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The analysis of factor structures is one of the most critical psychometric applications.

Frequently, variables (i.e., items or indicators) resulting from questionnaires using ordinal

items with 2–7 categories are used. There are plenty of articles that recommend treating

ordinal variables in a factor analysis by default as ordinal and not as continuous imposing

a multivariate normal distribution assumption. In this article, we exhibit that the reasoning

behind such suggestions is flawed. In our view, findings from simulation studies cannot

tell about the right modeling strategy of ordinal variables in factor analysis. Moreover,

it is argued that ordinal factor models impose a normality assumption for underlying

continuous variables, which might also often be incorrect in empirical applications.

However, researchers seldom opt for more flexible modeling strategies that involve

correctly specified distributions. Finally, the consequences of modeling choices for

validity, reliability, measurement invariance, handling of missing data, and the assessment

of global model fit are discussed.

Keywords: factor analysis, ordinal variable, polychoric correlations, structural equation modeling, Gaussian

copula model

1. INTRODUCTION

The analysis of factor structures is one of the most critical psychometric applications. Frequently,
variables (i.e., items, or indicators) resulting from questionnaires are analyzed. These variables
are often assessed with Likert scales that have a finite number of ordered categories. In many
applications, the number of categories ranges between 2 and 7. An often posed question by applied
researchers is about the most favorable approach for factor analysis in the presence of ordinal
variables. First, ordinal variables could be treated as in the case of continuous variables, and
the same estimation method would be used. Second, a factor model based on a distributional
assumption for ordinal variables could be fitted (i.e., an ordinal factor model). There is a diversity
of methodological literature addressing this issue (Dolan, 1994; DiStefano, 2002; Lei, 2009; Flora
et al., 2012; Rhemtulla et al., 2012; Sass et al., 2014; Barendse et al., 2015; Asún et al., 2016; Li,
2016; Jia andWu, 2019). The main message of most of the papers seems to be that ordinal variables
should be treated as ordinal (i.e., not being treated as continuous variables) if there are only a few
categories or the frequency distributions of variables are skewed (e.g., Rhemtulla et al., 2012). In this
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article, it is argued that treating ordinal variables as continuous
can (almost) always be defended, and the argument for doing
so does neither depend on the number of categories nor the
marginal distribution of ordinal variables.

The article is structured as follows. In section 2, the two
major competing estimation approaches are contrasted, and their
assumptions are clarified. In section 3, it is argued that there are
many options for modeling ordinal variables, and the choice of
the ordinal method that is recommended by default is as arbitrary
as treating ordinal variables as continuous variables. Finally, in
section 4, the consequences of modeling choices for validity,
reliability, measurement invariance, and the assessment of global
model fit are discussed.

2. NORMALITY ASSUMPTION OR LATENT

NORMALITY ASSUMPTION?

2.1. Alternative Modeling Strategies
Assume that a vector of ordinal variables Y = (Y1, . . . ,YI)
is given. For simplicity, we assume that each variable Yi has
values 0, 1, . . . ,K. Let pi,k = P(Yi ≤ k) denotes the cumulative
frequencies of variable i. If the ordinal variables would be treated
as continuous, a linear factor model

Y = µ + 3F + E (1)

is assumed, where µ are intercepts, 3 is a loading matrix, F is
a multidimensional factor variable, and E denotes a vector of
residuals. Assume that E(F) = 0 and E(E) = 0. Let us define
8 = Var(F) and 9 = Var(E). Typically, 9 is a diagonal matrix.
The covariance matrix 6 = Var(Y) in the factor model given in
Equation (1) is modeled as an implied covariance matrix 60(θ)

6 ≈ 60(θ) = 383T + 9 (2)

Hence, in (2), it is assumed that observed covariances of
variables are represented by model parameters (i.e., loadings,
factor covariances and variances, and residual variances). For
ease of exposition, we interpret 6 as a Pearson product-moment
correlation matrix, which is the covariance matrix if ordinal
variables Y would have been standardized prior to analysis. Let
θ denote the vector of parameters in 3, 8, and 9 that are
freely estimated.

