testing, test forms need to be regularly
updated to prevent item disclosure and thus to guarantee test

fairness. However, it is often necessary to link new test forms to
the existing reporting scale so that test scores are comparable
across years (Kolen and Brennan, 2004). A methodological
approach that is often used to link test forms across multiple
administrations is item response theory (IRT; e.g., De Ayala,
2009). IRT refers to a family of models, which express the
probability of a student solving an item correctly as a function
of the student’s ability and item difficulty (Lord, 1980). The Rasch
model may be considered as a special case in this regard
(Mellenbergh, 1994). IRT is a powerful method for linking test
forms because it takes students’ responses to every single item
into account for estimating student’s ability, instead of referring
to an overall test score. Thereby, student ability can be estimated
based on various combinations of different items under the
condition that all items belong to the same scale and thus
represent the same underlying unidimensional construct
(i.e., ability; e.g., Wainer and Mislevy, 2000; Rost, 2004).

Within this framework, it is possible to expand a scale or item
pool by aligning new items with the existing scale. Generally, two
calibration procedures exist for mapping the parameters of items
fromdifferent test administrations to a common IRT scale: separate
calibration with equating and fixed parameter calibration (Kolen
and Brennan, 2004; Kim, 2006). Both procedures require the test
forms to be linked through common items—that is, anchor
items—which are included in both test forms.

Separate calibration with equating entails estimating
parameters for each test form separately and subsequently
equating different forms by transforming the parameters into
a common scale through linear transformations (see Kolen and
Brennan, 2004; for an overview). The anchor items thereby serve
as the basis for determining the transformation parameters.
Under the fixed parameter calibration procedure (Kim, 2006;
Keller and Keller, 2011; Keller and Hambleton, 2013), item
calibration starts with a base assessment or scale with known
item parameters. All parameters of the anchor items are fixed to
their known parameters when calibrating a new related test form.

Practical Constraints in Developing Optimal
Multistage Test
MST is a powerful test design that combines the advantages of
linear and adaptive testing (Yan et al., 2014). MST offers test
developers the possibility of reviewing the test prior to test
administration, and students have the option to revise their
answers within test modules, which is difficult to accomplish
with fully adaptive CAT. Further, several studies have shown that
MST are more efficient than linear tests in estimating student
ability owing to closer alignment between item difficulty and
student ability (e.g., Yan et al., 2014). Such an alignment is also
advantageous from the viewpoint of estimating item difficulty
more precisely (Glas and Geerlings, 2009; Eggen and Verhelst,
2011; Zwitser and Maris, 2015).

To design an optimal MST, item parameters should be known
during the construction of a new test form. However, in some
practical situations, pretesting of items, including item

Calibration, is complicated by limited financial or time
resources. In particular, item pretesting is tedious for schools
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because they have packed time schedules, and students and
teachers often get only very limited or even no feedback
from pretests. Furthermore, item calibration based on pretests
can also impair the accuracy of the item calibration, because
students are less motivated to show their best performance during
pretests than during actual high-stakes tests (Mittelhaëuser et al.,
2015).

An alternative approach to pretesting is to include new
uncalibrated items directly in the high-stakes test and to
calibrate these items at the end of the test administration
period prior to reporting. An advantage of this approach is
that the item parameters are estimated under realistic
conditions. Furthermore, “real” administrations often include
larger student samples than pretests, which provide more
information for estimating the item parameters accurately.
Pretesting new items during a high-stakes test is complicated
when using an MST design because test developers have no
guarantee that they will find the optimal position for the new
items in the MST design. Instead of empirical item parameters,
they have to rely on expert judgments, which might be biased
(e.g., Bejar, 1983; Hambleton and Jirka, 2006; Sydorenko, 2011;
Wauters et al., 2012). As a consequence, the new items might end
up in a non-optimal test module, which can, in turn, result in
biased parameter estimates (Berger et al., 2019).

Only a few studies have investigated the lack of knowledge
about item difficulty prior to calibration and they did so mainly
based on a small number of field-test items during the
administration of operational CAT (e.g., Ali and Chang,
2014; Kingsbury, 2009). Makransky and Glas (2010) explored
different strategies for automatic online calibration including
items of unknown parameters. However, the focus of this study
was mainly on student ability estimates rather than on the
estimation of the item parameters (cf. Ali and Chang, 2014).
Most studies that have compared the efficiency of incomplete
calibration designs have assumed item parameters to be known
(e.g., Berger, 1991; Stocking, 1988). A recent study by Berger
et al. (2019) investigated the efficiency of targeted linear and
targeted MST calibration designs under the condition of
missing empirical item parameters during test construction.
They found that misplaced items were generally estimated less
accurately under the Rasch model. This paper builds on the
study of Berger et al. (2019) in focusing on non-optimal item
assembly in MST calibration but goes beyond the former study
by comparing the performance of 2PL to Rasch modeling in
such settings.

