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Eothenomys miletus is an endemic species that inhabits the Hengduan Mountain

regions (HDR) and serves as one of the primary hosts for plague and hantaviruses.

While the physiological characteristics of E. miletus have been extensively

studied, the molecular aspects, particularly the migration direction of

E. miletus, remain unclear. In the present study, we utilized genomic data to

investigate the migration direction of four populations: Ailaoshan (ALS),

Jiangchuan (JC), Lijiang (LJ), and Deqin (DQ), which are distributed from south

to north within the HDR. Our results indicated that the ALS population is

positioned at the base of the phylogenetic tree, and admixture analysis

revealed that the ALS population is more closely related to the JC and DQ

populations. Integrate the molecular genetic structure, fossil records of

E. miletus as well as the results of our research, we inferred that the migration

direction of E. miletus may have been from south to north, suggesting that the

DQ and JC populations may have originated from themigration of ALS. However,

the migration patterns and origins of the LJ population require further

investigation and discussion. Additionally, we focused on identifying genomic

signatures of selection and local adaptation among the different populations. We

identified three selected genes associated with the olfactory placode in DQ: Six1,

Six4, and Sox2. We hypothesized that these genes may be linked to the DQ

population’s adaptation to the region’s microclimate. In summary, the present

study is the first to employ genomics to explore the migration direction of

E. miletus, which is crucial for future research on the origins of Eothenomys.
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1 Introduction

Among the numerous mountain ecosystems, the Hengduan

Mountain regions (HDR) are located in the southeastern corner of

the Qinghai-Tibetan Plateau (QTP), in northwestern Yunnan

Province, China (Yue et al., 2024). Its latitude and longitude

range extends from 24°–34°N and from 96°–104°E (Fu et al.,

2006). These regions have been uplifted since the late Miocene,

and due to their relatively small size and rich biodiversity, they

represent a unique and enigmatic biodiversity hotspot (Boufford,

2014; Xing and Ree, 2017; Mi et al., 2021). The HDR are among the

richest areas in the world in terms of temperate flora and fauna,

boasting approximately 12,000 species of vascular plants and 1,500

species of terrestrial vertebrates (Boufford, 2014). Eothenomys

miletus belongs to the genus Eothenomys, which is endemic to

HDR in China. Previous studies on the energy metabolism of E.

miletus had focused on physiological characteristics, such as it had

low body temperature and high thermogenic properties (Zhu et al.,

2008b). Unlike the body mass regulation of northern small

mammals, E. miletus had low body mass in winter and high body

mass in summer (Zhu et al., 2008a). It found that there was no

significant effect of different photoperiods on body mass regulation

in E. miletus (Zhu et al., 2011). Moreover, E. miletus did not show

any overfeeding behaviors after refeeding (Gao et al., 2013a).

Therefore, we speculated that this could be attributed to the large

daily temperature difference, the nonsignificant variation in

photoperiod, and the relatively abundant food resources in the

HDR. Consequently, E. miletus had evolved inherent characteristics

that were adapted to the HDR.

Previous studies in our group on the molecular ecology of E.

miletus had been on the differences between molecular genetics and

quantitative traits in different populations (Ren et al., 2023), the

complete mitochondrial genome and its phylogeny (Mu et al.,

2019), but the study on the migration problem of E. miletus has

not been reported. In the present study, we collected samples from

four regions—ALS (24°90’30˝N,100°42’49˝E), JC (26°43’95˝N,99°

75’03˝E), LJ (26°87’53˝N, 100°22’90˝E), and DQ (28°35´14˝N, 99°

03´15˝E)—successively from south to north. The latitude range of

these regions spans from 24° to 28°, which corresponds to the

southernmost and northernmost points in HMR of Yunnan

Province. So, we combined with the results of previous
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physiological and ecological studies and molecular genetic

