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We describe the development and implementation of a learning progression specifying
transitions in reasoning about data and statistics when middle school students are
inducted into practices of visualizing, measuring, and modeling the variability inherent
in processes ranging from repeated measure to production to organismic growth.
A series of design studies indicated that inducting students into these approximations
of statistical practice supported the development of statistical reasoning. Conceptual
change was supported by close coordination between assessment and instruction,
where changes in students’ ways of thinking about data and statistics were illuminated
as progress along six related constructs. Each construct was developed iteratively
during the course of design research as we became better informed about the forms
of thinking that tended to emerge as students were inducted into how statisticians
describe and analyze variability. To illustrate how instruction and assessment proceeded
in tandem, we consider progress in one construct, Modeling Variability. For this
construct, we describe how learning activities supported the forms of conceptual
change envisioned in the construct, and how conceptual change was indicated by
items specifically designed to target levels of the construct map. We show how student
progress can be monitored and summatively assessed using items and empirical maps
of items’ locations compared to student locations (called Wright maps), and how some
items were employed formatively by classroom teachers to further student learning.

Keywords: learning progression, data modeling, statistical reasoning, item response models, Rasch models

INTRODUCTION

In this paper, we illustrate the use of an organized learning model, specifically, a learning
progression, to support instructionally useful assessment. Learning progressions guide instructional
plans for nurturing students’ long-term development of disciplinary knowledge and dispositions
(National Research Council, 2006). Establishing a learning progression is an epistemic enterprise
(Knorr Cetina, 1999) in which students are positioned to participate in the generation and
revision of forms of knowledge valued by a discipline. For that, we need both an instructional
design and an assessment design, and the two needs to be tightly co-ordinated. In particular, the
assessments inform crucial aspects of the progression: (a) they provide formative information for
the development and refinement of the learning progression, and (b) they provide formative and
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summative information for teachers using the learning
progression to iteratively refine instruction in response to
evidence about student learning.

The idea of a learning progression is related to curriculum and
instructional concepts that have been apparent in the educational
literature for many years, and it is closely tied a learning trajectory
as commonly used in mathematics education (Simon, 1995). One
definition that has become prominent is the following:

Learning progressions are descriptions of the successively more
sophisticated ways of thinking about an important domain of
knowledge and practice that can follow one another as children
learn about and investigate a topic over a broad span of time. They
are crucially dependent on instructional practices if they are to
occur (Center for Continuous Instructional Improvement (CCII),
2009).

This description is broadly encompassing, but, at the same
time, the description signals something more than an ordered
set of ideas, curriculum pieces, or instructional events: Learning
progressions should characterize benchmarks of conceptual
change and in tandem, conceptual pivots—conceptual tools and
conjectures about mechanisms of learning that support the
kinds of changes in knowing envisioned in the progression.
Benchmarks of conceptual change are models of modal forms of
student thinking and like other models, must be judged on their
utility. They are ideally represented at a “mid-level” of description
that captures critical qualities of students’ ways of thinking
without being either so broad as to provide very little guidance for
instruction and assessment, or so overwhelmingly fine-grained
as to impede ready use. Similarly, conceptual pivots are ways of
thinking and doing that tend to catalyze conceptual growth, and
as such, are situated within a theoretically compelling framing of
potential mechanisms of learning.

Further entailments of a learning progression include
commitments about alignment of discipline, learning,
instruction, and assessment. In our view, these include:

(a) an epistemic view of a discipline that describes how
concepts are generated and warranted;

(b) representations of learning structured as descriptions of
forms of student knowledge, including concepts and
practices, and consequential transitions among these
forms, as informed by the epistemic analysis;

(c) help for teachers to identify classes of student performances
as representing particular forms of student knowledge
around which teachers can craft instructional responses,
and

(d) assessments and reports designed to help reveal students’
ways of thinking, and to organize evidence of such thinking
in ways that help teachers flexibly adapt instruction.

Thus, we consider a learning progression to be an educational
system designed to support particular forms of student (and
perhaps teacher) conceptual change. This system must include
descriptions of learning informed by an epistemic view of a
discipline, the means to support these forms of learning, well-
articulated schemes of assessment, and professional development
that produces pedagogical capacities oriented toward sustaining

student progress. As we later describe more completely, in
this article we concentrate on a learning progression that was
developed to support transitions in students’ conceptions of
data, chance, and statistical inference (Lehrer et al., 2020).
Conceptual change was promoted instructionally by inducting
students into approximations of core professional practices of
statisticians. Following in the footsteps of professional practice,
students invented and revised ways of visualizing, measuring, and
modeling variability. In what follows, we primarily focus on the
assessment component of the learning progression, with attention
to the roles of student responses and teacher practices in the
development and deployment of the assessment component.

Figure 1 illustrates a representation of transitions in students’
ways of knowing as they learn to make and revise models of
variability (MoV). This is an example of what is called a construct
map—in this case, the construct is called MoV, and it will be
the focus of much of the rest of this paper (so more detail will
follow, shortly). Leaving aside the specifics of this construct, the
construct map, then, is a structure defining a series of levels
of increasing sophistication of a student’s understanding of a
particular (educationally important) idea, and is based on an
assumption that it makes (educational) sense to see the student’s
progress as increasingly conceptually elaborated, with a series
of qualitatively distinct levels marking transitions between the
entrée to thinking about the idea (sometimes called the “lower
anchor”), and the most elaborated forms likely given instructional
support (sometimes called the “upper anchor”) (Wilson, 2005).
Note that the construct map is not a full representation of
a learning progression in that it neglects description of the
conceptual pivots that might reliably instigate the progress of
conceptual change visualized in the map, nor does it specify
other elements of the educational system necessary to support
student learning. However, the map has the virtue of mid-level

FIGURE 1 | The MoV construct map.
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description of students’ ways of thinking that can grasped and
adapted to the needs of particular communities. For example,
construct maps can be elaborated with classroom exemplars to
assist teacher identification of particular levels of thinking and to
exemplify how a teacher might leverage the multi-level variability
of student thinking in a classroom to promote conceptual change
(Kim and Lehrer, 2015). The map can be subject to a simple but
robust form of psychometric scaling known as Rasch modeling
(Rasch, 1960/80; Wilson, 2005).

To situate the development and test of this and the five
related constructs, we briefly describe the iterative design of the
learning progression.