Accuracy in Item Calibration Based on
Multistage test Designs
Calibrating new items in MST designs is challenging because the
accuracy of the item parameter estimates depends on the items’
position in the calibration design. Furthermore, the optimal
calibration design depends on the model or, more specifically,
on the item parameters that have to be estimated.

In this study, we focused on the Rasch and the 2PL models.
The Rasch model can be expressed as:

p(xj � 1
∣∣∣∣θi, bj) � e (θi−bj)

1 + e (θi− b), (1)

where p(xj� 1
∣∣∣∣ θi, bj) is the probability of student i with ability

of θi to respond correctly to item j of difficulty bj. Hence, in
Rasch modeling, the probability of solving an item correctly
depends only on the student’s ability and the difficulty of the test
item. All items are assumed to discriminate equally between
students of lower or higher ability, which leads to parallel item
characteristic curves (see, e.g., De Ayala, 2009; Wu et al., 2016).
Item difficulty parameters can be estimated more accurately
when the abilities of tested students match the difficulties of test
items (Wright, 1977; Stocking, 1988; Berger, 1991; Eggen and
Verhelst, 2011). Under the Rasch model accuracy in item
difficulty estimates is highest if the mean ability of the
sample is close to the difficulty of the items and if the
standard deviation of the students’ ability is small (van der
Linden, 1988; Berger, 1991; Rost, 1996). MST calibration
designs are beneficial for achieving this goal because they
separate the calibration sample into different ability groups,
which are assigned to modules of varying difficulty (Glas and
Geerlings, 2009; Eggen and Verhelst, 2011; Zwitser and Maris,
2015).

The 2PL model can be expressed as:

p(xj � 1
∣∣∣∣θi, aj, bj) � e aj(θi−bj)

1 + e aj(θi− bj), (2)

where p(xj � 1
∣∣∣∣θi, aj, bj) is the probability of student i with

ability of θi to respond correctly to item j of difficulty bj and
discrimination aj. Hence, the 2PL model deviates from the Rasch
model in that the discrimination parameter a is allowed to differ
per item. This allows for greater flexibility in fitting the empirical
response data, where the “Rasch assumption” of equal
discriminatory power across items is often not met. However,
item calibration becomesmore complex if two parameters have to
be simultaneously estimated. While homogenous student abilities
are beneficial for estimating item difficulty, variation in student
ability is required to accurately estimate item discrimination
(Thissen and Wainer, 1982; Stocking, 1988). Namely, only
students with abilities differing from the item’s difficulty are
informative for estimating the slope of the logistic item
characteristic curve. Furthermore, given that the difficulty and
the discrimination parameters are simultaneously estimated
under 2PL, the accuracies of the two parameters also depend
on each other. Uncertainty in the discrimination parameter
(i.e., the slope) affects the accuracy of the difficulty parameter
(i.e., the location; Thissen and Wainer, 1982), especially if the
item parameters are extreme. Similarly, Berger (1991) showed a
curvilinear relationship between the standard deviation of
student ability and the efficiency of estimating the parameters
of single items under the 2PL model. The efficiency was low for
SDθ close to zero, increased toward SDθ � 1 and decreased again
toward SDθ � 2. Consequently, it is more challenging to
determine the optimal position of an item in an MST
calibration design when using the 2PL model than when using
the Rasch model.
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METHODS

The Present Study
Monte Carlo simulation studies have proven to be a promising
methodological approach for evaluating how validly IRT-based
methods can be applied to specific test designs when faced with
(practical) constraints (e.g., Feinberg and Rubright, 2016; Bulut
and Sünbül, 2017). To evaluate potential bias when MST designs
include item calibration, we conducted a simulation study.

Practical Context
We embedded our simulation study in the practical context of the
high-stakes educational assessments (Checks) in the northwestern
area of Switzerland, where a population of approximately 10,000
students were tested annually via computer-based MST in several
school subjects (e.g., Berger et al., 2019). TheMST design consisted
of four stages and five difficulty levels. To prevent item disclosure
and secure item quality, the item pool for each MST was updated
every year1. As practical constraints make piloting for item
calibration impossible, new items were directly included in the
running MST. By means of anchor items, the new items were
linked to the existing 2PL scale, which ensured the comparability of
test results across years. In practice, a complex MST was used.

Calibration Sample and Multistage test
Calibration Design
Following the practical context, the student ability parameters (θ)
were assumed to be normally distributed and sampled from
N∼(0,1) for a population of N � 10,000 students. However, to
ease the interpretation of our results, we chose to simulate a
simpler two-stage design instead of the four-stage design used in
practice2. In total, the simulated two-stage test included 225
items, of which each simulee solved 45 items. Of the 225
items, 100 were assumed to be newly developed items, which
were calibrated alongside of 125 anchor items.