structure, fossil distribution records, as well as our studies related

to Eothenomys, we hypothesized that E. miletus in the Yunnan

region may have originated from the HDR and then spread

northward. Moreover, we were also studying population

differentiation of E. miletus in different habitats and the effects of

genetic evolutionary potential on different populations.
2 Materials and methods

2.1 Samples and sequences

A total of 79 E. miletus specimens were collected from

September 2018 to January 2019 in Yunnan Province, including

ALS (n = 15), JC (n = 22), LJ (n = 20), and DQ (n = 22). The

geographic location, climatic characteristics, and sample number of

each collection site were shown in Table 1. We euthanize E. miletus

using the anesthesia method. And then employed the phenol/

chloroform method to extract genomic DNA from the liver

(Arnason et al., 2018). We selected the reference genome of

Microtus ochrogaster for electron enzyme digestion. We used

SLAF-seq genomic data of 79 individuals collected from four

regions and re-sequencing data of one individual from each

region. 79 DNA samples were digested with Rsal, and sequenced

with fragment lengths of 464–494 bp were defined as SLAFtag, and

the obtained SLAFtag was purified by PCR amplification and then

selected as a target fragment using 1.5% agarose gel electrophoresis

and sequenced using pair-end sequencing on the Illumina HiSeq

2500 platform. A DNA small fragment library with an insert

fragment size of 300–400 bp was constructed for resequencing in

one randomly selected E. miletus from each population.
2.2 DNA quality control and mapping

Reads containing more than 10% unrecognized nucleotides (N)

were removed from the SLAF-seq genome, and reads with over 50%

low-quality bases (Phred quality score ≤ 5) were discarded. For re-

sequencing data, the raw short read sequences were filtered using

SOAPnuke v.1.5.6 software (Li et al., 2009). UsingM. ochrogaster as
TABLE 1 Sampling site information.

Region
Sample
number

Site
Altitude

(m)

Annual
average

temperature
(°C)

Precipitation
(mm)

Vegetation
types

Deqin (DQ) 22
99°03´15˝E, 28°

35´14˝N
3,459 4.7 633.7 Alpine meadow

Lijiang (LJ) 20
100°22’90˝E,
26°87’53˝N

2,478 12.6 975.0
Subalpine meadow

and shrub

Jianchuan (JC) 22
99°75′03˝E, 26°

43′95˝N
2,590 13.9 987.3 Lobular shrub

Ailaoshan (ALS) 15
100°42′49˝E, 24°

90′30˝N
2,217 19.7 597.0

Savanna shrub
and grass
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the reference genome, the re-sequencing data and SLAF-seq

genomic data were mapped to the reference genome using the

MEM module of BWA v.0.7.17-r1188 with default parameters

(Bennett et al., 2022), respectively. The SAM files were

subsequently generated using Samtools v.1.13 with default

parameters (Li et al., 2009) for sorting and duplication in Picard

v.3.1.1 (https://github.com/broadinstitute/picard/releases).
2.3 SNP calling and filtering

The Select Variants method in GATK v.4.4.0.0 software was

used for SNP calling with default parameters across the all

individuals (McKenna et al., 2010). We performed a filtering step

with the following set of parameters: QD < 2.0, MQ < 40.0, FS >

60.0, SOR > 3.0, MQ Rank Sum < −12.5, Read Pos Rank Sum < −8.0

(Yuan et al., 2023). To obtain more reliable SNP loci, we further

filtered using vcftools –max-missing with the parameter size set to

0.2 (Danecek et al., 2011).
2.4 Phylogenetic analysis

We constructed the phylogenetic tree based on SLAF-seq

genomic data and re-sequencing data using the maximum

likelihood method implemented in RAxML v8.2.4, with the

ascertainment bias correction and M. ochrogaster as the outgroup

(Stamatakis, 2014). Before constructing the phylogenetic tree, we

used the Python script vcf2pliphy.py for alignment and converted

to a pliphy format recognizable by RAxML (Ortiz, 2019). We

performed a Bayesian approach using re-sequencing data with M.