Articulating the Learning Progression
As just noted, the learning progression sought to induct
students into an ensemble of approximations to the practices
by which professionals come to understand variability, most
centrally, on ways to visualize, measure, and model variability.
The instruction is designed so that these practices become
increasingly coordinated and interwoven over time, so that,
for example, initial ways of visualizing data are subsequently
employed by students to invent and interpret statistics of sample
distribution. The initial construction of the progression involved
analysis of core concepts and practices of data modeling (Lehrer
and Romberg, 1996) that we judged to be generative, yet
intelligible, to students. These were accompanied by conjectures
about fruitful instructional means for supporting student
induction into ways of thinking and acting on variability that was
more aligned with professional practices. One form of conceptual
support for learning (a conceptual pivot in the preceding)
was a commitment to inducting students into approximations
of professional practices through cycles of invention and
critique (Ford, 2015). For example, to introduce students to
statistics as measures of characteristics of distribution, they first
invented a statistic to capture variation in a distribution and
then participated in critique during which different inventions
were compared and contrasted with an eye toward how they
approached the challenges of characterizing variability. It was
only after students could participate in such a cycle that
conventional statistics of variation were introduced, for now
students were in a position to see how conventions resolved some
of the challenges revealed by their participation in invention
and critique. This participation in practice also helped students
understand why there are multiple statistics for characterizing
variation in distribution.

Conjectures about effective means for supporting learning
were accompanied by development of an assessment system that
could be employed for both summative and formative purposes.
These assessments provided evidence of student learning that
further assisted in the reformation of theory and practice
of instruction over multiple iterations of instructional design.
The learning progression was articulated during the course of
a series of classroom design studies, first conducted by the
designers of the progression (e.g., Lehrer et al., 2007, 2011;
Lehrer and Kim, 2009; Lehrer, 2017) and subsequently elaborated
by teachers who had not participated in the initial iterations
of the design (e.g., Tapee et al., 2019). The movement from

initial conjectures to a more stabilized progression involved
meshing disparate professional communities, including teachers,
statisticians, learning researchers, and assessment researchers.
Coordination among communities was mediated by a series of
boundary objects, ranging from curriculum units to construct
maps (such as the one shown in Figure 1) to samples of
student work that were judged in relation to professional
practices by statistical practitioners (Jones et al., 2017). Teachers
played a critical collaborative role in the development of all
components of the assessment system, and teacher practices of
assessment developed and changed as teachers suggested changes
to constructs (e.g., clarifications of descriptions, contributions
of video exemplars of student thinking) and items as they
changed their instructional practices to use assessment results
to advance student learning (Lehrer et al., 2014). Teachers
collaborated with researchers to develop guidelines for employing
student responses to formative assessments to conduct more
productive classroom conversations where students’ ways of
thinking, as characterized by levels of a construct, constituted
essential elements of a classroom dialog aimed at creating new
opportunities for learning (Kim and Lehrer, 2015). During such
a conversation, dubbed a “Formative Assessment Conversation”
by teachers, teachers drew upon student responses to juxtapose
different ways of thinking about the same idea (e.g., a measure
of center). Teachers also employed items and item responses as
launching pads for extending student conceptions. For example,
a teacher might change the nature of a distribution presented in
an item and ask students to anticipate and justify effects of this
change on sample statistics.

The Six Constructs in the Learning
Progression
To describe forms of conceptual change supported by student
participation in data modeling practices, we generated six
constructs (Lehrer et al., 2014). The constructs were developed
during the course of the previously cited design studies
which collectively established typical patterns of conceptual
growth as students learned to visualize, measure and model
the variability generated by processes ranging from repeated
measure to production (e.g., different methods for making
packages of toothpicks) to organismic growth (e.g., measures
of plant growth). Conceptual pivots to promote change,
most especially inducting students into statistical practices of
visualizing, measuring and modeling variability, were structured
and instantiated by a curriculum which included rationales
for particular tasks, tools, and activity structures, guides for
conducting mathematically productive classroom conversations,
and a series of formative assessments that teachers could deploy
to support learning.

Visualizing Data
Two of the six constructs represent progression in forms
of thinking that typically emerge as students are inducted
into practices of visualizing data. Students were inducted into
this practice by positioning them as inventors and critics of
visualizations of data they had generated (Petrosino et al., 2003).
The first, Data Display (DaD), describes conceptions of data
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that inform how students construct and interpret representations
of data. These conceptions are arranged along a dimension
anchored by interpreting data through the lens of individual cases
to viewing data as distributed—that is, as reflecting properties of
an aggregate. At the upper anchor of the construct, aggregate
properties constitute a lens for viewing cases. For example,
some cases may be more centrally located in a distribution, or
some cases may not conform as well as others with properties
of the distributed aggregate. A closely associated construct,
meta-representational competence (MRC), identifies keystone
understandings as students learn to manage representations in
order to make claims about data and to consider trade-offs among
possible representations in light of particular claims.

Conceptions of Statistics
A third construct, conceptions of statistics (CoS), describes
changes in students’ CoS when they have repeated opportunities
to invent and critique measures of characteristics of a
distribution, such as its center and spread. Initially, students
tend to think of statistics not as measures but as the result
of computations. For these students, batches of data prompt
computation but without sensitivity to the data (e.g., the presence
of extreme values) or with a question in mind. As students invent
and revise measures of distribution (the invention and critique
of measures of distribution is viewed as another conceptual
pivot), their CoS encompass a view of statistics as measures, with
corresponding sensitivity to qualities of the distribution being
summarized, the generalizability of the statistic to other potential
distributions, and to the question at hand. The upper anchor
of this construct entails recognition of statistics as subject to
sample-to-sample variation.

Conceptions of Chance
Chance (Cha) describes the progression of students’
understanding about how elementary probability operates
to produce distributions of outcomes. Initial forms of
understandings are intuitive and rely on conceptions of
agency (e.g., “favorite numbers”). Initial transition away from
this agentive view includes the development of the concept of a
trial, or repeatable event, as students investigate the behavior of
simple random devices. The concept of trial, which also entails
abandonment of personal influence on selected outcomes, makes
possible a perspectival shift that frames chance as associated
with a long-term process, a necessity for a frequentist view
of probability (Thompson et al., 2007). Intermediate forms of
understandings of chance include development of probability
as a measure of uncertainty, and estimation of probabilities as
ratios of target outcomes to all possible outcomes of a long-term,
repeated process. The upper anchor coordinates sample spaces
and relative frequencies as complementary ways of estimating
probabilities. Transitions in conceptions of chance are supported
by student investigation of the long-run behavior of chance
devices, and by the use of statistics to describe characteristics of
the resulting distribution of outcomes. A further significant shift
in perspective occurs as students summarize a sample with a
statistic (e.g., percent of red outcomes in 10 repetitions a 2-color
spinner) and then collect many samples. This leads to a new

kind of distribution, that of a sampling distribution of sample
statistics, and with it, the emergence of a new perspective on
statistics as described by the upper anchor of the CoS construct.
The constructs of CoS and Cha are related in that the upper
anchor of CoS depends upon conceptions of sample-to-sample
variation attributed to chance.