In the first stage, the simulees were randomly assigned to one
out of five starting modules, which included items randomly
spread across the complete range of student abilities3. Hence,
each random starting module was completed by N ≈ 2,000
randomly assigned simulees. Based on the simulated student
responses to these starting module items, initial abilities were
estimated as weighted likelihood estimates (WLE) (Warm, 1989)
and used to route the simulees to the modules in the second stage.
There were five test modules with different difficulty levels in the
second stage. The routing cut scores were defined such that
the simulees were divided into ability quintiles and assigned to
the second-stage test module, with items of difficulty matching
the range of student abilities in the respective student ability

quintile. Hence, each item in the test was solved by an equal
number of approximately 2,000 students. This avoided
differences in bias in parameter estimates due to unequal
numbers of simulees encountering the items (see, e.g., van der
Linden and Glas, 2000). The difficulties of the items in these
second-stage modules were randomly drawn from the related
target ability range of the underlying student ability distribution.
Hence, whereas items in the starting modules were solved by
simulees distributed randomly across all student abilities, the
items in the second-stage modules were encountered only by
simulees from separate ability quintiles.

We assumed that for the starting modules, all item parameters
were known in advance. Thus, the starting modules, which were
the basis for the initial ability estimates and the routing of the
simulees to the second-stage modules, were assumed to consist of
well-proven items only. In the second stage, however, we
simulated the inclusion of items with unknown item
parameters. These newly developed items were calibrated
alongside a share of previously calibrated anchor items.

As the second stage was adaptive and not all simulees
concluded all modules but were routed to the best-matching
module based on their initial ability estimates, there were
missings by design in the complete MST. Missings in MST
designs can be assumed to be missing at random (MAR) (see,
e.g., Craig, 2010: 6–7). Hence, the item parameters can be
recovered without bias using marginal maximum likelihood
estimation (MML) in concurrent calibration in such
incomplete calibration designs (see Eggen and Verhelst, 2011).
In our simulations, we recovered the parameter estimates for the
unknown (newly developed) items by applying a fixed parameter
calibration (Kim, 2006), where we calibrated the new items
alongside some anchor items, which we fixed at their “true”
parameters.

Simulation Conditions
In our simulations, we distinguished between twomain scenarios:
optimal vs. non-optimal placement of new items in the MST
design.Within these two scenarios, we further varied the length of
the starting module (5 vs. 20 items), the distribution of the item
difficulty parameters (normal vs. uniform), and the IRT model
(Rasch as a baseline vs. 2PL). In total, 16 different simulation
conditions were constructed. We fully crossed the simulation
conditions.

Variation in the Placement of New Items (Optimal vs.
Non-optimal)
In Rasch modeling item calibration has been found to be most
efficient if the difficulty of the items requiring calibration
matched the student abilities (Stocking, 1988; Berger, 1991;
Berger et al., 2019). In the optimal condition (Optimal
Placement of Items for Concurrent Calibration in Incomplete
Designs), the item difficulty parameters for the new items
assembled in the second-stage modules were allocated to the
second-stage module, matching the student ability quintile that
encountered the respective module. In other words, the item
difficulties in the second-stage modules were all within the range
of the students’ abilities on the encountered items.

1In the CHECKS nomodule reaches exposure. To ensure disclosure items across all
stages have to be replaced by newer ones from time to time.
2The main findings remained the same when simulating a more complex four-stage
test design.
3We applied stratified random sampling, where the items were evenly drawn from
each student ability quintile in the underlying student ability distribution to cover
the complete range of student abilities in each starting module.
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In the non-optimal condition (Non-Optimal Placement of
Items for Concurrent Calibration in Incomplete Designs), we
assumed some misplacement of the new items in the test
modules in the second stage, so that not all of the items
matched the simulees’ abilities routed to the respective test
modules. Using the same item pool as for Optimal Placement
of Items for Concurrent Calibration in Incomplete Designs, in
Non-Optimal Placement of Items for Concurrent Calibration in
Incomplete Designs, the item allocation in the second stage
differed for the non-optimal condition. About half of the
newly developed items were allocated to adjacent modules.
This resulted in an overlap in item difficulty parameters across
adjacent test modules in the second stage and mirrors the
practical situation of some mistakes in expert ratings of item
assembly when the parameters are not known. In comparison
with the optimal placement of the items in Optimal Placement of
Items for Concurrent Calibration in Incomplete Designs, this
allows us to evaluate how the non-optimal placement of items
in test modules affects the recovery of their item parameters.