ochrogaster as the outgroup in MrBayes v.3.2.7 with MCMC runs,

iterated 1,000,000 times, and sampled every 1000 generations

(Ronquist et al., 2012). The vcf file was converted to nexus format

using the Python script vcf2pliphy.py before constructing the

Bayesian tree, and then the nexus was converted to nexus format

recognized by MyBayes v.3.2.7 using ALTER v.1.3.4 (Glez-Peña

et al., 2010). The ML tree and the Bayesian tree obtained from the

SLAF-seq genomic data and re-sequencing data were visualized in

Figtree v.1.4.4 (Ngugi et al., 2023).
2.5 Admixture analysis

We employed several methods to test for admixture and genetic

affinity among various populations. Outgroup f3-statistics were

calculated using M. ochrogaster as the outgroup with the qp3pop

program in Admixtools v.7.0.2, in the form of f3 (Pop1, ALS; M.

ochrogaster), to assess the relative genetic similarity of ALS

populations to other populations (Patterson et al., 2012; Raghavan

et al., 2014). High f3 values indicate a strong degree of shared

genetic history between populations (Patterson et al., 2012).

Subsequently, we conducted an admixture f3-statistical analysis

using the 3pop module in TreeMix v.1.13 (Alexander et al., 2009;

Pickrell and Pritchard, 2012; Harris and DeGiorgio, 2017). The f3-

statistic explicitly tests whether a taxon of interest (C) is the result of
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admixture between two others (A and B), considering the product

of allelic differentials between (c − a)(c − b). Negative values suggest

that the allelic frequencies of c are intermediate across many

populations, which is consistent with admixture (Lopes et al.,

2023). F4-statistics can visualize genetic drift shared between taxa

(Harris and DeGiorgio, 2017). For an f4 (A, B; C, D) topology,

without invoking admixture, the allele frequency difference between

A and B (a − b) and between C and D (c − d) should be unrelated

and hence results in f4 = [(a − b)(c − d)] = 0. Significantly positive f4

implies gene flow between A and C or B and D. Significantly

negative f4 implies gene flow between A and D or B and C (Lopes

et al., 2023). As used here, when D is an outgroup, it allows testing

past introgression between A and either B or C (Lopes et al., 2023).

A significantly positive f4 implies gene flow between A and C, and a

significantly negative f4 implies gene flow between B and C

(Patterson et al., 2012; Hu et al., 2024). The significance of the

f4-statistics and f3-statistic is based on z-scores, significance

positive (z > 3) and significance negative (z < −3) (Harris and

DeGiorgio, 2017). Significant f4 and f3 values can also be

interpreted as a rejection of a given topology (Peter, 2016; Zheng

and Janke, 2018). Finally, we performed D-statistics analyses using

qpDstat in the Admixtools v.7.0.2 package to detect gene flow

events between the four populations in the form of D (Pop1, Pop2;

Pop3, M. ochrogaster) (Patterson et al., 2012). We performed the

following tests: (i) (ALS, DQ; LJ,M. ochrogaster); (ii) (ALS, DQ; JC,

M. ochrogaster); (iii) (ALS, LJ, JC; M. ochrogaster); (iv) (DQ, LJ;

ALS,M. ochrogaster); (v) (JC, LJ; ALS,M. ochrogaster). A significant

positive value of D (z > 3) indicates high affinity between Pop1 and

Pop3. If D is significantly negative (z < −3), it indicates high affinity

between Pop2 and Pop3 (Zhang et al., 2020).
2.6 Grantham Score

The deleteriousness of the missense mutations was also

diagnosed using the Grantham Score (GS)—a measure of the

physical/chemical properties of amino-acid changes (Grantham,

1974). Use the Python program “Grantham_score_calculator.py” to

calculate the Grantham Score for each missense mutation site

(Grantham, 1974). Additionally, count the sites with a score

greater than 150, as these are defined as the genetic load of

deleterious missense mutations (Li et al., 1984).
2.7 Genomic signatures of selection and
local adaptation

