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Holocene reconstruction of
the spruce budworm outbreak-
fire interaction in the mixed
boreal forest reveals a
peculiar oscillation
Marc-Antoine Leclerc1*, Martin Simard2 and Hubert Morin1

1Plant and Animal Ecology Laboratory, Department of Fundamental Sciences, University of Québec at
Chicoutimi, QC, Chicoutimi, QC, Canada, 2Department of Geography, Laval University, Québec City,
QC, Canada
Characterizing millennial and multi-millennial variability in disturbance regimes

will be crucial in improving knowledge within the context of a changing climate

and the development of sustainable forest management practices in the eastern

Canadian mixed boreal forest. The major biotic and abiotic disturbances in the

mixed boreal forest are the spruce budworm, and fire, respectively. The ability to

reconstruct the variability of these disturbance agents under different climate

conditions over long time periods will help elucidate the interaction between the

agents and their dynamics in the mixed boreal forest. The objective of this

observational study was to reconstruct the frequency of large spruce budworm

population (LSBP) and fire disturbance events, and describe their interaction in

the mixed boreal forest over the course of the Holocene within the context of

changing vegetation and climatic conditions. Lepidopteran scales and

sedimentary charcoal were used to reconstruct the local/extra-local

disturbance history from lake sediment along with pollen to reconstruct

changes in tree species composition. Spruce budworm and fire disturbance

events were determined using the CharAnalysis software. Regime shifts in

disturbance event frequencies along with changes in tree composition were

detected using Sequential T-test Analysis of Regime Shifts. Spearman’s

correlation was used to determine the relationship between spruce budworm

and fire event frequencies. Over the course of the Holocene, 57 LSBP events and

76 fire events were detected with event frequencies ranging between 0.75-6.30

events*kyr-1 and 1.71-10.5 events*kyr-1 respectively. Nine and 7 regime shifts in

LSBP and fire event frequencies were detected respectively, along with 2 shifts in

vegetation. A significant negative correlation was observed between LSBP and

fire event frequencies from 6000-1000 BP suggestive of a linked disturbance

interaction. The first local lake sediment multi-millennial disturbance regime

reconstruction comprising both spruce budworm and fire in the mixed forest

revealed a very peculiar oscillation in disturbance event frequencies. Each
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disturbance seemingly establishes a positive disturbance-vegetation feedback

that favors itself and inhibits the occurrence of the other. Further, rapid climate

change events may act as a key trigger in establishing the respective feedback

loops resulting in the observed disturbance event frequency oscillation.
KEYWORDS

Choristoneura fumiferana, spruce budworm, fire, disturbance interaction, mixed boreal
forest, Holocene
1 Introduction

Within the context of increasing variability in temperature and

precipitation (Easterling et al., 2000), the effects of forest

disturbances are expected to be exacerbated (Dymond et al., 2010;

Millar and Stephenson, 2015; McDowell et al., 2020). Greater tree

mortality is likely to result from forest disturbances acting

synergistically with other drivers (Allen et al., 2010, 2015; Hart

et al., 2014, 2017; De Grandpré et al., 2019). Warming temperatures

may create conditions favorable to more frequent fire by increasing

ignition rates through greater fuel availability which is expected to

result in more intense and/or severe fires (see Westerling et al.,

2003, 2006, 2011; Flannigan et al., 2009, 2013). Similarly, warming

temperatures have the potential of favoring insect development and

overwintering survival (Ayres and Lombardo, 2000; Berg et al.,

2006; Bentz et al., 2010), resulting in larger populations and more

severe insect outbreaks (Murdock et al., 2013; Weed et al., 2013).

However, during diapause, prolonged periods of warm

temperatures may negatively affect survival (Régnière et al., 2012).

Moreover, in response to such changes in temperatures, distribution

of insect outbreaks may shift into historically novel habitats in

response to a changing climate (Jepsen et al., 2008, 2011; Régnière

et al., 2012; Erbilgin et al., 2014), and/or result in feeding on host

species that were formerly protected due to phenological

asynchronies (Pureswaran et al., 2015, 2019; Fuentealba et al.,

2017). Given the uncertainty surrounding disturbance regime

behavior under current climatic variability, potential analogs may

be found by looking to past climate shifts and their effects on

disturbance regimes.

The Holocene is a geological epoch that spans from roughly

11,700 years ago to the present (just after the preindustrial era) that

experienced 3 major climate periods (Walker et al., 2012; Wanner

et al., 2015; Shuman and Marsicek, 2016). The Early Holocene (EH

11,700 BP-7000 BP; before present; present refers to the year 1950)

was a dry period (Lavoie and Richard, 2000; Muller et al., 2003;

Shuman and Marsicek, 2016) with rapidly increasing temperature

(Wanner et al., 2015; Zhang et al., 2016, 2017; Neil and Gajewski,

2018). The collapse of the Laurentian Ice Sheet (Renssen et al., 2009;

Marcott et al., 2013), brought about warm stable temperatures (Viau

and Gajewski, 2009; Shuman and Marsicek, 2016; Neil and Gajewski,

2018) during the Holocene Thermal Maximum (HTM; 7000 BP-
02
4200 BP) favoring prompt postglacial vegetation recolonization

(Blarquez and Aleman, 2016) despite moisture variability (Lavoie

and Richard, 2000; Muller et al., 2003; Viau and Gajewski, 2009). The

Neoglacial (4200 BP-present) was generally humid (Lavoie and

Richard, 2000; Muller et al., 2003; Shuman and Marsicek, 2016)

and underwent cooling (Wanner et al., 2008, 2011; Marsicek et al.,

2018) but encompassed a brief dry period of warming (Medieval

Climate Anomaly 1000-700 BP; MCA) and cooling (Little Ice Age

550-250 BP; LIA; Mann et al., 2009; Viau et al., 2012; Lafontaine-

Boyer and Gajewski, 2014) ending with a rapid rate of warming

(Renssen et al., 2012). Punctual rapid significant climate change

events, associated with ice raft debris events (Bond et al., 1997,

2001; outbursts of freshwater), occurred within these periods

(Mayewski et al., 2004; Wanner et al., 2011), likely affected oceanic

(Broecker, 1997, 2003; Törnqvist and Hijma, 2012) and atmospheric

circulatory patterns (Smith et al., 2016; Deininger et al., 2017)

influencing climate, vegetation, and fire in Europe (Pál et al., 2018;

Florescu et al., 2019), and eastern North America (Viau et al., 2002;

Viau et al., 2006). The Holocene, given its past climate variability,

therefore, is an appropriate period to study potential changes in

disturbance regime behavior.