Variation in the Length of the Starting Module (Short
vs. Long)
There are five starting modules for student routing and five
second-stage modules. Within the two main scenarios, we
varied the length of the starting modules between 5 and 20
items. When there were short starting modules of five items
the second-stage modules consisted of 40 items each (5*5–5*40).
When there were long starting modules of 20 items the second-
stage modules consisted of 25 items each (5*20–5*25). Thus,
when simulating short and long starting modules test length of 45
items is the same. Also the total number of items included in the
MST, which is 225 items, is the same. Simulating the short
starting modules of five items mirrors a scenario in which
initial student ability estimates were less reliable compared to
the estimates based on the longer starting modules of 20 items.
Thus, when the initial starting modules were very short, the
classification of simulees into ability quintiles was more error
prone, and there was more heterogeneity in the student abilities in
the respective groups routed to the second stage modules. Thus,
the items placed in the second-stage modules were encountered
by students of broader ability distribution, such as when initial
routing modules were long, and divided the students more
concisely into their respective ability quintile.

The locations of these anchor items differed according to the
length of the starting modules. With short starting modules, 25 of
the anchor items were placed in the starting modules (five
modules and five items in each module); the rest of the 100
anchor items were equally spread across the second-stage
modules (20 anchor items in each module). Each second-stage
module included 20 newly developed items (5 modules and 20
new items). The sub-scenario including the long starting
modules, resulted in 100 anchor items being placed in the
starting modules (5 modules and 20 items); the rest of the 25
anchor items were equally spread across the second-stage
modules (five anchor items in each module). Each second-
stage module again included 20 newly developed items (5
modules and 20 new items).

Variation of Distribution of Difficulty Parameters
(Normal vs. Uniform)
Simulating different distributions of difficulty parameters of the
items assembled in the modules in the second stage allows for
insight into the recovery of item parameters that more or less
perfectly mirror the student ability distribution in the test
modules. When the item parameters assembled were drawn
from quintiles of the underlying normal distribution of
student abilities, the item difficulty distribution in the second-
stage modules matched the student ability distribution in the
respective ability quintiles routed to these modules. The simulees
routed to the second-stage modules encountered only a few items
measured at the margin. When the items were drawn uniformly
within the range of the student ability quintiles and allocated to
the second-stage modules, the simulees encountered items that
were equally spread over the complete range of the ability
distribution in their respective quintiles. Therefore, more
often, there were items that measured at the margins and thus
can be solved by the majority or only a minority of the simulees
routed to the second stage modules. In a practical MST setting,
particularly when there are multiple stages, item difficulties may
explicitly overlap between modules to allow students to be
upward or downward mobile throughout test routing.

Variation of Item Response Theory Model (Rasch
vs. 2PL)
Depending on the IRT model, different datasets of student
responses were generated. For the Rasch model, item
discrimination parameters (a) were set to 1. For the 2PL model
as a data-generating mechanism, the item discrimination
parameters (a) were sampled from logN ∼ (0.3, 0.2) and hence
assumed to discriminate well between simulees.

The module-level test information for the baseline scenarios of
optimally placed items using Rasch modeling is shown in the
Supplementary Figures S1–S8.

Evaluation Criteria
For the evaluation of the recovery of item parameters, we used
bias and root-mean square error (RMSE) (see Bulut and Sünbül,
2017)4. These can be denoted as follows:

Bias �
∑K

j�1(X̂j − Xj)
K

, and (3)

RMSE �

												∑K
j�1(X̂j − Xj)2

K

√√
, (4)

where K is the total number of items in the test and X̂j is the
estimated item parameter for item j, while Xj is the true
parameter for item j. The average values of bias and RMSE
are reported based on 1,000 replications of simulations.
Whereas bias allows for insight into whether the item

4The bias and RMSE statistics were calculated only on the basis of the newly
developed items (excluding all items used as anchors).

Frontiers in Education | www.frontiersin.org May 2021 | Volume 6 | Article 6798645

Helbling et al. Concurrent Calibration in Multistage Tests

https://www.frontiersin.org/journals/education
www.frontiersin.org
https://www.frontiersin.org/journals/education#articles


parameters are, on average, biased in a positive or negative
direction, the RMSE statistic gives insight into absolute
deviations from the true parameter values. If deviations
between estimates and true values average out in both
(positive and negative directions), bias may be minor even
though the RMSE statistic shows that in both positive and
negative directions there exist large deviations. For the
simulation of student response data as well as for the recovery
of item parameters we used the multidimensional item response
theory package (mirt; Chalmers, 2012) in the software
framework of R.

RESULTS

Scenario 1. Optimal Placement of Items for
Concurrent Calibration in Incomplete
Designs
In Table 1, we report the bias statistics across 1,000 simulation
runs applying Rasch or 2PL modeling for the concurrent
calibration in Optimal Placement of Items for Concurrent
Calibration in Incomplete Designs, where, upon random
starting modules of differing lengths (short vs. long), simulees
were (within their ability quintiles) routed to second-stage
modules encompassing randomly drawn items matching
optimally in difficulties to the range of the simulees’ abilities.
The items in the second-stage modules were either drawn from a
normal or a uniform distribution. Hence, in Table 1, we assumed
that the difficulty of the newly developed items in the second stage
were successfully rated by experts, resulting in an optimal
allocation to the second-stage modules. The items used as
anchor items for linking (see Methods section) were not
included in calculating the bias statistics.