Modeling Variability
Building on changing conceptions of chance, the MoV construct
posits a progression in learning to construct and evaluate models
that include elements of random variation. Modeling chance
begins with identification of sources of variability, progresses to
employing chance devices to represent sources of variability, and
culminates in judging model fit by considering relations between
repeated model simulations and an empirical sample. Student
conceptions of models and modeling are fostered by positioning
students to invent and contest models of processes, ranging from
those involving signal and noise, with readily identified sources
of variability, to those with less visible sources of variability, as in
the natural variation of a sample of organisms.

Informal Inference
The sixth and final construct, Informal Inference (InI), describes
transitions in students’ reasoning about inference. The term
informal is meant to convey that students are not expected
to develop conceptions of probability density and related
formalisms that guide professional practice, but they are
nonetheless involved in making generalizations or predictions
beyond the specific data at hand. The initial levels of the construct
describes inferences informed by personal beliefs and experiences
in which data do not play a role, other than perhaps confirmation
of what one believes. A mid-level of the construct is represented
by conceiving of inference as guided by qualities of distribution,
such as central clumps in some visualizations or even summary
statistics. In short, inference is guided by careful attention to
characteristics evident in a sample. At the upper anchor, students
develop a hierarchical image of sample in which an empirical
sample is viewed as but one instance of a potentially infinite
collection of samples generated by a long-term, repeated process
(Saldanha and Thompson, 2014). Inference is then guided by this
understanding of sample, a cornerstone of professional practice
of inference (Garfield et al., 2015).

Generally, the construct maps are psychometrically analyzed
and scaled using multidimensional Rasch models (Schwartz et al.,
2017), and the requirement relationships are analyzed using
structured construct models (Wilson, 2012; Shin et al., 2017).

CHECKING FOR PROGRESS:
COMPARING PRE-TEST AND
POST-TEST RESULTS

When conceptualizing and building a learning progression,
researchers need to inquire about the extent to which
progression-centered instruction influences conceptual change.
Constructs inform us about the nature of such change, and pre–
post, construct-based assessment informs us about the robustness
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of the design. In one of the design studies mentioned previously,
the project team worked with a sixth-grade teacher to conduct
4 replications of the progression (4 classes taught by the same
teacher) with a total of 93 students. The study was aimed
at examining variation in student understandings and activity
between classes and to gauge the extent of conceptual change
for individual students across classes. Students responded to
tests taking approximately 1 h to complete before and after
instruction. The tests shared only a few items in common, enough
to link the two tests together. Item response models (Wright
and Masters, 1981) were used to link the scale between the pre-
test and the post-test. The underlying latent ability was then
used as the metric in which to calculate student gains. This
framework allowed us to select a model that accounted for having
different items on the forms, varying item difficulty, and different
maximum scores of the items.

In the analysis, we used data from both the pre-test and
the post-test to estimate the item parameters. We used Rasch
models for two reasons: (a) tests that conform to the Rasch model
assumptions have desirable characteristics (Wilson, 2005) and (b)
the technique of gain scores uses unweighted item scores, and
that is satisfied by the Rasch family of models. The estimated
item parameters were then used as anchored values and the
person ability parameters became the object of estimation. The
mean differences between the pre- and post-test were estimated
simultaneously with the person and item parameters.

For the scaling model the Random Coefficients Multinomial
Logit Model (RCML) (Adams and Wilson, 1996) was used.
The usual IRT assumption of having a normal person ability
distribution common across both test times is unlikely to be met
if indeed the instruction instigates conceptual change, because
one would expect to see post-test student abilities that are higher
than the pre-test abilities, and this would likely lead to a bi-
modal person ability distribution if data from the two tests are
combined for analysis. To avoid the unidimensional normality
assumption issue, we used a 2-dimensional analysis where the
first dimension was the pre-test and the second dimension
was the post-test. This can be achieved with a constrained
version of the Multidimensional RCML (MRCML) (Adams et al.,
1997; Briggs and Wilson, 2003) with common item parameters
constrained to be equal across the two dimensions (pre and
post). This is a simple example of what is known as Andersen’s
Model of Growth (Andersen, 1985). When one constrains the
item difficulty of items common to both the pre- and post-
test, then the metric is the same for the two test times, and the
mean difference between pre- and post-test abilities is the gain
in ability between the two tests (Ayers and Wilson, 2011). The
MRCML model was designed to allow for flexibility in designing
custom models and is the basis for the parameter estimation
in the ConQuest software (Adams et al., 2020). We formulated
the MRCML as a Partial Credit Model (PCM) (Masters, 1982)
and used the within-items form of the Multidimensional PCM,
as each common item loads onto both the pre-test and the
post-test dimension.

Results from the ConQuest analysis are summarized in
Table 1. In particular, we focus on MoV, as above, for illustrative
purposes: the mean ability gain for MoV was 1.312 logits. In

TABLE 1 | Pre- and post-test mean ability estimates, gain scores, and Wald test
significance results.

Construct Pre-test Post-test Gain Significance Test

Cha 0.052 1.092 1.040 W = 7.32, p < 0.0001

CoS −0.59 0.244 0.834 W = 6.80, p < 0.0001

Dad −0.02 0.749 0.769 W = 9.01, p < 0.0001

InI −0.414 0.217 0.631 W = 6.86, p < 0.0001

MoV −0.936 0.376 1.312 W = 12.80, p < 0.0001

MRC −0.199 0.164 0.363 W = 3.70, p < 0.0001

order to test if the difference between the post-test ability and the
pre-test ability is statistical significant, we used a Wald test

W =
(µ̂post − µ̂pre)√

s2
pre
N +

s2
post
N

, (1)

where µ̂pre , µ̂post , s2
pre

, and s2
post

are the sample means and variance
and N is the sample size. A size α Wald test rejects the null
hypothesis (of no difference) when | W| > zα/2. Row 5 in Table 1
shows the results for the MoV construct. Column 1 indicates the
construct, columns 2–4 indicate the mean pre-test ability, mean
post-test ability, and the gain, and column 5 shows the Wald test
statistic and the p-value when using α = 0.05. For MoV, the test
statistic is W = 12.80 and p < 0.0001. Thus, we can reject the null
hypothesis and conclude that the post-test ability is significantly
higher than the pre-test ability. The other rows show the results
for the remaining five constructs. In each case the p-value is less
than 0.0001 and thus we have statistically significant gains.

In addition to statistical significance, it is important to gauge
effect size—that is, are the gains large enough to claim that
these are important effects? In our studies of scaling educational
achievement tests, we have found from experience that, looking
at similar achievement tests, typical differences in achievement
test results from 1 year to the next are approximately 0.3–0.5
logits [see for example, Wilson et al. (2019a) and Wilson et al.
(2012)]. Hence, we see these gains (which are greater than half
a logit for all but one of the constructs) as representing very
important gains over the briefer (7–8 weeks) period of instruction
in data modeling.