Currently, the mixed boreal forest of Québec is dominated by

2 major forest disturbances: the spruce budworm and fire. The

spruce budworm [Chorisoneura fumiferana Clemens] is a native

lepidopteran defoliator and is the major biotic disturbance in the

mixed boreal forest (MacLean, 2016; Nealis, 2016; Pureswaran et al.,

2016). As a larva, the spruce budworm preferentially feeds on

current year’s needles of mature balsam fir [Abies balsamea (L.)

Mill], its primary host, also feeding on older needles when necessary

(Piene, 1989; Hennigar et al., 2008) along with the needles of

secondary hosts (Picea spp.; Hennigar et al., 2008). Severe

defoliation can result in tree mortality especially in balsam fir

(MacLean, 1980, 1984; MacLean and Ostaff, 1989), resulting in

the formation of canopy gaps favoring the regeneration of balsam fir

(Kneeshaw and Bergeron, 1996, 1998, 1999), along with its

establishment in the canopy from pre-established seedlings and/

or saplings (Bouchard et al., 2005, 2006, 2007). Incidentally, a

greater proportion of balsam fir in a stand will also engender a

greater probability of spruce budworm outbreaks, thereby

establishing a positive disturbance-vegetation feedback loop

(Baskerville, 1975; Morin, 1994) leading to episodic outbreaks
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(Cooke et al., 2007; Nealis, 2016). This feedback loop has likely

existed since the postglacial recolonization of the landscape by

balsam fir (Simard I. et al., 2002, 2006; Simard S. et al., 2011;

Navarro et al., 2018b).

Fire is the major abiotic disturbance in the mixed boreal forest.

Climate and fuels play a substantial role in modulating fire

disturbance regimes (Macias Fauria et al., 2010; Ali et al., 2012;

Blarquez et al., 2015). Climate influences fuel combustibility

through temperature and humidity affecting ignition, fire spread,

and intensity (Wotton et al., 2010; Woolford et al., 2014; Molinari

et al., 2018). Long-term climate will determine vegetation biomass

thereby influencing fuel availability and accumulation (Littel et al.,

2016; He and Lamont, 2018; McLauchlan et al., 2020). Further,

climate will influence the species composition (i.e., proportion of

coniferous and deciduous trees) of an area which can in turn affect

subsequent burning (Hély et al., 2000, 2020; Girardin et al., 2013;

Blarquez et al., 2015). Burn frequency and severity can also dictate

which plant species will be present due to differential species

regeneration strategies and requirements (Burns and Honkala,

1990; Keeley et al., 2011; Pausas, 2015). Therefore, there is the

potential for the establishment of a positive feedback loop; fire-

tolerant species may facilitate fuel structures that favor fire in the

stand (e.g., lodgepole pine or black spruce; Rogers et al., 2015;

Lamont et al., 2020), and the act of burning at particular frequencies

then favors the establishment and propagation of the fire-tolerant

species (Dantas et al., 2016; Harrison et al., 2021). In the mixed

boreal forest, stand composition will generally be dominated by

deciduous species following fire (Bergeron, 2000; Couillard et al.,

2021), however this is dependent on fire event frequency or time

since last fire, along with the surrounding composition.

In addition to potentially forming their own disturbance-

vegetation feedback loops, these two major forest disturbances are

able to interact with one another through forest legacies such as

changes in forest composition and structure (Buma and Wessman,

2011, 2012, 2013; Buma, 2015). Generally, disturbance interactions

can be categorized as being linked or compound (Simard M. et al.,

2011; Kleinman et al., 2019; Burton et al., 2020). A linked

disturbance interaction implies that the preceding disturbance

alters stand structure and/or composition in such a way that the

occurrence, extent, frequency and/or severity of the subsequent

disturbance is affected (Simard M. et al., 2011). For example, the

fuel structure and ensuing fire severity of a bark beetle infested

stand is modulated by the time since the outbreak (Page and

Jenkins, 2007a, b; Simard M. et al., 2011; Hicke et al., 2012).

Similarly, insect defoliation occurring in dry coniferous forests

limits available fuel and will reduce fire severity (Lynch and

Moorcroft, 2008; Cohn et al., 2014). Alternatively, a compound

disturbance interaction generally involves two disturbances

occurring simultaneously or in quick succession having a greater

effect together than each disturbance acting on its own (Paine et al.,

1998; Simard M. et al., 2011). A clear example is the tree mortality

resulting from a drought shortly followed by an insect outbreak

(Hart et al., 2014, 2017; De Grandpré et al., 2019), or the severity of

a fire preceded by a drought (Flannigan et al., 2013; Jolly et al., 2015;

Millar and Stephenson, 2015). In the mixed boreal forest, the spruce
Frontiers in Ecology and Evolution 03
budworm and fire appear to exhibit a linked disturbance

interaction. Over short time-scales, defoliation alters fuel

structure in a manner increasing fire hazard (Stocks, 1987; Watt

et al., 2018, 2020), fire occurrence (Fleming et al., 2002; Candau

et al., 2018), and fire risk (James et al., 2017), meanwhile over

decades to centuries, the relationship appears to be antagonistic by

decreasing the availability of live ladders fuels (Sturtevant et al.,

2012). Similarly, over millennia, the interaction also appears to be

negative, where one disturbance would inhibit the other (Navarro

et al., 2018b), although the mechanisms behind the interaction has

not yet been investigated.