Focusing first on the results of the Rasch model, we found the
bias for item difficulty (b) to be rather small. Generally, as
demonstrated by the bias (b) statistic, the bias did not have a
clear direction for either of the sub-scenarios (see Table 1). It was
consistently close to zero. The RMSE statistic showed that,
overall, the absolute deviations of the estimated parameters
from the true parameters (in both negative and positive
directions) were also similarly small (around 0.05) for the

different sub-scenarios. Hence, using Rasch modeling in the
context of the optimal item allocation of the newly developed
items in the second-stage modules allowed for a good recovery of
item parameters. The length of the starting modules did not
matter, and the estimates seemed unaffected by a somewhat larger
share of items measuring at the margins (when item parameters
are uniformly distributed within modules). Focusing on the 2PL
bias statistics for the recovery of item difficulty parameters (b) in
comparison with those for Rasch modeling, we similarly found no
clear direction in bias. Deviations occurred in both negative and
positive directions, as shown in the small values of the bias (b)
statistic compared to the larger values in the RMSE (b) statistic.
Regarding the RMSE statistic for the difficulty parameters (b), we
observed that bias in b was somewhat larger when we recovered
uniformly distributed difficulty parameters compared to when
item difficulties mirrored the underlying normal distribution of
student abilities. Thus, it seems that when there was a larger share
of items measuring at the margins of the simulees’ abilities that
encountered the items, the 2PL model was somewhat more prone
to error in the recovery of the item difficulties compared to the
Rasch model. Focusing on the recovery of the discrimination
parameter (a), we again found that bias has no clear direction.
Thus, there seems to be no consistent over- or underestimation of
the slope parameter (a). As shown by the RMSE (a) statistic, there
was, however, some variation in the recovery of the
discrimination parameters of the items, depending on the
length of the starting modules. It seems that when there was a
longer starting module, which led tomore accurate and thus more
homogeneous ability groups in the second-stage modules, the
bias in discrimination tended to be larger. Thus, it seems that
discrimination (a) is less well recovered when there is less spread
in abilities.

Overall, when the placement of newly developed items was
close to optimal, both Rasch and 2PL modeling seemed, on
average, to recover the item difficulty parameters quite well in
concurrent calibration in incomplete designs. The bias emerging
in the 2PL modeling was slightly larger compared to the bias
encountered by Rasch modeling for the item difficulty estimates,
as can be seen by the somewhat larger RMSE (b) statistics. In 2PL
modeling, decreased variation in student ability seems to correlate
with increased bias in the recovery of the discrimination
parameter (Berger, 1991; Stocking, 1988). As these statistics
only provide insight into the average bias, we evaluated how
many of the individual items were affected by severe bias in the
recovery of difficulty parameter b. For Rasch modeling, less than
0.01% of the items calibrated were found to deviate by more than
0.2 (one-fifth of a standard deviation of the student ability
distribution) from their “true” population difficulty parameter
values. Applying a 2PL model, it was about 3% of the newly
developed items when there was a longer starting module in
conjunction with items measuring at the margins (uniform
distribution within modules). Hence, in 2PL modeling, there
seem to be a few more severely biased items. A further
evaluation of the affected items suggested that more severe
bias mainly affected items that measured at the lower and
upper margins of the ability distribution. Although the
percentage of correct scores on these items tended to be

TABLE 1 | Optimal item allocation in second-stage modules.

Bias (b) RMSE (b) Bias (a) RMSE (a)

Rasch Short/Normal –0.001 0.049 0.000 0.000
Long/Normal –0.001 0.048 0.000 0.000
Short/Uniform –0.001 0.052 0.000 0.000
Long/Uniform –0.001 0.051 0.000 0.000

2PL Short/Normal –0.001 0.047 0.002 0.097
Long/Normal –0.001 0.046 0.003 0.145
Short/Uniform 0.000 0.070 0.004 0.104
Long/Uniform 0.001 0.076 0.003 0.150

Short � 5 items in starting modules, long � 20 items in starting modules.
Normal � normal distribution of difficulty parameters.
Uniform � uniform distribution of difficulty parameters.
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somewhat at the lower or upper ends, it is noteworthy that they
were not extraordinarily low or high. On average, the more
severely biased items were still correctly or incorrectly
answered by around 18% of the simulees who encountered them.