With this summative illustration in mind, we turn now
to some of its underpinnings and to the use of assessments
by teachers. In what follows, we focus on one particular
construct from among the six in the full Data Modeling
learning progression, MoV, and describe (a) the development of
assessments based on the construct maps, and their relationships
with instruction by teachers, (b) the development of empirical
maps of these constructs (referred to as “Wright maps”), and (c)
the usages of reports based on these maps by teachers.

A CLOSER VIEW OF A CONSTRUCT:
MODELING VARIABILITY

As noted previously, the MoV construct refers to the conceptions
and practices of modeling variability. Modeling-related concepts
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emerge as students participate in curricular activities designed
to make the role of models in statistical inference visible and
tractable. In professional practice, models guiding inference
rely on probability density functions, but we take a more
informal approach (see Lehrer et al., 2020 for a more complete
description). One building block of inference is an image of
variable outcomes that are produced by the same underlying
process. Accordingly, we first have students use a 15 cm
ruler to measure the length of the same object, such as
the perimeter of a table or the length of their teacher’s
outstretched arms. Much to their surprise, students find that if
they have measured independently, their measures are not all
the same, and furthermore, the extent of variability is usually
substantially less when other tools, such as a meter stick,
are used. Students’ participation informs their understanding
of potential sources of differences observed, which tend to
rely on perceptions of signal (the length of the object) and
noise (“mistakes” measurers made arising from small but
cumulative errors in iterating the ruler or from how they
treated the rounded corners of a table, etc.). A signal-noise
interpretation is a conceptual pivot in that it affords an initial
step toward understanding how sample variability could arise
from a repeated process. And, the accessibility of the process
of measuring allows students to make attributions of different
sources of error—a prelude to an analysis of variance. The
initial seed of an image of a long-range process, so important
to thinking about probability and chance, is systematically
cultivated throughout the curricular sequence. For example,
as students invent visualizations of the sample of measured
values of the object’s length, many create displays of data that
afford noticing center clumps and symmetries of the batch
of data. This noticing provides an opportunity for teachers
to have students account for what they have visualized. For
example, what about the process tends to account for center
clump and symmetry? Students critique their inventions with
an eye toward what different invented representations tend
to highlight and subdue about the data, so that the interplay
between invention and critique constitute opportunities for
students to develop representational and metarepresentational
competencies, which are described by the two associated
constructs DaD and MRC.

Students go on to invent measures of characteristics of the
sample distribution, such as an estimate of the true length
of the object (e.g., sample medians) and the tendency of the
measurers to agree (i.e., precision of measure). Invented statistics
are critiqued with an eye toward what they attend to in the
sample distribution and what might happen if the distribution
were to be transformed in some way (e.g., sample size increased).
Invention and critique help make the conceptions and methods of
statistics more intelligible to students, and transitions in students’
conceptions are illustrated by the CoS construct. After revisiting
visualizing and measuring characteristics of distributions in
other signal-noise contexts (e.g., manufacturing Play-Doh candy
rolls), students grapple with chance by designing chance devices
and observing their behavior. The conceptual pivot of signal
and noise comes into play with the structure of the device
playing the role of signal and chance deviations from this

structure playing the role of noise. Changes in conceptions of
chance that emerge during the course of these investigations
are described by the Cha construct and by upper anchor of
the CoS construct.

With this conceptual and experiential grounding, students
are challenged to invent and critique MoV producing processes
that now include chance. Initially, models are devoted to re-
considerations of signal and noise processes from the perspective
of reconsidering mistakes as random—for instance, despite being
careful, small slippages in iteration with a ruler over a long
span appear inevitable and also unpredictable. Accordingly, the
process of measuring an object’s length can be re-considered
as a blend of a fixed value of length and sources of random
error. As students invent and critique MoV in contexts ranging
from signal and noise processes to those generating “natural”
variation, they have opportunities to elaborate their conceptions
of modeling variability.

Modeling Variability (MoV)
With the preceding in mind, we can now describe the MoV
construct and its construct map—refer to Figure 1 for an
outline. Students at the first level, MoV1, associate variability
with particular sources, which is facilitated by reflecting on
processes characterized by signal and noise For example, when
considering variability of measures of the same object’s length,
students may consider variability as arising from misdeeds of
measurement, “mistakes” made by some measurers because they
were not “careful.” To be categorized at this initial level, it is
sufficient that students demonstrate an attribution about one or
more sources of variability but not that they implicate chance
origins to variability.

At level MoV2, students begin to informally order the
contributions of different sources to variability, using language
such as “a lot” or “a little.” They refer to mechanisms and/or
processes that account for these distinctions, and they predict
or account for the effects on variability of changes in these
mechanisms or processes. For example, two students who
measured the perimeter of the same table attributed errors to
iteration, which they perceived as substantial. Then, they went
on to consider other errors that might have less impact, such as
a “false start.” This conversation clarifies that students need to
clarify the nature of each source of variability and decide whether
or not the source is worthy of including in a model.

Cameron: How would we graph–, I mean, what is a false
start, anyway?
Brianna: Like you have the ruler, but you start at the ruler
edge, but the ruler might be a little bit after it, so you get,
like, half a centimeter off.
Cameron: So, then it would not be 33, it’d be 16.5, because
it’d be half a centimeter off?
Brianna: Yeah, it might be a whole one, because on the ruler
that we had, there was half a centimeter on one side, and half
a centimeter on the other side, so it might be 33 still, and I
think we subtract 33.
Cameron: Yeah, because if you get a false start, you’re gonna
miss (Lehrer et al., 2020).
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An important transition in student reasoning occurs at level
MoV3: here students explicitly consider chance as contributing
to variability. In the curricular sequence, students first investigate
the behavior of simple devices for which there is widespread
acknowledgment that the behavior of the device is “random.”
For example, consider the spinner illustrated in the top panel
of Figure 2. This is a blank (“mystery”) spinner, and the task
for the student is to draw a line dividing the spinner into two
sectors which indicate the two proportions for the outcomes of
the spinner, which are given in the lower panel. The conceptual
consequences of investigations like these are primarily captured
in the Cha construct, but from the perspective of modeling,
students come to appreciate chance as a source of variability.