Understanding past variability in disturbance regimes and their

interactions given different climate phases and events during the

Holocene will be key in elucidating the past disturbance dynamics of

the mixed boreal forest ecosystem. For example, fire or spruce

budworm events may predominately affect the mixed boreal forest

under certain climate and/or vegetation conditions revealing

information about possible system thresholds (Scheffer et al., 2001,

2012). Identifying such thresholds help characterize the forest’s

ecosystem state landscape (Scheffer and Carpenter, 2003) and

potentially reveal factors that may move the ecosystem within this

landscape and/or shape this state landscape (Scheffer et al., 2003; van

Nes et al., 2007; Scheffer and van Nes, 2007). Furthermore, rapid

significant climate change events (Bond et al., 1997, 2001; Mayewski

et al., 2004) may modulate disturbance regimes as observed in

changes in sedimentary charcoal accumulations and fire frequency

in Europe (Florescu et al., 2019), or alter vegetation (Pál et al., 2018)

with the potential of changing the interaction between disturbances.

Therefore, the long-term reconstruction of past disturbance regime

variability may provide insights and reveal conditions that could

serve as potential analogs helping guide current and future forest

management decisions and practices (Swetnam et al., 1999; Landres

et al., 1999; Hennebelle et al., 2018).

The purpose of this observational study is to reconstruct the

variability in fire and large spruce budworm population (LSBP)

disturbance event frequencies in the mixed boreal forest over the

course of the Holocene, and to characterize the long-term

interaction between the two agents within the context of

potentially changing vegetation and incursions of rapid significant

climate change events. In the mixed boreal forest, following

postglacial recolonization and the arrival of balsam fir, it is

expected that the spruce budworm will be the dominant

disturbance due to the near constant availability of host-trees, and

the subsequent implementation of a positive feedback between the

insect and its host; presence of host-trees favor spruce budworm

outbreaks, and spruce budworm outbreaks create favorable

conditions for host-tree regeneration and establishment in the

canopy. However, prior to the arrival of balsam fir, fire is

expected to be the dominant disturbance in the mixed boreal

forest; tree species composition prior to the establishment of

balsam fir is expected to be more fire-tolerant (Blarquez et al.,

2015; Blarquez and Aleman, 2016), and therefore promote more

fire-prone conditions (Hély et al., 2000, 2010, 2020; Girardin et al.,

2013). Further, cooler and drier conditions are expected to favor to

the implementation of the fire disturbance-vegetation feedback loop
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as such conditions have led to greater fire frequency during the

Holocene (Carcaillet et al., 2001a) while likely negatively affecting

insect development and survival (Ayres and Lombardo, 2000; Bentz

et al., 2010) reducing LSBP events. Finally, an inverse relationship,

or negative correlation between the two disturbance agents at

millennial and multi-millennial time-scales is expected (e.g.,

Navarro et al., 2018b) due to ‘competition’ for a limited and

changing resource i.e., tree species biomass will vary through time.
2 Methods

Lake Buire (48.16540°N, 70.57077°W) is a small lake 1.3 ha in

size, ca. 3.4m deep with limited inflow and outflow (Figure 1). It is

found in the Abies balsamea-Betula papyrifera bioclimatic zone

(Rowe, 1972; Saucier et al., 1998, 2009) at 244 masl, surrounded by

rolling terrain, and is in an area that has sustained heavy spruce

budworm defoliation (≥75%) from 1974–1984 and from 2016 to the

time of sediment sampling (fall 2018; MFFP (Ministère des forêts, de

la faune et des parcs), 2021a). The stand composition around the lake

at the time of sampling, in decreasing order of relative abundance,

consisted of: trembling aspen [Populus tremuloides Michx.], paper

birch [Betula papyrifera Marshall], balsam fir [Abies balsamea (L.)

Mill], black spruce [Picea mariana (Mill.) Britton, Sterns &

Poggenburg], white spruce [Picea glauca (Moench) Voss], and

yellow birch [Betula alleghaniensis Britt.] (MFFP (Ministère des

forêts, de la faune et des parcs), 2021b). The sediment column of

lake Buire was sampled using a gravity corer (Renberg, 1991; Renberg

and Hansson, 2008), and a modified Livingstone corer (Wright et al.,

1984) to obtain, respectively, the lake-sediment interface, and the

remainder of the column as overlapping 1 m segments. The latter
Frontiers in Ecology and Evolution 04
were wrapped in polyethylene plastic and placed in ABS plumbing

tubes for transport and storage. Sediment from both core types were

sampled at a 1 cm resolution. This was done in the field for the gravity

corer segments while the Livingstone segments were divided in the

laboratory. All samples were stored at 4°C until they were ready

for processing.
2.1 Sediment core chronology and
composition, and forest composition

The chronological framework of the sediment core was

determined using 210Pb and radiocarbon (14C) dates to most

accurately reconstruct the recent (last 150 years or so) and deep

site history (thousands of years), respectively. 210Pb activity

measurements at 6 depths (0-1, 2-3, 5-6, 9-10, 14-15, and 24-25

cm) in the top 25 cm of the gravity core was obtained by Flett

Research Ltd (Winnepeg, MN, Canada) from which an age-depth

model was derived using the Constant Rate Supply model (Appleby

and Oldfield, 1983; Binford, 1990). Macrofossils (leaves, needles, and

seeds of terrestrial vegetation) were extracted at 50 cm intervals along

the entire sediment profile and sent to the Radiocarbon Laboratory of

the André E. Lalonde AMS Laboratory at the University of Ottawa

(Ottawa, ON, Canada) to obtain 14C dates. Radiocarbon dates and
210Pb dates were combined in the rbacon package (Blaauw and

Christen, 2011; Blaauw et al., 2021) in the R environment (R Core

Team, 2021) to derive an age-depth model for the core.