Scenario 2. Non-Optimal Placement of
Items for Concurrent Calibration in
Incomplete Designs
InTable 2, we report the bias statistics across 1,000 simulation runs
applying Rasch or 2PL modeling for the concurrent calibration in
Non-Optimal Placement of Items for Concurrent Calibration in
Incomplete Designs, where, upon random starting modules of
differing lengths (short vs. long), the simulees were (within their
ability quintiles) routed to second-stage modules encompassing
randomly drawn items matching non-optimally in difficulties to
the range of simulees’ abilities. The items in the second-stage
modules were either normally or uniformly distributed, and half of
the new items5 were misplaced across adjacent modules. The same
item pool was used as inOptimal Placement of Items for Concurrent
Calibration in Incomplete Designs. The only difference is that, in
Non-Optimal Placement of Items for Concurrent Calibration in
Incomplete Designs, we assumed that there was somemisplacement
of the newly developed items in the second stage across adjacent
modules, resulting in an overlap of item difficulties between
adjacent modules. The items used as anchor items were not
included in calculating the bias statistics. Table 3 is based on
the same simulation results of Non-Optimal Placement of Items for
Concurrent Calibration in Incomplete Designs but displays in some
more detail the discrepancy in bias statistics across items that were
placed optimally in the second-stage modules and those that were
misplaced.

Focusing on Table 2 and the results for the Rasch model, we
found that bias for item difficulty (b) using Rasch modeling
remained rather small even in the context of non-optimally
placed items. Again, as shown in the bias (b) statistic, the bias
was consistently close to zero and showed no clear direction. The
RMSE (b) statistic showed that, overall, the absolute deviations of

the estimated parameters from the true parameters (in both
negative and positive directions) were, again, similarly small
(around 0.05) for the different sub-scenarios. Results for
Optimal Placement of Items for Concurrent Calibration in
Incomplete Designs (optimal placement, Table 1) and Non-
Optimal Placement of Items for Concurrent Calibration in
Incomplete Designs (non-optimal placement, Table 2) were
very similar when using a Rasch model. As shown in Table 3
for Rasch modeling, we observed that for both optimally placed
and non-optimally placed items, the bias and RMSE remained
small. Hence, Rasch modeling seems rather robust toward the
non-optimal placement of items; it also remained robust toward
the non-optimal placement of items when starting modules
differed in length and when measuring at the margins of the
student distribution encountering the items.

In contrast, this unconstrained robustness did not seem to
hold unequivocally for 2PL modeling. As Table 2 shows, when
the same item difficulty parameters were recovered using 2PL
modeling, the absolute bias measured by the RMSE (b) tended to
be larger, though there was no clear direction for the bias (bias b).
2PL still performed ok in the case of non-optimally allocated
items when (i) the routing was not very precise (short starting
modules), such that there were rather heterogeneous groups in
terms of their underlying abilities routed to the second-stage
modules, and when (ii) the vast majority of the items did not
measure at the margins (item difficulties drawn from normal
distribution). Here, the RMSE (b) statistic of 0.057 was still small,
even though there were some non-optimally allocated items.
However, when routing was more precise (long starting
modules) and, especially, in combination with items
measuring at the margins of the ability distribution (outside
the range of the ability distribution due to the non-optimal
placement of items), more severe bias in the parameter
recovery occurred in using 2PL modeling. In the case of a
long starting module in conjunction with non-optimally
placed items, of which some were too easy while others were
too hard for the respective simulees encountering the items, the
RMSE (b) statistic was 0.201, showing that, on average, the
recovered parameter estimates clearly deviated from their true
difficulty parameters. Increased bias in difficulty parameters (b)
in long compared to short starting modules may be interpreted in
relation with bias in the retrieval of the slope parameter (a). For
the recovery of the discrimination parameter (a) in 2PLmodeling,
the simulations again showed increased bias in terms of absolute
deviations in both negative and positive directions (RMSE) when
the routing to the second-stage test modules was more concise
due to longer starting modules. This suggests that the decreased
variation in student abilities encountering the items needing
calibration leads to a bias in the slope parameter (a), which
also relates to bias in the recovery of the difficulty parameter (b)
(see, e.g., Thissen and Wainer, 1982; Stocking, 1988; Berger,
1991). Hence, bias in the discrimination parameter (a) seems
to depend on the variance in student abilities and to further
correlate with bias in the difficulty parameter (b). In scenarios of
long routing modules (concise routing) and when there is non-
optimal item allocation, the Rasch model clearly outperforms the
2PL model in the recovery of item difficulty parameters.

TABLE 2 | Non-optimal item allocation in second-stage modules.

Bias (b) RMSE (b) Bias (a) RMSE (a)

Rasch Short/Normal –0.001 0.050 0.000 0.000
Long/Normal –0.001 0.049 0.000 0.000
Short/Uniform –0.001 0.054 0.000 0.000
Long/Uniform –0.001 0.049 0.000 0.000

2PL Short/Normal –0.001 0.057 0.003 0.100
Long/Normal –0.002 0.078 0.004 0.152
Short/Uniform 0.000 0.094 0.004 0.110
Long/Uniform –0.001 0.201 0.004 0.175

Short � 5 items in starting modules, long � 20 items in starting modules.
Normal � normal distribution of difficulty parameters.
Uniform � uniform distribution of difficulty parameters.