At level MoV4, there is a challenging transition to
conceptualizing variability in a process as emerging from

the composition of multiple, often random sources. For example,
a distribution of repeated measurements of an attribute of the
same object can be modeled as a composition of a fixed or true
measure of the attribute and one or more components of chance
error in measure. Figure 3 illustrates a student-generated model
that approximates the variability evident in a sample of class
measures of the length of their teacher’s arm-span. In this Figure,
the spinners are ordered from left to right, and are labeled above
each with a 3-letter code, described below. The first spinner
(labeled MDN) is simply the sample median of the observed
sample, taken by the students as their “best guess of” the true
value of the teacher’s arm-span—this is a deterministic effect,
as represented by the fact that there is only one sector in the
spinner, so it will return the same value (i.e., 157) on each spin.
The remaining four spinners are all modeling random effects, as

FIGURE 2 | Representation of a “mystery” spinner.
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FIGURE 3 | Modeling variability as a composition of signal and multiple sources of random error.

they will return different values on each spin, with probability
proportional to the proportion of the spinner area occupied
by each sector1. The second spinner (labeled GAP) represents
the “gaps” that occur when students iterate application of their
rulers across the teacher’s back: the probabilities of these gaps
are proportional to the areas of the spinner sectors, and the
values that are returned are shown within each sector (i.e., −1 to
−9). The students had surmised that smaller magnitudes of the
gaps are more likely to occur than larger magnitudes, hence the
sectors vary in area, reducing from the area for −1 to the area
for −9. The values are negative because gaps are unmeasured
space and hence result in underestimates of the arm-span. The
third spinner (labeled LAP) represents the “overlaps” that occur
when the endpoint of one iteration of the ruler overlaps with
the starting point of the next iteration. The interpretation of
the values and sectors is parallel to that for GAP. The values
are positive value because this mistake creates overestimates of
the measure (i.e., the same space is counted more than once).
The fourth spinner (labeled Droop) represents both under- and
over-estimates—these result when the teacher becomes tired and
her outstretched arms droop. The last spinner (labeled Whoops)
represents probabilities and values of mis-calculations when each
student generated a measure. The way the whole spinner device
works is that the result from each spinner is added to a total to
generate a single simulated measurement value. This then can
be used to generate multiple values for a distribution (students
typically used 30 repetitions in the Data Modeling curriculum
because these corresponded to the number of measurers). MoV4
culminates with the capacity to compare two or more emergent
models, a capacity which is developed as students critique models
invented by others.

At level MoV5, students consider variability when evaluating
models. For example, they recognize that just by chance one run
of a model’s simulated outcomes may fit an empirical sample well
(e.g., similar median and IQR values, similar “shapes” etc.) but the
next simulated sample might not. So, students, often prompted by

1Or, equally, the internal angle of the sector, or the proportion of the circumference
occupied by the sector.

teachers to think about running the simulations “again and again”
begin to appreciate the role of multiple runs of model simulations
to judge the suitability of the model. Sampling distributions of
estimates of model parameters, such as simulated sample median
and IQR, are used to judge whether or not the model tends
to approximate characteristics of an empirical sample at hand.
This is a very rich set of concepts for students to explore, and,
eventually, grasp. Just one example of this richness is indicated
by a classroom discussion of the plausibility of sample values that
were generated by a model, but which were absent in the original
empirical sample. The argument for and against a model that
could generate such a value arose during a formative assessment,
and as in other formative assessments, the teacher conducted a
follow-up conversation during which different student solutions
were compared and contrasted to instigate a transition in student
thinking, here from MoV4 to MoV5. As the teacher anticipated,
some students immediately objected to model outcomes not
represented as cases in the original sample. They proposed a
revision to the model under consideration by the class which
would eliminate this possibility.

Students: Take away−1 in the spinner
Teacher: Why?
Joash: Because there’s no 9 in this [the original sample].

But another student, Garth, responded, “Yeah, but that doesn’t
mean 9 is impossible.” He went on to elaborate, that the
model was “focused on the probability of messing up,” so to
the extent to which error magnitudes and probabilities were
plausible, they should not be excluded, and one would have to
accept the simulated values generated by the model as possible
values (Lehrer et al., 2020). This discussion of “possible values”
eventually assumed increasing prominence among the students,
and led to a point where they began to consider empirical
samples as simultaneously (a) a collection of outcomes observed
in the world and (b) a member of a potentially infinite collection
of samples (Lehrer, 2017). As mentioned previously, this dual
recognition of the nature of a sample is an important seed stock
of statistical inference.
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BUILDING AN ASSESSMENT SYSTEM IN
THE CONTEXT OF A CONSTRUCT MAP

Having achieved this initial step of generating a construct
map that reflected benchmarks in students’ conceptions of
modeling variability, we designed an assessment system to
provide formative feedback to teachers to help them monitor
student progress and also to provide summative assessment
for other classroom and school uses. In practice, design and
development of the assessment system paralleled that of the
development of the curricular sequence, albeit with some lag
to reflect upon the robustness of emerging patterns of student
thinking. In this process, we follow Wilson’s (2005) construct-
centered design process, the Bear Assessment System (BAS),
where items are designed to measure specific learning levels for
the construct, where item modes include both multiple choice
and constructed response types. The student responses to the
constructed response items are first mined to develop scoring
guidelines consisting of descriptions of student reasoning and to
provide examples of student work, all aligned to specific levels
of performance. This process involved multiple iterations of
item design, scoring, comparison of the coded responses to the
construct map, then fitting of items to psychometric models using
the resulting data, and subsequent item revision/generation.
These iterations occur over fairly long periods, and are based
on the data from students across multiple project teachers—
these teachers have variable amounts of expertise, but were all
engaged in the professional development that was an inherent
part of being a member of that team. The review teams
included the Vanderbilt project leaders, who, along with other
colleagues, were working directly with teachers. This brought
the instructional experiences of teachers into the process, and,
for some issues that arose, teachers proposed and tried out new
approaches. Sometimes, due to patterns in student responses, we

refined construct map levels and/or items, and coding exemplars,
including re-descriptions of student reasoning and inclusion of
more or better examples of student work (Constructs were also
revised to make them more intelligible and useful for guiding
instruction in partnership with teachers, as suggested earlier).
New items were developed where we found gaps in coverage of
the landmarks in the roadmap of student learning described by
the construct. In the light of student responses, some items that
could not be repaired were discarded, others were redesigned
to generate clearer evidence of student reasoning. Sometimes,
student responses to items could not be identified as belonging to
the construct but nonetheless appeared to indicate a distinctive
and important aspect of reasoning: This led to revision of
constructs and/or levels. A much more detailed explanation of
this design approach to developing an assessment system is
given in Wilson (2005).

Example Item 1—Piano Width
To illustrate the way that items are matched to construct map
levels, consider the Piano Width task illustrated in Figure 4.
This task capitalizes on the Data Modeling student’s experiences
with ruler iteration errors (“gaps and laps”) in learning about
measurement as a process that generated variability. We
comment specifically on question 1 of the Piano Width item:
The first part–1(a)—is intended mainly to have the student adopt
a position, and is coded simply as correct or incorrect. The
interesting question, as far as the responses is concerned, is the
second part–1(b)—here the most sophisticated responses are at
the MoV2 level, and typically fall into one of two categories after
choosing “Yes” to question 1(a).