In addition to establishing a chronological framework, core

composition along with the successional context of the forest

surrounding the lake was determined. Magnetic susceptibility of

the sediment along the entire core profile was conducted using the
FIGURE 1

Location of the sampled lake in central Québec, Canada.
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Bartington MS2 System (Dearing, 1999). Magnetic susceptibility

helps distinguish organic matter from inorganic matter, where the

presence of the latter is suggestive of run-off, erosion, flooding or

sediment mixing events (Thompson et al., 1975; Dearing and

Flower, 1982; Da Silva et al., 2015). Values will typically fluctuate

between 1 and -1 (SI units) where higher positive values indicate a

higher proportion of inorganic material present in the sediment

while slightly negative values or those occurring around 0 suggests

that the core is composed of organic matter (Dearing, 1999). In this

case, magnetic susceptibility was used to assess the integrity of the

sediment core to identify the point beyond which the sediment core

could not be confidently interpreted.

The successional context of the forest was determined by

extracting and identifying pollen found in 1 cm3 from the 1 cm

core slices corresponding to an approximately 100-year sampling

interval for the following species: black spruce, paper birch, balsam

fir, eastern white pine [Pinus strobus L.]. These arboreal species

were selected as they were most susceptible to show any change in

disturbance. Greater abundance of black spruce and paper birch

would suggest greater fire influence, whereas greater abundance of

balsam fir, and eastern white pine would suggest less fire. Pollen

extraction and identification was done using standard procedures

(Faegri and Iversen, 1989) at l’Université de Montréal Palynology

service laboratory. Pollen count of each species was converted to a

percent of the total species sum and visualized using the rioja

R package (Juggens, 2020), from which the ratio between the

percent of A. balsamea pollen and P. mariana pollen was derived

(Supplementary Figure S1) and calculated at each corresponding

100-year interval. An increase in the ratio suggests a larger

proportion of balsam fir present relative to black spruce

meanwhile a decrease in the ratio suggests either an increase in

black spruce or a decrease in balsam fir. Pollen extraction and

identification were done in an effort to better interpret the potential

changes in disturbance regimes and their interactions through time.
2.2 Charcoal and lepidopteran scale
sample preparation and processing

Lepidopteran scale count and charcoal surface area were used as

proxies for the occurrence of LSBP events and the occurrence of fire

(Supplementary Figure S2), respectively, where two 1 cm3 punches

(‘subsamples’ from herein) were extracted from each 1-cm slice along

the core profile for lepidopteran scale, and charcoal analysis.

Lepidopteran scale sample preparation followed a modified

protocol from Navarro et al. (2018a) as described in Leclerc et al.

(2024). Briefly, subsamples were deflocculated, wet sieved, and the

retained sediment was centrifuged in a sucrose solution. Finally, the

pellet was ready for scale identification and count under a microscope

once the supernatant was removed. Charcoal subsamples were placed

in bleach (10%NaOCl) for a period of at least 24 hours to deflocculate

the sediment and to facilitate charcoal particle identification relative

to organic matter (Blarquez et al., 2010). The subsamples were sieved

using a 150 µm mesh, attempting to retain charcoal remains from

local fires (Clark and Royall, 1995; Clark et al., 1996, 1998; Carcaillet
Frontiers in Ecology and Evolution 05
et al., 2001b; Higuera et al., 2007). The retained charcoal remains were

identified under a dissecting microscope coupled to a camera. The

charcoal surface area (mm2) in each subsample was quantified in the

WinSEEDLE software (Regent Instruments Inc, 2019). Charcoal

surface area, as opposed to charcoal count, was used to reconstruct

fire occurrence in an effort to limit the potential of fragmentation that

could lead to an erroneous count (Ali et al., 2009).
2.3 Charcoal and lepidopteran scale
event identification

The CharAnalysis software and procedure (Higuera, 2009;

Higuera et al., 2010) was used to reconstruct periods of LSBP and

fire event history over the course of the Holocene. The raw

accumulation rates were interpolated to a constant time-step using

the median sampling resolution (Cint). From the interpolated

accumulation rates (Cint) the background accumulation rates

(Cback) were determined using a LOWESS robust to outliers with a

500-year smoothing window to differentiate between the low and

high frequency signals. The high frequency signal (Cpeak) was isolated

by subtracting the background accumulation rates (Cback) from the

interpolated accumulation rates (Cint). Noise (Cnoise) found within

the high frequency signal was estimated using a Gaussian mixture

model (Gavin et al., 2006; Higuera et al., 2010), and in an effort to

remove this leftover noise that could result from sediment mixing

(Cnoise), a local threshold, within a 500-year window and using the

99th percentile, was applied to identify lepidopteran scale and

charcoal peak events (Cfire). The peak events (Cfire) were subjected

to a ‘minimum count criterion’ (Higuera et al., 2010), which

determined whether two peaks were in fact two individual events,

or if the two peaks originated from the same event. Finally, spruce

budworm and fire peak event frequencies (number of events/1000

years) were calculated and then smoothed using a LOWESS with a

500-year window.

The 500-year smoothing window used to determine

background accumulation rates, local thresholds, and smoothing

of peak frequency was applied to both disturbances for

comparability between disturbances and among studies.