In general, positive selection gives rise to lower genetic diversity

within populations and higher genetic differentiation between

populations (Wu et al., 2014). The genetic differentiation index

FST and the average proportion of pairwise mismatches over all

compared sequences have been widely used to detect selection

(Tajima, 1983; Weir and Cockerham, 1984). To detect selection

signals possibly associated with local adaptation, we used a sliding-

window method (10kb window, 1kb step) to calculate the genome-

wide distribution of FST values and qp ratios for the two
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populations, implemented in vcftools v0.1.14 (Hu et al., 2020). We

applied Z transformation for FST values and log2 transformation for

qp ratios and considered the windows with the top 5% Z (FST) and

log2 (qp ratio) values simultaneously as the candidate outliers under

strong selection (Hu et al., 2020). All outlier windows were assigned

to the corresponding snp and gene. We used Metascape to analyze

the enrichment of selected genes located in specific regions (Zhou

et al., 2019). Each significantly enriched category contained at least

three genes, and a hypergeometric test was used to estimate

significance (p < 0.05).
3 Results

3.1 Sequencing and SNP filtering

The SLAF-seq genomic data, with an average genome coverage

of 10.21x, and the re-sequencing data, with an average genome

coverage of 39.87x (Supplementary Table S1), have been uploaded

to NCBI. The SLAF-seq genomic data and re-sequencing data were

mapped using BWA v.0.7.17-r1188. The raw SNPs underwent

quality control using stringent filtering criteria, resulting in a total

of 130,769,878 high-quality SNPs datasets for the re-sequencing

data and 151,301 high-quality population SNPs datasets for the

SLAF-seq genomes (Supplementary Table S1).
3.2 Phylogenetic relationship

ML tree constructed using SLAF-seq genomic data showed that

E. miletus in ALS and JC basically cluster into separate clade, while
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E. miletus in DQ and LJ form sister clades. Among these four groups,

ALS was the first to diverge and occupied a basal position, followed by

JC, and the last two to diverge, DQ and LJ, were clustered into sister

branches (Figure 1A). We then used the re-sequencing data to

construct a ML and Bayesian tree (Figures 1B, C), and the

phylogenetic tree constructed using the re-sequencing data also

supported the existence of significant differences between the

groups, and the results showed that the first to differentiate was still

the ALS, followed by JC, and lastly DQ and LJ that were clustered into

sister branches. Meanwhile, our results were also confirmed in the

previous study on the genetic structure analysis from five regions in E.

miletus, when k = 2, ALS was the first to be separated, and k = 3, JC

were separated (Ren et al., 2023). And it was found that in the

principal component analysis, using of PC1 and PC2 differentiated

between ALS and JC, and it was the use of PC1 and PC3 that separated

DQ and LJ (Ren et al., 2023). Therefore, based on the phylogenetic tree

results, genetic structure and PCA analyses, we suggested that the ALS

was the earliest to diverge from the common ancestor, whereas the

divergence of the DQ and LJ was a notable recent event.
3.3 Genomic introgression
among populations

In order to assess the relative genetic similarity between ALS

and other populations, we selected LJ, DQ, and JC as the reference

populations, with M. ochrogaster serving as the outgroup. The f3

results indicated a significant positive value, with ALS exhibiting the

highest f3 value in comparison to DQ, which suggests the greatest

degree of shared genetic history between them. This was followed by

ALS with JC, and finally ALS with LJ (Figure 2A). To explore the
FIGURE 1

Phylogenetic relationships: (A) Phylogenetic tree of all 80 individuals including outgroups; (B) Maximum likelihood tree of four populations
constructed from re-sequencing data; (C) Bayesian tree constructed from re-sequencing data.
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potential ancestral origin of the groups the admixture f3 (A, B; C)

analyses were conducted, and the f3 were all significant positive

values, indicating that there was no admixture event between the

four regions (Figure 2B). The f4-statistics use four-taxa topologies

in the form (A, B; C, D). Here, D represents M. ochrogaster. Taking

turns in order, ALS, DQ, JC, and LJ serve as A, B, and C respectively.