Two estimationmethods for estimating θ can be distinguished
(see Jöreskog, 2007, for an overview). First, a multivariate
normal distribution can be assumed. Then, the estimated Pearson
correlation matrix S for variables Y is a sufficient statistic for θ ,
and the fitting function (i.e., log-likelihood function inmaximum
likelihood estimation) is given as

FML(θ; S) = log|60(θ)| + tr(S60(θ)
−1)− log|S| − I (3)

The multivariate normal distribution will be misspecified if
variables are ordinal. However, ML parameter estimates are
consistent and converge to a parameter θ that maximizes
the Kullback-Leibler information (White, 1982). The optimal
parameter θ is obtained if S is replaced by the true population

covariance matrix 6 in (3) (Arminger and Schoenberg, 1989;
Olsson et al., 2000; Yuan and Bentler, 2007). Note that the model
assumption 6 = 60(θ) can be correct when the data is not
multivariate normally distributed. The choice of a misspecified
ML function FML must not necessarily result in inconsistent
(and, hence, biased) parameter estimates. Moreover, the so-
called robust ML estimator (MLR; Savalei, 2014; Yuan and
Bentler, 2007) provides valid statistical inference in amisspecified
model (Satorra, 1992), and improvements have been proposed
(Lai, 2019). Second, weighted least squares estimation based on
the estimated correlation matrix S can be employed. Here, we
consider diagonally weighted least squares (DWLS), and the
fitting function is given as (Jöreskog, 2007)

FDWLS(θ; S) = tr[(S− 60(θ))W] (4)

whereW is a diagonal weighting matrix. MacCallum et al. (2007)
argue that using DWLS instead ofML possesses advantages in the
case of misspecified models [i.e., 6 6= 60(θ)].

Alternatively, ordinal variables can be modeled with ordinal
marginal distributions (Forero et al., 2009; Yang-Wallentin et al.,
2010). The idea is that there are underlying normally distributed
variables Y∗ = (Y∗

1 , . . . ,Y
∗
I ) and thresholds −∞ = τi,0 < τi,1 <

. . . < τK+1,∞ = ∞ such that

Yi = k ⇔ τi,k ≤ Y∗
i ≤ τi,k+1 (k = 0, 1, . . . ,K)

(5)
The thresholds are given as τik = F−1(pi,k+1), where F
denotes the standard normal distribution function. In an ordinal
treatment of ordinal variables, a linear factor model for the
underlying latent normally distributed variables Y∗ (referred to
as latent normality in the sequel) is assumed:

Y
∗ = µ + 3F + E (6)

Then, the covariance structure of 6∗ = Var(Y∗) of latent
variables is modeled as

6∗ ≈ 6∗
0(θ

∗) = 3∗8∗3∗T + 9∗ (7)

The covariance matrix 6∗ can be estimated by employing
polychoric correlations (Muthén, 1984). Note that the estimated
parameter θ in (2) when treating variables as continuous will
typically be different from θ∗ in (7) when treating variables
as ordinal, even if original variables Y would have been
standardized prior to analysis (Rhemtulla et al., 2012). Often,
DWLS estimation based on the estimated polychoric correlation
matrix S

∗ is conducted (Muthén, 1984; Yang-Wallentin et al.,
2010):

Fcat−DWLS(θ; S
∗) = tr[(S∗ − 6∗

0(θ
∗))W∗] (8)

It should be emphasized that the ordinal factor models are
also labeled as item response models (IRT). The assumption
of latent normality corresponds to the graded response model
with a probit link function (Takane and de Leeuw, 1987;
Glockner-Rist and Hoijtink, 2003; Kamata and Bauer, 2008). In
standard IRT software, ML estimation is typically utilized for
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estimation by default (e.g., in the R packagemirt; Chalmers, 2012)
while in standard SEM software, limited information methods,
such as DWLS are employed (e.g., in the R package lavaan;
Rosseel, 2012).

Practitioners often seek advice from methodologists of how
to analyze ordinal variables in factor analysis. This amounts
to the question of whether Pearson correlations or polychoric
correlations should be used in the factor analysis. In the
following, we critically discuss the recommendations of some
often cited methodological articles.

2.2. There Is No “Correct” Modeling

Strategy
Many papers recommend that ordinal variables should be
modeled as ordinal if there are only a few categories or if the
frequency distributions are asymmetrical (Rhemtulla et al., 2012;
Li, 2016). These articles often state that biased estimates (i.e.,
factor loadings) would have been obtained if the (misspecified)
model assuming multivariate normality would be applied. Their
reasoning is based on simulation studies. We now argue that
simulation studies do not help for providing rationale of the
appropriate modeling strategy because it would be relatively
simple to design simulation studies with ordinal variables
that fulfill the linear factor model for Pearson correlations
(i.e., Equation 2) instead of the factor model for polychoric
correlations (i.e., Equation 7).