Background accumulation rates have typically been estimated

using roughly 3 times the disturbance’s return interval (Carcaillet

et al., 2009; Blarquez et al., 2010). The spruce budworm outbreak

return interval in recent history has been 30-40 years in the mixed

boreal forest (Blais, 1983, 1985; Morin and Laprise, 1990; Boulanger

and Arseneault, 2004) which would result in an approximately 100-

year smoothing window, while the fire return interval in Abies

balsamea-Betula papyrifera type ecosystems appears to be around

300 years based on the estimates of Frégeau et al. (2015), and

Couillard et al. (2013, 2021), which would yield a smoothing

window of about 900 years. However, to apply a robust local

threshold to estimate spruce budworm events, a window of

around 400 years would have been required to include at least 30

samples (Higuera et al., 2010). Finally, preliminary analyses

revealed that the 500-year window-width yielded the highest

Signal-to-Noise Ratio and Goodness of Fit values where shorter
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or longer widths yielded less or more conservative event estimates

respectively. Therefore, the 500-year smoothing window-width

used in this study is a trade-off between biological and statistical

considerations, and allows for a comparison with the results

obtained by Navarro et al. (2018b).
2.4 Charcoal and lepidopteran scale
regime shift analysis and interaction

Sequential T-test Analysis of Regime Shifts (STARS; Rodionov,

2004; Rodionov and Overland, 2005; Rodionov, 2006) was used to

detect any changes in the observed disturbance event frequencies and

vegetation composition over the course of the Holocene in the R

environment (R Core Team, 2021). Prior to this analysis, peak spruce

budworm and fire event frequencies were estimated using a Gaussian

kernel density function with 200-year window width that was

bootstrapped with 1000 replicates while applying a correction for

edge bias (Mann, 2004; also seeMann, 2008) with the kdffreq function

in the paleofire package (Blarquez et al., 2014), based on the median

sampling resolution and events identified in CharAnalysis. The 200-

year window was selected as preliminary analysis revealed that it was

the best compromise between retention of variance and number of

samples used to calculate the frequencies within the window

(Supplementary Figures S3, S4). A 200-year cut-off was applied at

the beginning and the end of the chronology in order to remove any

edge effects that could affect subsequent analysis. The interaction

between spruce budworm and fire event frequencies at the core of the

chronology (6000-1000 BP) was quantified using Spearman’s

correlation with a significance level of 0.05.

The STARS method was used to identify change points in the

respective disturbance event frequency and pollen accumulation

time series over the course of the Holocene by comparing each

observation to the previous observations and determining whether

a regime shift has occurred (Rodionov, 2004; Stirnimann et al.,

2019). This analysis was done using a running window of specified

width within which a Student’s t-test was performed determining

whether the new observation was part of a new regime or not

(Rodionov, 2004; Stirnimann et al., 2019). A potential change point

was identified when the mean value of the new regime exceeded the

range established by the old regime (Rodionov, 2004; Rodionov and

Overland, 2005). If the cumulative sum of the normalized

deviations, the Regime Shift Index (RSI), at each potential change

point remained positive then a regime shift was detected, and the

opposite was true if the RSI became negative (Rodionov, 2004;

Rodionov and Overland, 2005).

The rstars function (Stirnimann et al., 2019) was applied to each

disturbance regime peak frequency along with the ratio between

balsam fir and black spruce (Abies: Picea ratio) with a window-width

representing 1001 and 1000 years respectively, and a Huber’s weight

parameter of 1. The window-width was selected to be large enough to

encompass successional turnover based on the lifespan of the trees

found in the mixed boreal forest, typically living no longer than

approximately 300 years in the case of balsam fir and black spruce

(Burns and Honkala, 1990; Bergeron, 2000), while also remaining
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short enough to fit within the main known climate periods of the

Holocene i.e., the EH, HTM, and Neoglacial which encompassed the

MCA, and the LIA and pre-industrial era (Walker et al., 2012). The

Huber’s weight parameter weighed observations that fell beyond 1

standard deviation based on their distance from the new regime’s

mean, with a further distance resulting in a lower weight (Stirnimann

et al., 2019). Neither of the disturbance event peak frequencies nor the

Abies: Picea ratio time series were prewhitened. The disturbance

series were obtained from the rigorous procedure applied in

CharAnalysis, while for the pollen series, using the Inverse

Proportionality with 4 corrections (IP4 method) yielded exactly the

same result as an analysis without prewhitening (Supplementary

Table S1; Supplementary Figure S5). The significance level (a) used to
test the RSI was 0.05, Huber’s weight parameter was set to 1.
3 Results

3.1 General core characteristics and
CharAnalysis output

The Buire sediment core was 741 cm in length dating to just over

8600 cal yr BP (Figure 2). Analysis was restrained to the top 731 cm

(339-1069cm) due to the inversion at the bottom of the core (Table 1;

Figure 2). Sediment accumulation rate was relatively constant at

approximately 10 yr*cm-1, and consisted of homogeneous gyttja

(organic sediment); magnetic susceptibility values oscillated around

0except at around1005cm(approximately8000BP)with thepresence

of a gradual gyttja-clay transition beyond which values were greater

than 1 revealing an increasing inorganic component. The gradual

transition to more clay at the bottom of the core is suggestive of an

inorganic input event, likely resulting in the observed inversion in the

age-depth model, where the final 14C date was younger than the

previous one (Figure 2).