We found that significant gene flow was detected between all groups

except between ALS and LJ (Figure 2C). Although these statistics

cannot discern the direction of the introgressions nor distinguish

between a scenario of continuous gene flow, the f4-statistics results

strongly supported that ALS had been involved in past gene flow

events in DQ and JC. In order to better understand the intergroup

introgression signals, we performed D-statistics analysis using

qpDstat in the Admixtools software package to test events of gene

flow between the four groups. From the results of the D-statistics

analysis, we found that the D values of all possible events detected

when Pop1 was in ALS were significantly negative (z < −3), which

suggested that the other three groups besides ALS had a high

affinity. When Pop3 is ALS and Pop1 is DQ and JC, respectively,

the D value showed a significant positive value, which indicated that

ALS had a high affinity with DQ and JC (Figure 2D). The results of

both f4-statistics and D-statistics analyses supported the existence

of strong gene flow and high affinity between the ALS and both DQ

and JC. E. miletus in Yunnan is mainly concentrated in the eastern

part of the HDR, and its fossils had only been found in the

Quaternary Pleistocene strata in China (Young, 1935). Some

studies had shown that Eothenomys originated in the northern

part of the subcontinental monsoon zone, and its ancestors entered

the HDR from the northeastern part of the subcontinental monsoon

zone to live mainly in the HDR with an altitude of 2,000–2,500 m

sea level (Wang et al., 2022). Therefore, by integrating previous

studies with data from our sampling sites, along with phylogenetic
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from earlier research on the genetic differentiation of E. miletus, we

hypothesize that JC and DQ may have formed a group that

continued to migrate to higher elevations after migrating to ALS

from a common ancestor. But the question of whether the LJ was

formed by the diffusion of ALS or evolved from an ancient ancestor

needs to be followed up with a more detailed analysis.
3.4 Grantham Score

We performed Grantham Score evaluation, we found that the

maximum Grantham Score of all missense mutation sites in the

four populations was 145, which was less than 150; there were no

deleterious mutations in the missense mutation sites we detected

(Figure 3; Supplementary Table S2).
3.5 Genomic signatures of selection and
local adaptation

Considering that E. miletus lived in different geographical ranges

and climatic environments and underwent a certain period of genetic

differentiation, we focused mainly on the identification of selection and

local adaptation between the two populations. Based on environmental

differences, we selected the DQ population, which was relatively more

rigorous compared to the other three populations, as our subject of

study. Using FST and qpmethods, between DQ and ALS, DQ and JC, as

well as DQ and LJ, we selected 428, 452, and 429 genes in DQ,

respectively (Supplementary Table S3). The functional enrichment

found that some genes were enriched in the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways of cancer pathway (ko05200,
FIGURE 2

Gene penetration between populations: (A) Results of Outgroup f3-statistic; (B) Results of admixture f3-statistic; (C) Between-population results of
f4-statistics; (D) Population D-statistics.
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p < 0.01), renal cell carcinoma (ko05211, p < 0.01), choline metabolism

in cancer (ko05231, p < 0.01), phospholipase D signaling pathway

(ko04072, p < 0.01), chronic granulocyte leukemia (ko05220, p < 0.01),

RAS signaling pathway (ko04014, p < 0.01), Rap1 signaling pathway

(ko04015, p < 0.01), sphingolipid signaling pathway (ko04071, p < 0.01),

Chagas disease (ko05142, p < 0.01), amoebiasis (ko05146, p < 0.01),

toxoplasmosis (ko05146, p < 0.01), amoebiasis (ko05146, p < 0.01), and

toxoplasmosis pathways (ko05145, p < 0.01) (Figure 4; Supplementary

Table S1) and the gene ontology (GO) term of olfactory placode

formation (GO:0030910, p < 0.01), olfactory placode development

(GO:0071698, p < 0.01), and olfactory placode morphogenesis

pathways (GO:0071699, p < 0.01) (Figure 5; Supplementary Table

S1). We identified three selected genes associated with the olfactory

placode in DQ: Six1, Six4, and Sox2.
4 Discussion

We utilized SLAF-seq genomic data and re-sequencing data to

investigate the migration patterns of ALS, DQ, JC, and LJ in E.