Researchers who claim the superiority of ordinal models for
ordinal variables presuppose that Equation (7) holds, i.e., the
matrix representation 6∗ = 3∗8∗3∗T + 9 holds for the
polychoric correlation matrix (e.g., Li, 2016; Rhemtulla et al.,
2012). Hence, they base inference on the latent normal variables
Y
∗. By employing the corresponding estimation function

Fcat−DWLS, unbiased parameter estimates are obtained. However,
if the variables would be analyzed as continuous (i.e., using
FML or FDWLS), biased parameter estimates would be obtained.
This is almost trivial as the true model is ordinal, and the
question is whether the incorrect model that treats variables as
continuous can also recover true parameters (i.e., whether θ∗ = θ

holds in the population). A typical argument found in several
articles is as follows. Under the assumption that continuous
variables underlie the observed ordinal variables, the matrix of
Pearson correlations underestimates of the correlation matrix
among the underlying continuous variables, that is the polychoric
correlation matrix (Olsson, 1979; Rhemtulla et al., 2012). Hence,
using the Pearson correlation constitutes the incorrect input of
the factor analysis, while polychoric correlations would be the
correct one, and only the ordinal factor analysis would provide
unbiased parameter estimates.

We now sketch the design of a simulation that “shows”
that treating ordinal variables as continuous (i.e., using Pearson
correlations) result in unbiased estimation while treating them
as ordinal in the model assuming latent normality will result
in biased estimates. Assume predetermined thresholds τi,k (k =

0, 1, . . . ,K). The Pearson correlation σij of variables i and j is a
function of thresholds τi,k and τi,j, and the polychoric correlation
σ
∗
ij . One can always find a polychoric correlation σ

∗
ij such that the

covariance of i and j equals σij (e.g., by applying some numerical
procedure for finding a root). Moreover, assume that the linear
factor model 6 = 383T + 9 holds for observed covariances
(i.e., Equation 2 holds true). Therefore, the ordinal factor model
(Equation 7) will not be fulfilled, and hence, treating ordinal
variables in an ordinal factor model assuming latent normality
will result in biased estimates. Of course, a simulation exercise
could be additionally carried to demonstrate this reasoning.

One could also argue that true scores (and consequently
latent variables) are clearly defined in stochastic measurement
theory (Steyer, 1989) as the expected value of an intraindividual
distribution of an ordinal variable (see also Holland, 1990).
Although observed variables are ordinal, item-specific true scores
are bounded but non-integers. A factor model constitutes a
model assumption for these true scores.

What can be learned from these observations? At best,
findings from the literature that comes with recommendations
to practitioners are only useful in identifying data constellations
in which the continuous and the ordinal treatment of ordinal
variables can result in similar parameter estimates. In our view,
simulation studies or empirical data cannot be employed for
deciding among the two competitive modeling strategies. Hence,
a researcher must decide whether the factor structure should be
posed on Pearson correlations or polychoric correlations.

As a cautionary note, one should add that categories of
variables are stretched in the ordinal variable model according to
their empirical frequencies when representing the latent variables
F in the factor model. In contrast, by treating the variables as
continuous, no such implicit transformation is carried out. The
modeling choice relates to the question about the meaning of
distances between categories of an ordinal variable. While it can
be almost always be argued that assuming equal distances seem
to be implausible in practice, distances that are derived on a sole
empirical basis are equally implausible.

As a conclusion, we would not like to argue that dichotomous
variables should be treated as continuous (see Maydeu-Olivares,
2005; Tran and Formann, 2010; for differences in parameter
estimates for the two modeling strategies). However, we think
that for items with 3–6 categories, using the linear factor model
by treating variables as continuous is as defensible as treating
them as ordinal. However, researchers should be aware that when
estimating factor models with a misspecified distribution, the
statistical inference should be obtained with the MLR estimator.

3. THE NORMALITY ASSUMPTION AND

THE LATENT NORMALITY ASSUMPTION

ARE EQUALLY RESTRICTIVE

In section 2, it was assumed that underlying continuous variables
of the ordinal variables are normally distributed (i.e., latent
normality holds). Typically, the latent normality assumption has
often been taken for granted by applied researchers (Foldnes and
Grønneberg, 2020). If there are violations of latent normality,
parameter estimates based on the incorrect latent normality
assumption can provide substantially biased estimates (Jin and
Yang-Wallentin, 2017; Foldnes and Grønneberg, 2020). It has
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shown that the latent normality assumption can be empirically
tested (Maydeu-Olivares et al., 2009; Raykov and Marcoulides,
2015; Foldnes and Grønneberg, 2020). However, it seems that
these tests are seldom conducted in practice.