5in the top and bottom margin modules a quarter of the items (see Supplementary
Figures S1,S2).
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The more detailed comparison of the recovery of item
parameters across optimally and non-optimally placed items in
2PL modeling (Table 3) clearly revealed that the non-optimally
placed items were badly recovered. The recovered parameters
were clearly error prone when there were longer starting modules
and more items measuring at the margin of or even outside the
abilities of the simulees encountering the items (uniform
distribution). Thus, it seems that the non-optimal placement
of items and their recovery via a 2PL model did not fit well in the
context of an MST, where student ability grouping is “optimized”
across stages. Rasch is seemingly more robust in this regard.

How many item difficulty parameters were rather badly
recovered? Again, less than 0.01% of the items calibrated using
the Rasch model were found to deviate by more than 0.2 (one-
fifth of a standard deviation of the student ability distribution)
from their “true” parameter values. Using 2PL modeling in the
context of non-optimal item allocation, we found 1–8% of all
calibrated items deviated by more than 0.2 from their “true”
difficulty parameter values, depending on the sub-scenario.
Clearly, a worst case was when there was concise routing
simulated by longer starting modules in conjunction with non-
optimally placed items measuring at the margins across adjacent
modules. In this scenario, 8% of the items were very badly
recovered in terms of the difficulty parameter (b). Most of the
items that were more severely affected measured at the lower and
upper margins of the student ability distribution and included
items that were non-optimally placed in the second-stage
modules, which were items that should have been placed in an
adjacent module had we known their parameters. Yet, calibration
bias did not solely affect items with very high or very low
percentage correct scores. On average, the more severely
biased items in terms of difficulty were correctly or incorrectly
answered by 20% of the simulees who encountered these items.

This seems to be a fair share. Further, we found a positive
correlation (r � 0.6) between the absolute bias in
discrimination and the absolute bias in the difficulty
parameters, suggesting that biases in the recovery of these
parameters are related. Overall, these results seem indicative of
the greater volatility of the 2PL model compared to the Rasch
model in retrieving unbiased item parameters when item
calibration is conducted in an MST design, where there is
reduced variation in student abilities encountering the items in
conjunction with potential non-optimal placement of newly
developed items in terms of their difficulty. When there is
item misallocation in an MST the results of our simulations
suggest that the 2PL model generally performs worse compared
to Rasch modeling.

DISCUSSION

Allowing for efficient student ability estimates (e.g., Yan, von
Davier and Lewis, 2014), MST designs have been widely used in
practice (Berger, Verschoor, Eggen, and Moser, 2019). Across test
stages, the students are routed based on their performance
(i.e., preliminary ability estimates) to item sets with difficulty
ranges that match their abilities. Compared to a linear test, this
procedure allows for estimating student abilities more precisely
(e.g., Yan et al., 2014) and prevents students from becoming
discouraged (Asseburg and Frey, 2013). To ensure test quality in
practice, changingMST forms is required because publicly known
test items impair accurate student ability estimation, and items of
bad model fit need to be continually replaced by newly developed
items. The optimal placement of items in MST designs requires
knowledge of all item parameters. Efficiency is increased in that
items are optimally placed within the MST design such that
students (within specific ability ranges) across different test stages
are routed to modules encompassing (discriminant) items of
similar difficulties. For schools, participation in the actual
educational assessments alone, however, may be an
organizational burden, such that they are not willing to
participate in any piloting studies for the calibration of the
newly developed items. Thus, under practical constraints,
the calibration of these new items may take place on the go
during the actual test, which is within the framework of the actual
MST. The difficulty of the new items may therefore only be
guessed by experts for the setup of the MST. This makes it
challenging to assemble new items into the test modules and to
assign these modules to students with corresponding abilities
within MST designs. If the placement of new items needing
calibration in the multistage structure depends on expert
rating, this can, in practice, result in the non-optimal
placement of items that is far from their optimal location had
the parameters been known. This study investigated the extent to
which such a practical constraint on pretesting in conjunction
with the non-optimal placement of items in an MST design may
result in a posteriori parameter calibration error. Using a
simulation approach we focused on the performance of Rasch
vs. 2PL modeling in retrieving item parameters when items are
for practical reasons non-optimally placed in the MST.

TABLE 3 | Optimally vs. non-optimally placed items compared.