The CharAnalysis procedure detected 57 lepidopteran scale events

over the course of the study period (Figure 3), however one outlying

observation in this time serieswas removedprior to the analysis as itwas

an abnormally high accumulation (Supplementary Table S2). The

frequency of lepidopteran scale events varied between 0.75

events*kyr-1 and 6.30 events*kyr-1 occurring at 7225 BP and 4706 BP,

respectively. A total of 76 fire events were detected using the

CharAnalysis procedure (Figure 3). The frequency of charcoal peaks

varied between 10.5 events*kyr-1 and 1.71 events*kyr-1 occurring at

8655 BP and 7841 BP, respectively. Prior to approximately 6000 BP fire

event frequency was generally greater than lepidopteran scale event

frequency, however, after this date an oscillation between the

disturbance event frequencies is observed (Figure 3).
3.2 Detected regime shifts and the
interaction between the spruce budworm
and fire

Multiple regime shifts (i.e., changes in mean) were detected in

spruce budworm and fire event frequencies along with the Abies:
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Picea ratio over the course of the Holocene. Nine shifts in mean

spruce budworm event frequency were detected, while 7 shifts in

mean fire event frequency were detected (Figure 4). Finally, two

regime shifts were detected in the Abies: Picea ratio (Figure 4). One

occurred at approximately 6000 BP where there was an increase in

the mean ratio, and another shift occurred at around 3500 BP with a

decrease in the mean ratio. Further, the regime shift in the Abies:

Picea ratio at 6000 BP roughly coincides with a particularly large

shift in spruce budworm event frequency (Figure 4). A significant

negative correlation (r (452): -0.33, p-value<0.001) was identified

between spruce budworm and fire event frequencies from 6000-

1000 BP (Figure 5).
4 Discussion

To the authors’ knowledge, this is the first local multi-millennial

spruce budworm and fire event reconstruction observing their long-

term interaction in the mixed boreal forest of central Québec,

Canada spanning the different climate phases of the Holocene

using lepidopteran scales and sedimentary charcoal. The mixed

boreal forest around lake Buire appears to exhibit two distinct

regimes: a fire or spruce budworm dominated regime. These can be

visually represented by an ecosystem state landscape (see Scheffer
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and Carpenter, 2003) where the ecosystem, lake Buire depicted as a

ball, sits in one of two valleys or basins of attraction corresponding

to an ecosystem dominated by a fire disturbance regime or as an

ecosystem dominated by a spruce budworm disturbance regime

(Figure 6). The hypothesis that the mixed boreal forest shifted from

being fire dominated to dominated by the spruce budworm

following the increase in abundance of balsam fir on the

landscape around 6000 BP was not supported (Figure 6). Instead,

following the increased balsam fir abundance, the ecosystem around

lake Buire oscillated between the two aforementioned basins, a

phenomenon that has not been previously observed in other

ecosystems such as the boreal black spruce forest (Navarro et al.,

2018b). The oscillatory behavior is best illustrated by the change in

disturbance frequencies throughout the Holocene and the many

detected regime shifts (Figures 4-6).

The postglacial recolonization by balsam fir appears to be the

primary underlying event that allowed for the oscillation between

the abiotic and biotic disturbance frequencies by creating basins of

attraction of similar size and depth (Figure 6). Pre-8000 BP, fire

tends to dominate which also coincides with a low mean Abies:

Picea ratio suggesting a greater abundance of black spruce around

the lake relative to fir resulting in an ecosystem state landscape

favorable to fire. The mean ratio then increases as the warm

conditions during the Holocene Thermal Maximum (HTM)
FIGURE 2

The optimal age-depth model (red line) with 95% confidence interval (grey shading) and associated characteristics for lake Buire. The estimated age-
depth model (main panel) with sampling locations (210Pb and radiocarbon dates in green and blue respectively) with their associated estimated
errors. Markov Chain Monte Carlo (MCMC) simulations (upper left panel). Modelled accumulation of the core (top center panel) relative to a gamma
distribution (green line). Variability in sediment accumulation over time (top right panel; Memory) compared to a beta distribution (green line).
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allows for postglacial recolonization and increased abundance of

balsam fir around the lake at roughly 6000 BP (Blarquez and

Aleman, 2016) setting the stage for more frequent LSBP events

(Figure 4) due to basins probably becoming of equal depth and size

(Figure 6). Following the arrival of balsam fir, there is a decrease in

the mean Abies: Picea ratio around 3500 BP due to an increased

proportion of black spruce around the lake. This drop in the ratio

also coincides with the establishment of an oscillation between the

spruce budworm and fire event frequencies as quantified by

multiple regime shifts (Figures 4, 5), suggesting movement of the

ecosystem between the disturbance basins contrary to our initial

hypothesis (Figure 6). Therefore, the changes in relative arboreal

species abundance, as measured by the Abies: Picea ratio, likely

altered the basin shapes of the ecosystem state landscape facilitating

the movement of the ecosystem from one basin to the other given

an appropriate trigger.

The oscillating disturbance frequencies revealed an inverse

relationship or negative interaction between the two disturbance

agents in the mixed boreal forest from 6000-1000 BP at lake Buire

and could be interpreted as competition for a limited resource. A

negative correlation between disturbance frequencies was observed,

confirming the relationship described by Navarro et al. (2018b) in

the boreal black spruce forest, and is suggestive of a linked

disturbance interaction (Simard M. et al., 2011; Kleinman et al.,

2019), at local or extra-local (roughly 1km-10km area around a

lake), and at multi-millennial scales. This interaction could be

viewed as a trophic interaction where disturbances are
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‘organisms’ competing for a food resource (vegetation) while also

creating conditions that favor their own survival (Pausas and Bond,

2020a, b, Pausas and Bond, 2022). Fire is an ancient process (He and

Lamont, 2018), that is part of the ecosystem (Pausas and Bond,

2019; McLauchlan et al., 2020; Harrison et al., 2021), and as an

‘organism’ is an herbivore generalist (McCullough et al., 1998), with

the ability of consuming all available fuel (Bond and Keeley, 2005;