If the ordinal nature of variables would be taken seriously,
more sophisticated modeling strategies for factor analysis that
try to estimate more flexible distributions are required (Jin
and Yang-Wallentin, 2017; Foldnes and Grønneberg, 2019).
A particularly attractive distribution class is the factor copula
model (Krupskii and Joe, 2013; Nikoloulopoulos and Joe,
2015; Ackerer and Vatter, 2017; Krupskii and Genton, 2018).
Copula models decompose a joint distribution for modeling into
marginal distributions and modeling the dependency structure.
Gaussian copula models pose a multivariate normal distribution
for modeling the dependency structure while allowing a
semiparametric estimation of the marginal distribution (Hoff,
2007; Gruhl et al., 2013; Murray et al., 2013). As a consequence,
underlying latent variables can deviate from the latent normality
assumption. More formally, it is assumed that there exists a
vector of multivariate normally distributed variables Y

∗ with
Var(Y∗) = 6∗. For an ordinal variable Yi, there exists an
underlying latent variable Ỹi = G−1

i (F(Y∗
i )), where Gi denotes

the distribution function of variable Ỹi, and F is the normal
distribution function. Like in Equation (5), the ordinal variable
Yi is obtained by discretizing the underlying continuous variable
Ỹi with respect to thresholds τi,k. If latent normality is fulfilled,
it holds that Ỹi = Y∗

i . For example, the distributions Gi could
be, for example, the logistic, skew normal, skew t, or cloglog
distribution. These distributions could be fixed or estimated
using empirical data (Gruhl et al., 2013).

It should be noted that there is active research in factor
analysis for continuous variables with non-normally distributed
factors or residuals that can be skewed, bounded, or are
mixtures of distributions (Song et al., 2010; Kelava and Brandt,
2014; Zhang et al., 2014; Asparouhov and Muthén, 2016;
Lin et al., 2016; Revuelta et al., 2020). Using these more
complex distributions would reduce the degree of distributional
misspecification in the factor model. Moreover, in a few articles,
the estimation of the link functions in item response models is
considered (Peress, 2012; Liang and Browne, 2015; Feuerstahler,
2019). Notably, estimating the link function in IRT is equivalent
to estimating the marginal distributions of the underlying latent
variables Y∗

i in a Gaussian copula model.
To sum up, we believe that also estimating the marginal latent

distributions of underlying continuous variables adds a further
layer of complexity regarding estimation and interpretation in
the analysis. However, if scholars suggest to always model ordinal
variables appropriately by a well-fitting model, there is no reason
for only fitting the ordinal model based on latent normality. In
this regard, multivariate latent normality is a testable assumption
as multivariate normality of the ordinal variables, and it can
be supposed that both assumptions will typically be violated
in practice. As a consequence, both treatments, the continuous
(i.e., using Pearson correlations 6) and the ordinal (i.e., using
polychoric correlations 6∗), correspond to misspecified models,
and it is difficult to speculate about a plausible data-generating

model in a concrete application. It can be argued that by choosing
a particular fitting function, the parameter of interest is defined,
and one could consider the parameter estimate in a sample as an
estimator that converges to some optimal parameter in the fitting
procedure that would have been obtained in an infinite sample
size. As it becomes clear in this case, again, simulation studies
cannot decide about choosing an adequate modeling strategy
(i.e., choosing a fitting function).

4. DISCUSSION

In this article, it is argued that the often found recommendations
for not treating ordinal variables in factor models as continuous
are not justified. The choice for a particular modeling strategy
implies that it is assumed whether the linear factor model must
hold for Pearson correlations (i.e., the normality assumption) or
polychoric correlations (i.e., the latent normality assumption).
This choice cannot be derived from an empirical dataset or
simulation studies, although some articles argue otherwise.

It should be mentioned that alternative modeling choices
are rarely discussed under the perspective of validity (but see
Ferrando, 1999, for an exception). Using ordinal factor models
implies the use of a non-linear scoring formula for factor
scores, which is not the case when variables are treated as
continuous. It has to be defended from a validity perspective
(i.e., by studying relationships with external criterion variables)
why the non-linear scoring rule from an ordinal factor model is
preferable to a linear scoring rule from the factor model using
Pearson correlations.