Bias (b) RMSE (b) Bias (a) RMSE (a)

Rasch Optimally placed items
Short/Normal –0.001 0.050 0.000 0.000
Long/Normal –0.001 0.048 0.000 0.000
Short/Uniform –0.001 0.053 0.000 0.000
Long/Uniform –0.001 0.051 0.000 0.000

Non-optimally placed items
Short/Normal –0.001 0.051 0.000 0.000
Long/Normal –0.001 0.050 0.000 0.000
Short/Uniform –0.001 0.055 0.000 0.000
Long/Uniform –0.001 0.054 0.000 0.000

2PL Optimally placed items
Short/Normal –0.001 0.049 0.003 0.097
Long/Normal –0.001 0.047 0.004 0.141
Short/Uniform 0.000 0.076 0.004 0.104
Long/Uniform 0.002 0.083 0.004 0.148

Non-optimally placed items
Short/Normal –0.001 0.066 0.003 0.104
Long/Normal –0.003 0.108 0.003 0.165
Short/Uniform 0.000 0.112 0.004 0.118
Long/Uniform –0.005 0.296 0.004 0.207

Short � 5 items in starting modules, long � 20 items in starting modules.
Normal � normal distribution of difficulty parameters.
Uniform � uniform distribution of difficulty parameters.
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Incomplete designs, such as the MST, meet assumptions of
MAR. Hence, theoretically, item parameters can be retrieved
without bias using marginal maximum likelihood in concurrent
calibration in incomplete designs (see Eggen and Verhelst, 2011;
Mislevy and Wu, 1996). In the context of non-optimal item
assembly, however, our practical experiences fueled doubts
regarding the volatility of parameter estimates retrieved by 2PL
modeling. In an intuitive and applied fashion, this study sought to
shed light on bias issues arising when, due to practical constraints,
piloting is not an option, and item calibration has to take place
within the MST design. In a simulation approach, we showed that
parameters recovered by Rasch modeling were less affected by bias
in the context of non-optimal item placement in a two-stage test
compared to 2PL modeling. Generally, the 2PL model performed
worse when items were non-optimally assembled in the MST
compared to the Rasch model; particularly in measuring at the
margins of the student distribution. Although 2PL modeling
allowed for weaker assumptions on (unequal) item
discrimination, which in practice are more easily met, this
increased flexibility seems to come at the price of increased
volatility in the recovery of accurate parameters in imperfect
settings. Notably, items that measured at the margins of the
simulee’s ability distribution in test modules were severely
affected by bias when they were recovered using a 2PL model.
In general, itemsmeasuring at the lower or upper ends of the ability
distribution did not seem to be recovered with high accuracy using
a 2PL model. In parallel to previous recommendations for the
Rasch model in the context of small calibration samples (see Lord,
1983), calibration in incomplete designs in the practical context of
non-optimal item placement also seems more robust with the
Rasch model. Hence, from a practitioner’s perspective, there
remains a trade-off between the strict assumption of
discrimination in the Rasch model and the flexibility at the
price of higher volatility offered by the 2PL model in this regard.

Overall, the items that weremore severely biased when retrieved
using a 2PL model tended to have percentage correct scores at the
lower and upper ends. Yet, on average, 19% of simulees answered
these items correctly or incorrectly, which does not seem
exceedingly high. Hence, severe bias did not occur only in items
that were correctly or incorrectly solved by a very small minority
only. The results also indicate that the more precise the routing, the
worse the recovery of the discrimination parameter. For a 2PL
model to recover item parameters correctly, a reduced variation in
student ability may pose a problem. As the main target in MST is
the precise routing of students into increasingly homogeneous
student groups across test modules, this seems to conflict with an
accurate recovery of the discrimination parameter when there are
items needing calibration. When homogeneity in student ability
groups increased, the misplacement of items in terms of their
difficulty also became more severe. Overall, using 2PL modeling,
the calibration of items of unknown item parameters in the
framework of an MST seems prone to errors.

When a 2PL model is the model of choice and item calibration
has to be undertaken in the MST, a tentative idea warranting
future researchmay be the placement of items needing calibration
in modules where there is some heterogeneity in student abilities,
for example, with introducing some randomness in student

routing. Yet, less adaptivity in MST designs may result in the
trade-off of less accurate student ability estimates. When the aim
is individual diagnostics and the new items are the basis for the
evaluation, test fairness for all students is of concern, such that
“mis-routing” of only a share of students is not an option. Future
research should elucidate whether some bias in item parameter
estimates due to the misplacement of items in the MST instead of
reduced adaptivity in the test may be better or worse for the
recovery of student abilities. Non-optimal item assembly in
routing modules also interferes with concise routing of
students, which prevents efficient ability estimates. Whether
newly developed items should be placed in initial or later
modules, where the former affects routing and the latter
encompasses increased homogeneity in student samples
encountering these items is an area of further concern. In
addition, we have not used automated test assembly (ATA) for
the assembly of items of known parameters in conjunction with
the items of unknown parameters. This may also be an interesting
line to follow for future research; of how to best use ATA in MST,
when there is uncertainty of some of the item parameters to
counteract bias, when, for example, using a 2PL model for
parameter estimation. All in all this study highlighted in a
very applied fashion the volatility of 2PL calibration in MST
when items are non-optimally placed and in retrieving item
parameters at the margins. Future research should focus more
in-depth and in more detail on the severity of individual item bias
by degree of item misplacement; and may do so taking into
account routing precision, which leads to reduced variance of
student abilities across test modules and seems to interfere with
the retrieval of the discrimination parameter in the 2PL model.
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