Pausas and Bond, 2019, 2020) competing with the spruce budworm,

an herbivore specialist (Hennigar et al., 2008; Nealis, 2016). Fire

would negatively affect spruce budworm host-tree abundance by

consuming the budworm’s preferred food source along with all

other vegetation (McCullough et al., 1998) resulting in food scarcity

limiting LSBPs. Further, over long time periods fire may create

more fire-prone conditions by favoring growth of fire-tolerant

species (Rogers et al., 2015) that more easily re-establish post-fire

via semi-serotinous cones, or sprouting (see Burns and Honkala,

1990; Bergeron, 2000). Conversely, through differential canopy

host-tree mortality (Martin et al., 2019, 2020) creating variable

canopy gap sizes resulting in complex regeneration patterns

(Kneeshaw and Bergeron, 1998, 1999; D’Aoust et al., 2004;

Couillard et al., 2021), LSBP events appear to favor the

regeneration and establishment of balsam fir in the canopy

subsequently predisposing the forest to further spruce budworm

events (Baskerville, 1975; Morin, 1994; Bouchard et al., 2005, 2006,

2007). As such, transitioning from a spruce budworm or fire

disturbance-vegetation feedback loop would likely require some

sort of external forcing, such as a rapid climate change event.
TABLE 1 The sampling interval and associated dates (cal. year BP ± standard deviation) used to construct the age-depth model for lake Buire.

Lab ID Depths (cm) Dated material 210Pb cal. year BP/ 14C yr BP ± cal. BP (associated probability)

210Pb 340-341 Bulk sediment -68 3 –

210Pb 359-360 Bulk sediment 151 12 –

UOC-8707 407-413 Organic macrofossils 528 20
610-621 (5.4%)
515-555 (90.0%)

UOC-8708 498-502 Organic macrofossils 998 21
905-961 (85.1%)
830-855 (9.1%)
804-809 (1.2%)

UOC-8709 585-595 Organic macrofossils 2519 28
2679-2742 (29.3%)
2608-2641-(15.0%)
2492-2600 (51.1%)

UOC-8710 678-682 Organic macrofossils 3126 23
3324-3397 (72.4%)
3252-3295 (23.0%)

UOC-8711 766-774 Organic macrofossils 3794 25
4117-4146 (8.0%)
3975-4097 (87.4%)

UOC-8712 858-862 Organic macrofossils 4590 27

5401-5448 (28.1%
5389-5392 (0.2%)
5282-5328 (57.0%)
5137-5162 (5.7%)

UOC-8713 948-952 Organic macrofossils 5685 27 6405-6535 (95.4%)

UOC-8714 1036-1044 Organic macrofossils 7467 44 8191-8375 (95.4%)

UOC-8715 1095-1102 Organic macrofossils 4978 28
5829-5856 (4.6%)
5642-5750 (88.6%)
5614-5630 (2.2%)
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Given the postglacial recolonization by balsam fir creating

basins of attraction of similar dimensions, appropriate climate

conditions could then influence the initiation and establishment

of the above mentioned positive disturbance-vegetation feedback

loops by moving the ecosystem into the different basins of attraction

at lake Buire. It is possible that the alternating disturbance

frequencies may be influenced by the periodic occurrence of

punctual rapid climate change events (Bond et al., 1997, 2001;
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Mayewski et al., 2004) that appear to coincide with the switch in the

dominant disturbance (Figures 4, 5). Such rapid climate change

events have been associated with ice-raft debris events that altered

oceanic thermohaline (Broecker, 1997, 2003; Alley and

Ágústsdóttir, 2005; Törnqvist and Hijma, 2012) and atmospheric

circulatory patterns (Smith et al., 2016; Deininger et al., 2017)

resulting in particularly dry, cool conditions (Willard et al., 2005; Li

et al., 2007; Springer et al., 2008; Orme et al., 2020), which during
FIGURE 3

Disturbance event magnitude and frequency as obtained from CharAnalysis using a 500-year smoothing window. Each identified peak (+; diamonds
above the respective accumulations) exceeded the low frequency signal (Cback) and the 99th percentile local threshold applied to the high frequency
signal (Cpeak). (A) Spruce budworm event peak magnitude; (B) Fire event peak magnitude; (C) disturbance event frequencies.
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FIGURE 4

The Sequential T-test Analysis Regime Shift (STARS) output for lake Buire’s spruce budworm and fire event frequencies, and Abies : Picea ratio over
the course of the Holocene. The reconstructed disturbance event frequency (black line) and mean (red line) with corresponding Regime Shift Index
(bars) for (A) spruce budworm event frequency, (B) fire event frequency, and (C) the Abies : Picea ratio. Known climatic phases identified: the
Holocene Thermal Maximum (HTM), Medieval Climate Anomaly (MCA), and the Little Ice Age (LIA).
FIGURE 5

Variability in disturbance event frequencies over the course of the Holocene. Known climatic phases identified: the Holocene Thermal Maximum
(HTM), Medieval Climate Anomaly (MCA), and the Little Ice Age (LIA). The approximate timing of the postglacial recolonization arrival of Abies
balsamea is identified along with approximate periods of inferred rapid significant climate change events.
Frontiers in Ecology and Evolution frontiersin.org10

https://doi.org/10.3389/fevo.2025.1532974
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Leclerc et al. 10.3389/fevo.2025.1532974
the Holocene have been correlated with changes in sedimentary

charcoal accumulations in Europe (Florescu et al., 2019), and have

resulted in higher fire frequencies in eastern North America

(Carcaillet et al., 2001a). It is these arid conditions that have

likely favored the observed increases in fire frequencies (Molinari

et al., 2018) by facilitating ignitions via drying of fuels (Flannigan

and Harrington, 1988; Macias Fauria and Johnson, 2008; Macias

Fauria et al., 2010). Simultaneously, cooler conditions are likely to

have had a negative effect on insect development and survival

(Ayres and Lombardo, 2000; Bentz et al., 2010; Pureswaran et al.,

2018) resulting in fewer LSBP events. It is possible that the

presence/absence of such rapid climate change events may:

primarily influence the presence/absence of fire events, or

primarily influence the presence/absence of the spruce budworm

or a more complex interaction (see Kefi et al., 2016) may result

where both event types are simultaneously affected by these climate

events. It is possible then, that rapid climate change events may

mediate the interaction between the two disturbance agents

potentially explaining the observed oscillation, however this

requires further investigation.