We would also like to emphasize that the computation of
a reliability measure (e.g., ω) is defensible if ordinal variables
would be treated as continuous by analyzing Pearson correlations
in factor analysis (see also Chalmers, 2018). As it has been
pointed out by Lucke (2005), the reliability of a sum score can
be defined on a matrix decomposition into a part for the true
score (i.e., 383T) and a part for the error (i.e., 9). Unbiased
estimation of reliability only needs the unbiased estimation of
the model parameters that are involved in the computation. It
is not required that the factor model is correctly specified with
respect to distributional assumptions of variables. In our view, the
assessment of reliability based on an ordinal factor model (Green
and Yang, 2009) is not necessarily superior to using a factor
model that treats ordinal variables as continuous. Moreover,
we generally question the strong preference of a model-based
assessment of reliability from a factor analysis (e.g., McNeish,
2018; Sijtsma, 2009; Yang and Green, 2011) compared to design-
based reliability measures (i.e., internal consistency, see Meyer,
2010, for assumptions of Cronbach’s alpha).

In factor analysis, the investigation of measurement
invariance (Millsap, 2011) is heavily discussed. It has been
recommended that invariance analysis for ordinal variables
should also treat variables as ordinal (Chen et al., 2020; Svetina
et al., 2020). By continuing our arguments, we think that the
assessment of invariance can be equally defended by treating
ordinal variables as continuous. Effect sizes of non-invariance
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could be defined in the metric of raw scores (i.e., based on means
and covariances; see Gunn et al., 2020).

The assessment of the global model fit in ordinal factor
models utilizing fit statistics is more challenging than in models
that presuppose multivariate normality. Recently, it has been
proposed to define fit statistics for ordinal factor models that
have the same rationale as in the normality case by replacing
Pearson correlations (i.e., matrix 6) by polychoric correlations
(i.e., matrix 6∗) in the definition of population effect sizes of
global model fit (Savalei, 2020). Pursuing such a strategy implies
that the latent normality assumption is taken for granted, and
potential misspecification of latent normality is not quantified
in the assessment of model fit. Hence, we think that the
assessment of model fit should rely on bivariate distributions of
observed variables (Maydeu-Olivares, 2013). In this respect, the
assessment of model fit is independent of using a particular fitting
function, a property which, however, might see some scholars as
a disadvantage.

We argued that a researcher might be interested in
interpreting model parameters of a factor model with a
misspecified distribution. However, in the presence of missing
data, fitting a misspecified factor model with ML or weighted
least squares approaches only result in consistent parameter
estimates if data are missing completely at random (MCAR;
see Yuan, 2009). In the case of missing at random (MAR)
data, in general, inconsistent and biased parameter estimates
will be obtained except for linearly related variables (Yuan,
2009; Yuan and Bentler, 2010; Yuan et al., 2012). For ordinal
variables, linear relations among variables are implausible.
However, it could be argued that there are typically only
mild deviations of the MCAR assumption in empirical datasets
(Newman, 2014). If substantial deviations of MCAR are
suspected, and a misspecified factor model should be estimated,
imputation based approaches might be preferable (Gottschall
et al., 2012; Jia and Wu, 2019). The use of sufficiently
complex imputation models, such as the Gaussian copula
model (Hollenbach et al., 2018), mixture models (Murray and
Reiter, 2016), or latent class models (Vermunt et al., 2008;
Si and Reiter, 2013) are advantageous to minimize possible
distributional misspecifications for MAR data. Appropriate
imputation models can also treat specific deviations from

MAR (missing not at random; MNAR; Harel and Schafer,
2009; Jung et al., 2011; Kano and Takai, 2011; Zhang and
Reiser, 2015; Bartolucci et al., 2018; Kuha et al., 2018;
Pohl and Becker, 2020).

As pointed out by a reviewer, the application of factor models
based on the normal distribution requires fewer methodological
skills than an ordinal factor model. Forcing the application
of the more sophisticated ordinal factor model might have a
biasing effect against research produced in developing countries
because, in those countries, the use of factor models under
the normal distribution still prevails. The reviewer remarked
that our recommendation for also considering the more
straightforward approach might enhance inclusion and promote
diversity in academia. This aspect was indeed not the primary
motivation for writing this article, but it could be a pleasant
side effect.

To conclude, we tried to argue that simple suggestions
derived from simulation studies cannot tell what the appropriate
modeling strategy for handling ordinal variables in the factor
analysis is. It is maybe improbable to reach a consensus about
this issue. We tend to prefer the modeling approach that
possesses higher validity. As a comprehensive assessment of
validity cannot be reduced to a single quantitative measure,
the choice of an appropriate factor modeling approach is not
a purely statistical issue. However, it must be defended by a
researcher with a concrete question at hand. Finally, we would
like to emphasize that modeling ordinal variables with Pearson
correlations as well as polychoric correlations can provide
complementary information. Moreover, the results of alternative
model specifications are worth to be reported (see also Steegen
et al., 2016; Hoffmann et al., 2020).
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