miletus. Although phylogenetic analyses and previous analyses of

the genetic structure of E. miletus supported that ALS was the first

to diverge (Ren et al., 2023). However, we further conducted

intergroup introgression analyses, and the results showed that
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there was high genetic affinity between ALS and DQ, JC.

Moreover, it showed that ALS was involved in the past gene flow

events of DQ and JC (Figure 2). Considering the fossil record and

the migration of Eothenomys, we speculated that DQ and JC may

have been formed by the spread of ALS (Wang et al., 2022).

In the study of Eothenomys species from Sichuan and Yunnan,

it was found that samples of Sichuan (sampled in southern Sichuan)

clustered with Yunnan in the phylogenetic tree (sampled in Yangbi,

Wulianshan, and Ailaoshan, Yunnan), and that the K2P between

Sichuan and Yunnan populations was only 0.35% (Liu et al., 2019).

Additionally, the penis bone morphology of the Sichuan

populations was similar to that of the Yunnan populations, as

indicated by principal component analysis (PCA) of morphological

traits (Liu et al., 2019). Therefore, these samples were considered to

belong to the same species (Liu et al., 2019). Based on the above

analyses, it is hypothesized that the ancestor of E. miletus may have

dispersed from northern Asia to Sichuan, with some individuals

remaining in southern Sichuan and some continuing to spread to

the HDR (e.g., ALS), and then some of E. miletus in HDR spreading

to the north to higher altitudes, but whether this hypothesis is true

or not needs to be analyzed by collecting more samples to analyze

(Luo et al., 2004).

How exactly did E. miletus originate? The reasons may be

varied. Mountain building movements create a wide variety of

environmental conditions, including the generation of climatic

ecological niches, new habitats or food resources, and migration

barriers, all of which contribute to biological species formation

(Hoorn et al., 2013; Xing and Ree, 2017; He et al., 2021). It has been

posited that the ancestor of Eothenomys initiated its evolution in

Northern Asia, undergoing a major southward migration between

2.08 and 2.70 million years ago (Mya), a period coinciding with the

most intense uplift events of the Tibetan Plateau from 2.6 to 3.6

Mya, which precipitated pronounced orogeny, exacerbating

climatic changes in East Asia, particularly those associated with

the intensity of summer and winter monsoons, a time also marked

by extensive glaciations in the Northern Hemisphere; the molecular

data-estimated divergence time suggested Eothenomys arose

approximately 2.70 Mya, fitting precisely within the latter

temporal framework of these aforementioned paleogeographical

and paleoclimatic events, indicating that the early speciation of

Eothenomys might have been associated with tectonic orogeny;
FIGURE 4

KEGG enrichment: (A) KEGG pathway enriched by selected genes in the DQ population in DQ/ALS; (B) KEGG pathway enriched by selected genes in
the DQ population in DQ/JC; (C) KEGG pathway enriched by selected genes in the DQ population in DQ/LJ.
FIGURE 3

Mean of Grantham Score for four populations.
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E. miletus originally considered a subspecies of E. melanogaster, was

elevated to a distinct subspecies due to its unique physiological

traits, and studies revealed that Eothenomys is the most represented

with around 17 species among voles in the HDR, displaying a high

degree of ancient admixture across different lineages (Osgood, 1941;