MOV2B: the student describes how a process or change
in the process affects the variability, that is, the
student compares the variability shown by the two

FIGURE 4 | The Piano Width item. A group of musicians measured the width of a piano in centimeters. Each musician in this group measured using a small ruler
(15 cm long). They had to flip the ruler over and over across the width of the piano to find the total number of centimeters. A second group of musicians also
measured the piano’s width using a meter stick instead. They simply laid the stick on the piano and read the length. The graphs below display the groups’
measurements. 1(a) The two groups used different tools. Did the tool they used affect their measurement? (check one) () Yes () No. 1(b) Explain your answer. You can
write on the displays if that will help you to explain better. 2(a) How does using a different tool change the precision of measurements? (check one). (a) Using different
tools does not affect the precision of measurements. (b) Using the small ruler makes precision better. (c) Using the meter stick makes precision better. 2(b) Explain
your answer. (What about the displays makes you think so?).
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displays. The student mentions specific data points
or characteristics of the displays. For example, one
student wrote: “The Meter stick gives a more precise
measurement because more students measured 80–
84 with the meter stick than with the ruler.”

MOV2A: the student informally estimates the magnitude of
variation due to one or more sources, that is the
student and mentions sources of variability in the
ruler or meter stick. For example, one student wrote:
“The small ruler gives you more opportunities to
mess up.”

Note that this is an illustration of how the construct map levels
may be manifested into multiple sub-levels, and, as in this case,
there may be some ordering among the sublevels (i.e., MoV2B is
seen as a more complete answer than MoV2A).

Less sophisticated responses are also found:

MOV1: the student attributes variability to specific sources
or causes, that is the student chooses “Yes” and
attributes the differences in variability to the
measuring tools without referring to information
from the displays. For example, one student wrote:
“The meterstick works better because it is longer.”

Of course, students also give unclear or irrelevant responses,
such as the following: “Yes, because pianos are heavy”—these
are labeled as “No Link(i),” and abbreviated NL(i). In the initial
stages of instruction in this topic, students also gave a level of
response that is not clearly yet at level MoV1, but was judged
to be better than completely irrelevant—typically these responses
contained relevant terms and ideas, but were not accurate enough
to warrant labeling as MoV1. For example, one student wrote:
“No, Because it equals the same” This scoring level was labeled
“No Link(ii)” and abbreviated NL(ii), and was placed lower
than MoV1. Note that a complete scoring guide for this task is
shown in Appendix A.

An Empirical Version of the Learning
Construct—The Wright Map
We used a sample of 1002 middle school students from
multiple school districts involved in a calibration of the learning
progression, which included (a) generation of tools to support
professional development beyond the initial instantiations of
the progression, most especially collaboration with teachers to
develop curriculum and associated materials, (b) expansion of
constructs to include video exemplars (Kim and Lehrer, 2015),
and (c) item calibration (Schwartz et al., 2017), all of which were
conducted prior to implementation of a cluster randomized trial.
In a series of analyses carried out before the one on which the
following results are based, we investigated rater effects for the
contructed response items, and no statistically significant rater
effects were found, so these are not included in the analysis.
We fitted a partial-credit, one-dimensional item response (IRT)
model, often termed a Rasch model, to the item responses related
to the MoV construct. This model distinguishes among levels of
the construct (Masters, 1982). For each item, we use threshold
values (also called “Thurstonian thresholds”) to describe the

empirical characteristics of the item (Wilson, 2005; Adams et al.,
2020).

The way that the item is represented is as follows:

(a) if an item has k scoring levels, then there are k-1 thresholds
on the Wright map, one for each transition between scores;

(b) each item threshold gives the ability level (in logits) that a
student must obtain to have a 50% chance of scoring at the
associated scoring category or above (The locations of these
thresholds for the MoV items are shown in the columns on
the right side of Figure 5—more detail below).

For example, suppose an item has three possible score levels (0,
1, and 2). In this case there will be two thresholds. Suppose that
the first threshold has a value of −0.25 logits: This means that a
student with that same ability of −0.25 has an equal chance of
scoring in category 0 compared to categories 1 and 2. If their
ability is lower than the threshold value (−0.25 logits), then
they have a higher probability of scoring in category 0; if their
ability is higher than −0.25, then they have a higher probability
of scoring in either category 1 or 2 (than 0). These thresholds
are, by definition, ordered: In the given example, the second
threshold value must be greater than −0.25. Items may have just
one threshold (i.e., dichotomous items, for example, traditional
multiple-choice items), or they can be polytomous. It would be
very transparent if every item had as many response categories as
there are construct map levels–however, this is often not the case–
sometimes items will have response categories that focus only
on a sub-segment of the construct, or, somewhat less commonly,
sometimes items will having several different response categories
that match to just one of the levels of a construct map. For
this reason, it is particularly important to pay careful attention
to how item response categories can be related to the levels of
the construct map.

The locations of the item thresholds can be graphically
summarized in a Wright map, which is a graph that
simultaneously shows estimates for both the students and
items on the same (logit) scale. Figure 5 shows the Wright Map
for MoV, with the thresholds represented by “i.k,” where i is
the item number and k is the threshold number, so that, say,
“9.2” stands for the second threshold for the 9th item. On the
left side of the Wright Map, the distribution of student abilities
is displayed, where ability entails knowledge of the skills and
practices for MoV. The person abilities have a roughly symmetric
distribution. On the right side are shown the thresholds for 9
questions from 5 tasks in MoV. In Figure 5, the thresholds for
Piano Width questions 1(b) and 2(b) are labeled as 9.k and 10.k,
respectively. Again, focussing on question 1(b) (item 9), the
thresholds (9.1, 9.2, and 9.3) were estimated to be −0.97, 0.16,
and 1.20 logits, respectively. Looking at Figure 5, one can see
that they stand roughly in the middle of the segments (indicated
by the horizontal lines) of the logit scale for the NL(ii), Mov1 and
MoV2&3 levels, respectively.

Looking beyond a single item, we need to investigate the
consistency of the locations of these thresholds across items. We
used a standard-setting procedure called “construct mapping”
(Draney and Wilson, 2011) to develop cut-scores between the
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FIGURE 5 | The Wright Map for MoV.

levels. Following that process, we found that the thresholds fall
quite consistently into the ordered levels, with a few exceptions,
specifically 8.3, 10.3, and 11.1. In our initial representations
of this Wright map, we found that the thresholds for levels
2 and 3 were thoroughly mixed together. We spent a large
amount of time exploring this, both quantitatively, using the
data, and qualitatively, examining item contents, and talking to
curriculum developers and teachers about the apparent anomaly.
Our conclusion was that these two levels, although there is
certainly a necessary hierarchy to their lower ends—there is

little hope for a student to use a chance devise to represent
a source of variability (MoV3) if they cannot informally
describe such a source (MoV2)—and these can and do overlap
quite a bit in the classrooms of the project. Students are
still improving on MoV2 when they are initially starting on
Mov3, and they continue to improve on both at about the
same time. Hence, at least formally, that, while we decided
to uphold the distinction between Mov2 and MoV3, we also
decided to ignore the difference in difficulty of the levels, and
to label the segment of the scale (i.e., the relevant band) as
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FIGURE 6 | The Revised MoV construct map.