Around lake Buire the spruce budworm and fire have been key

ecosystem processes in the mixed boreal forest of central Québec

over the past roughly 8000 years. Over the course of the Holocene,

the two disturbances appear to exhibit an inverse relationship and

have varied in frequency. Similar to the black spruce forest, an

inverse relationship between disturbance frequencies was observed,

however, the recurring oscillation between disturbance frequencies

at lake Buire was not (Navarro et al., 2018b). At lake Buire, host-tree

availability and abundance appears to be the primary determinant

of spruce budworm population fluctuations, while climate effects

may play a more secondary role, although it is difficult to pinpoint

the more influential factor since they are not mutually exclusive

(Buma et al., 2019). Conversely, fire as an herbivore generalist and a
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more stochastic physical process appears to be primarily driven by

climate (Bessie and Johnson, 1995; Riley et al., 2019; Halofsky et al.,

2020), and subsequently modulated by the vegetation present on the

landscape (Hély et al., 2000, 2010, 2020; Girardin et al., 2013;

Blarquez et al., 2015). Therefore, the peculiar oscillatory pattern

between disturbance event frequencies may be the result of the

presence of balsam fir around lake Buire and the subsequent effect

of the punctual rapid significant climate change events.

Since this is the first reconstruction of its kind using

lepidopteran scales and charcoal to reconstruct local Holocene

disturbance frequencies and their interaction in the mixed boreal

forest, the observed interaction needs to be confirmed to determine

whether the observed pattern is due to site-level effects or may

reflect a more general long-term regional behavior (for an example

in the Mediterranean region see Furia et al., 2024). With a greater

number of sediment profiles analyzing both spruce budworm

population fluctuations and fire during the Holocene in the

mixed boreal forest, a more accurate and precise picture of site-

level variability of these disturbances can be attained which may

elucidate the role of local and extra-local species composition on

disturbance event frequency. Additionally, as more and more

sediment profiles are analyzed there is also the opportunity to

disentangle the effects of climate and/or vegetation composition on

disturbance regimes. Finally, by combining multiple sediment

profiles, a regional composite may be created to gain a broader

and more general picture of spruce budworm and fire variability

through time along with potential changes in their interactions.
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Holocene 24, 1515–1526. doi: 10.1177/0959683614544054
Frontiers in Ecology and Evolution 14
Lamont, B. B., Pausas, J. G., He, T., Witkowski, E. T. F., and Hanley, M. E. (2020).
Fire as a selective agent for both serotiny and nonserotiny over space and time. Crit.
Rev. Plant Sci. 39, 140–172. doi: 10.1080/07352689.2020.1768465

Landres, P. B., Morgan, P., and Swanson, F. J. (1999). Overview of the use of natural
variability concepts in managing ecological systems. Ecol. Appl. 9 (4), 1179–1188.
doi: 10.1890/1051-0761(1999)009[1179:OOTUON]2.0.CO;2

Lavoie, M., and Richard, P. J. H. (2000). Postglacial water-level changes of a small
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bourgeons de l’épinette au nord du lac-Saint-Jean (Québec): une analyse
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evidence. Palaeogeogr Palaeoclimatol Palaeoecol 193, 51–72. doi: 10.1016/S0031-0182
(02)00710-1

Murdock, T. Q., Taylor, S. W., Flower, A., Mehlenbacher, A., Montenegro, A.,
Zwiers, F. W., et al. (2013). Pest outbreak distribution and forest management impacts
in a changing climate in British Columbia. Environ. Sci. Policy 26, 75–89. doi: 10.1016/
j.envsci.2012.07.026

Navarro, L., Harvey, A. E., Ali, A. A., Bergeron, Y., and Morin, H. (2018b). A
Holocene landscape dynamic multiproxy reconstruction: How do interactions between
fire and insect outbreaks shape an ecosystem over long time scales? PloS One 13,
e0204316. doi: 10.1371/journal.pone.0204316

Navarro, L., Harvey, A. E., and Morin, H. (2018a). Lepidoptera wing scales: a new
paleocological indicator for reconstructing spruce budworm abundance. Can. J. For
Res. 48, 302–308. doi: 10.1139/cjfr-2017-0009

Nealis, V. G. (2016). Comparative ecology of conifer-feeding spruce budworms
(Lepidoptera: Tortricidae). Can. Entomol 148, S33–S57. doi: 10.4039/tce.2015.15

Neil, K., and Gajewski, K. (2018). An 11,000-yr record of diatom assemblage
responses to climate and terrestrial vegetation changes, southwestern Quebec.
Ecosphere 9, e02505. doi: 10.1002/ecs2.2505

Orme, L. C., Miettinen, A., Seidenkrantz, M.-S., Tuominen, K., Pearce, C., Divine, D.,
et al. (2020). Mid to late-Holocene sea-surface temperature variability off north-eastern
Newfoundland and its linkage to the North Atlantic Oscillation. Holocene 31, 3–15.
doi: 10.1177/0959683620961488

Page, W. G., and Jenkins, M. J. (2007a). Mountain pine beetle-induced changes to
selected lodgepole pine fuel complexes within the Intermountain region. For. Sci. 53,
507–518. doi: 10.1093/forestscience/53.4.507

Page, W., and Jenkins, M. J. (2007b). Predicted fire behavior in selected mountain
pine beetle-infested lodgepole pine. For. Sci. 53, 662–674. doi: 10.1093/forestscience/
53.6.662

Paine, R. T., Tegner, M. J., and Johnson, E. A. (1998). Compounded perturbations
yield ecological surprises. Ecosystems 1, 535–545. doi: 10.1007/s100219900049
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