Zhi et al., 2001; Zhang and Liu, 2010; Hoorn et al., 2013; Wang

et al., 2022). Based on findings from previous research and our

own investigations, we hypothesize that E. miletus may have

originated through one of three potential scenarios: (1) evolving

from a subspecies of E. melanogaster, but over time and due to

differences in habitat environments, E. miletus diverged in

characteristics distinct from E. melanogaster, developing unique

traits suited to its habitat, and eventually evolving into a separate

subspecies; (2) E. miletus itself is a new species formed by the

admixture of several different species within Eothenomys; (3) E.

miletus has existed since the inception of Eothenomys, being one of

the ancient species within this genus. Of course, unraveling the true

origin of E. miletus species would likely require us to gather more

genomic samples from species within Eothenomys for further

detailed analysis.

Furthermore, considering the differences in the survival

environments of the ALS, DQ, JC, and LJ populations of E.

miletus, we selected DQ, which presents the most challenging
Frontiers in Ecology and Evolution 07
environment, for our analysis. Three genes—Six1, Six4, and Sox2

—were found to be enriched in DQ, associated with the pathways of

olfactory placode formation (GO:0030910, p < 0.01), olfactory

placode development (GO:0071698, p < 0.01), and olfactory

placode morphogenesis pathways (GO:0071699, p < 0.01).

Previous studies have demonstrated that in mice, embryos lacking

Six1 and Six4 fail to form the olfactory placode (Chen et al., 2009).

Six1 proteins are highly expressed in the peripheral region where

stem cells are located, and that Six1 is overlapping expressed with

Sox2 (Chen et al., 2009). Research has discovered that olfactory

placodes arise by anterior convergence of a field of lateral neural

plate cells, rather than by localized separation and proliferation of a

discrete group of cells (Whitlock and Westerfield, 2000). Moreover,

foxg1-Cre mediated early deletion of Sox2 eradicates all olfactory

placode development (Dvorakova et al., 2020). Importantly, the

olfactory placode is critical for olfactory bulb development (Wang

et al., 2001). By using high-throughput sequencing technology to

measure their feeding habits and the types of fungi in their

stomachs, we found that E. miletus primarily fed on Poaceae,

Oxalidaceae, Asteraceae, and Fabaceae (Yan and Zhu, 2023). We

found that food diversity in DQ was relatively high, and we

hypothesized that the relatively low mean annual temperature

and scarcity of vegetation types in the DQ area might have forced
FIGURE 5

GO enrichment: (A) Molecular functions annotated to selected genes in the DQ population in DQ/ALS; (B) Biological processes annotated to
selected genes in the DQ population in DQ/ALS; (C) Cellular components annotated to selected genes in the DQ population in DQ/ALS;
(D) Molecular functions annotated to selected genes in the DQ population in DQ/JC; (E) Biological processes annotated to selected genes in the
DQ population in DQ/JC; (F) Cellular components annotated to selected genes in the DQ population in DQ/JC; (G) Molecular functions annotated
to selected genes in the DQ population in DQ/LJ; (H) Biological processes annotated to selected genes in the DQ population in DQ/LJ; (I) Cellular
components annotated to selected genes in the DQ population in DQ/LJ.
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the greater sage-grouse to search for more complex food sources to

satisfy their survival needs (Yan and Zhu, 2023). As a result, E.

miletus in DQ needs a more sensitive sense of smell for finding food,

so three genes related to olfactory placode, Six1, Six4, and Sox2

were fixed.

In conclusion, SLAF-seq genome and re-sequencing genome

analyses revealed genetic differences among four populations of E.

miletus, providing more comprehensive genetic evidence for the

origin and migration of E. miletus. Combining the fossil record, as

well as the molecular phylogeny, biogeography, and morphology of

Eothenomys with our previously results, we hypothesized that the

DQ and JC groups may have been formed by the migration of the

ALS group (Luo et al., 2004; Liu et al., 2019). However, to develop a

more specific and precise understanding of the migration patterns

and the formation of E. miletus, it is essential to expand the

sampling range and conduct further research.
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