MoV2&3. Thus, our MoV construct map may be modified as in
Figure 6.

These band-segments can then be used as a means of labeling
estimated student locations with respect to the construct map
levels NL(i) to MoV4. For example, a student estimated to
be at 1.0 logits could be interpreted as being at the point of
most actively learning (specifically, succeeding at the relevant
levels approximately 50% of the time) within the construct
map levels MoV2 and MoV3, that is, being able to informally
describe the contribution of one or more sources of variability
to the observed variability in the system, while at the same time
developing a chance device (such as a spinner) to represent that
relationship. The same student would be expected to succeed
more consistently (approximately 75%) at level MoV1 (i.e.,
being able to identify sources of variability), and succeed much
less often (approximately 25%) at level MoV4 (i.e., develop an
emergent model of variability). Thus, the average gain of the
students on the Modeling Variability construct, as reported above
(1.312 logits) was, in addition to being statistically significant,
also educationally meaningful, representing approximately a
difference of a full MoV construct level.

USING THE BASS SYSTEM TO
IMPLEMENT THE ASSESSMENTS IN
THE LEARNING PROGRESSION

The components of the assessment system, as shown above,
including the construct maps, the items, and the scoring guides,
are implemented within the online Bear Assessment System
Software (BASS), which can deliver the items, automatically score
those designed that way (or manage a hand-scoring procedure
for items designed to be open-ended), assemble the data into a
manageable data set, analyze the data using Rasch-type models

according to the designed constructs, and report on the results, in
terms of (a) a comprehensive analysis report, and (b) individual
and group results for classroom use (Torres Irribarra et al.,
2015; Fisher and Wilson, 2019; Wilson et al., 2019b). In this
account, we will not dwell on the structures and features of this
program, but will focus instead on those parts of the BASS reports
that will be helpful to a teacher involved in teaching based on
the MoV construct.

Figure 6 gives an overall empirical picture of the MoV
construct, and this is also the starting point for a teacher’s use
of the software2. This map shows the relationship between the
students in the calibration sample for the MoV construct and the
MoV items, as represented by their Thurstone thresholds. The
thresholds span across approximately 5 logits, and the student
span is about the same, though they range about 1.5 logits lower.
This is a relatively wide range of probabilities of success—for a
threshold located at 0.0 logits, a student at the lowest location will
have approximately a 0.05 chance of achieving at that threshold
level: in contrast, a student at the highest location will have
approximately a 0.92 chance of achieving at that threshold level.
This very wide range reflects that this construct is not one that is
commonly taught in schools, so that the underlying variation is

2The BASS software has been developed as an “enterprise-wide” application,
and hence, can be used to facilitate the entire sequence tasks of assessment
system development, from the conception of constructs, to the gathering of
development-level data sets, the analysis of assessment data sets, the building
of an item-bank, and the use of that item bank in specific assessment activities.
Different types of users have different scopes of interaction with the software, and
specifically, teachers would have the roles of assembling and scheduling assessment
activities, receiving teacher-level reports on the results, and generating reports,
such as class summary reports and student-level reports. Training for these roles
has been carried out on a one-to-one basis while the software development is
being completed, and will be implemented using online training. Of course, the
interpretation of these reports requires more than just training in use of software
but also includes the development of a teacher’s understanding of the essential
ideas of the DM learning progression.
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FIGURE 7 | The Wright Map for MoV: Class I (left) and II (right). Each box represent approximately 1 case: 102 altogether.

not much influenced by the effects of previous instruction. This
is a sobering challenge for a teacher—how to educate both the
students who are working at the NL(i) level, not even being able
to write down appropriate words in response to the items, and
the students who are working at the Mov4 level, where they are
able to engage in debates about the respective qualities of different
probabilistic models.

Of course, no real class will have such a large number of
students to contend with, so we have illustrated the equivalent
map to Figure 5 for two different classes in Figure 7—Class

I and Class II. These each represent the results for a whole
school rather than for a single classroom, so should be interpreted
as a group of students who might be spread across several
individual classrooms. The class whose distribution is shown on
the far left of the logit scale in Figure 7 is representative of
students before systematic instruction in modeling variability.
The majority of students are at either level NL(i) or NL(ii),
and hence, that there has been little successful past instruction
on this topic. Nevertheless, we can see that here are a few
students who are working at the lower ends of MoV2&3, that
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FIGURE 8 | A BASS report on the performance of an individual student on the MoV items set.

is they can recognize that there is qualitative ordering of the
effects of different sources of variation, and are beginning to
be able to understand how these might be encapsulated in a
model based on chance. Now, contrast that with the class (Class
II) whose distribution is shown immediately to the right of
Class I in Figure 7. Here the whole distribution has moved up
by approximately a logit, and hence, the number of students
at that lowest level (NL(i) are very few. The largest group in
this class is at the level MoV1, that is they can express their
thinking about possible sources of variation, and a few students
are beginning to operate at the highest level we observed, MoV4.
This class is representative of students with some experience with
constructing models but likely not with extensive opportunities
to invent and revise models across multiple variability-generating
contexts. This broad envisioning of the educational challenge
of the classes (i.e., the range of the extant construct levels)
allows a teacher to anchor their instructional planning in reliable
information on student performance on an explicitly known (to
the teacher) set of tasks.

Turning now to specific interpretive and diagnostic
information that a teacher can gain from the system, consider
an individual student report, as shown in Figure 8. Here we
see that this student (anonymously labeled as “Ver1148” in this
paper) is doing moderately well in the calibration sample—(s)he
is most likely located in the Mov2 level (the 95% confidence
interval is indicated on the graph by the horizontal bars
around the central dot). This information provides some useful
educational possibilities for what next to do with this student—
they should continue practicing the informal observation and
description of sources of variability, and they should be moving
on to learn about how to use a chance device to represent
the probabilities.

Individual student reports can also assist teachers to use an
item formatively by juxtaposing student solutions at adjacent
levels of the construct, and inviting whole-class reflection
as means to help students to extend their reasoning to
higher levels of the construct (Kim and Lehrer, 2015). The
formative assessment conversation described previously during
the presentation of MoV5 exemplifies this adjoining construct
level heuristic. In that conversation, the teacher invited contrast
between student models that emphasized recapitulation of
values observed in a single sample (a MoV4 level) with a
model that instead allowed for values plausibly reflecting the

variability-generating process (“possible values”), which reflected
the emphasis on sampling variability characteristic of MoV5.

The teacher can also look more deeply into a student’s record
for the construct, and examine their performance at the item
level. This is illustrated in Figure 9, where the student’s responses
for each item that the teacher chose for the student’s class are
shown graphically–this shows exactly which responses (s)he gave
to each item, and matches them to the construct map levels (i.e.,
with the items represented in the rows and the construct map
levels are illustrated in the columns). Here it can be seen3 that
the item-level results are quite consistent with the overall view as
given in Figure 5—with the student performing with a moderate
level of success on the MoV2 items (i.e., the last 3), and doing as
well as can be expected on the first 3 items, which do not prompt
responses for levels 1 or 2.

Of course, not every student will give results that are so
consistent with the expected order of items in the Wright
Map. This is educationally relevant, as performances that are
inconsistent with the usual may indicate that the student has
special interests, experiences, or even attitudes that should be
considered in interpreting their results. We use a special type
of graphical display, called a “kidmap,” that can make this
clearer (although like any other specialist figure, it does need
explanation). The kidmap for student Ver1148 is shown in
Figure 10. The student’s location on the map is shown as the
horizontal line marked with their identifier in the middle of
the figure. The logit scales to the left and right of this show,
respectively, (a), to the left, the construct map levels that the
student achieved, and (b), to the right, those that the student
did not achieve. The extent of the measurement error around
the student location is marked by the blue band around the
horizontal line. The way to read the graph is to note that, when
the student has performed as expected by his overall estimated
location, then

(a) the construct map levels achieved should show up in the
bottom left-hand quadrant of the graph,

(b) the construct map levels not achieved should show up in
the top right-hand quadrant of the graph, and

(c) there may be a region of inconsistency within and/or near
to the region of uncertainty (i.e., the blue band).

3Note that the level MoV0 shown here was re-reclassified as Mov1.

Frontiers in Education | www.frontiersin.org 14 May 2021 | Volume 6 | Article 654212

https://www.frontiersin.org/journals/education
https://www.frontiersin.org/
https://www.frontiersin.org/journals/education#articles


feduc-06-654212 May 4, 2021 Time: 15:36 # 15

Wilson and Lehrer Improving Learning

FIGURE 9 | A BASS item scores report for an individual student on the MoV items set.

FIGURE 10 | A Kidmap report for an individual student on the MoV items set.

In fact, looking at Figure 10, we can see that this student’s
performance is very much consistent with their estimated
location, there are no construct map levels showing up in the
“off” diagonal; quadrants (top left and bottom right).

To illustrate the way that this type of graph can help identify
student performances that are inconsistent with their overall
estimated location, look now at Figure 11. In this kidmap, for
student Ver1047, we can see that the “off-diagonal” quadrants
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are indeed occupied by a number of item levels. Those in the
top left quadrant are those for which the student has performed
better that their overall estimate would predict, while those in

the bottom right quadrant are those for which the student did
not perform as well as expected. This can them be interpreted
very specifically by examining the student scores output shown

FIGURE 11 | A Kidmap report for a second individual student on the MoV items set.

FIGURE 12 | A BASS item scores report for a second individual student on the MoV items set.
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in Figure 12. Here it can be readily seen that this student
has performed very inconsistently on the item that the teacher
assigned, responding at a high level (MoV4) for the first 3 items
and at the lowest level (NL(i)) for the last three items. An actual
interpretation of these results would require more information
about the student and the context—nevertheless, it is important
that the teacher be made aware of this sort of result, as it may
be very important for the continued success of this individual
student. Fortunately, cases such as that for Ver1148 can be readily
detected by using a “Person Misfit” index, thus avoiding the need
for a teacher to examine the kidmaps for every one of their
students—this is also reported for each student by BASS. This
type of result, where the student’s response vector can be used
as a form of quality control information on the overall student
estimate, is an important step forward in assessment practice—
giving the teacher potential insights into the way that students
have learned the content of instruction.

CONCLUSION

This paper has described how a learning progression can
be defined using benchmarks of conceptual change and in
tandem, conceptual pivots that may instigate change. These
together characterize the structural components of the learning
progression. The assessment aspect of the progression has
been characterized using constructs and their accompanying
construct maps, which serve multiple purposes: as ways to
highlight and describe anticipated forms of student learning,
as a basis for recording and visualizing progress in student
learning, and as a method to link assessment with instruction.
Instruction is intertwined with assessment in ways that are
manifest in the structure of the assessment system, as in the
negotiation of the representation of constructs in ways that
teachers find useful, intelligible, and plausible, and in the
practice of assessment, where teachers use formative items to
advance learning by engaging students in productive, construct-
centered conversation.

Next Steps
The next major steps in continuing the assessment work
described here are the following. In the first step, the many
constructed response items in the DM item bank, such as the one
used as an example above, need to be augmented with similar
selected response items. The selected response versions can be
developed from the responses collected as part of the calibration
of the open ended responses. These selected response items are
crucially needed in order to lighten the load on teachers so that
they can avoid having to score the open ended responses that
their students make. The aim, however, is not to then ignore the
open ended items, but to preserve both formats in the DM item
bank so that the open ended ones can be used for instructional
purposes as well as informal assessments, as part of assessment
conversations. The closed form items can then be used in more
formal situations such as for unit-tests, longer-term summative
tests, and in evaluation contexts. Care is needed to avoid using
similar pairs of items in these two ways with the same students,

but this can be alleviated by the creation of clones of each item, in
each format, although that is not always easy.

In the second step, the assessments described above need
to be deployed with a system of teacher observations matched
to the same set of constructs, allowing teachers to record their
judgments on student performances in relatively unstructured
situations, including group-work. Work is currently underway
to develop and try-out such an observational system and to
establish connections with the BASS data-base so that the two
systems can be mutually supportive. There are multiple issues
in disentangling group-level observations and individual item
responses, but some work on hierarchical Rasch modeling has
already begun (Wilson et al., 2017).

In the third step, connecting the performances of students
in the context of the DM constructs needs to be related to
teacher actions. The tradition of fidelity studies is based on the
observation of low-inference teacher actions, due to the relatively
good reliability of judgments about such actions. However, these
low-inference actions are seldom the most important educational
activities carried out by teachers. Hence, an important agenda
is the development of a system of observing and judging high-
inference teacher activities, using the constructs and the construct
maps as leverage to make the activities more judgeable. This work
has begun, and sound results have been reported (Jones, 2015),
but much more needs to be accomplished in this area.
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