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Accurate prediction of pollination processes is a key challenge for sustainable

food production and the conservation of natural ecosystems. For many plants,

pollen dispersal is mediated by the foraging movements of nectarivore animals.

While most current models of pollination ecology assume random pollen

movements, studies in animal behaviour show how pollinating insects, birds

and bats rely on sensory cues, learning and memory to visit flowers, thereby

producing complex movement patterns. Building upon a brief review of

pollination and movement models, we argue that we need to better consider

pollinators’ cognition to improve predictions of animal-mediated pollination

across all spatial scales, from individual flowers, to plants, habitat patches and

landscapes. We propose a practical roadmap for the integration of behavioural

models into pollination models and discuss how this synthesis can refine

predictions regarding plant mating patterns and fitness. Such crosstalk

between animal behaviour and plant ecology research will provide powerful

mechanistic tools to predict and act on pollination services in the context of a

looming crisis.
KEYWORDS

agent-based models, pollination ecology, foraging patterns, pollen dispersal,
pollination models
1 Introduction

About 70% of flowering plants rely on animal pollination for reproduction (Ollerton

et al., 2011). As pollinators are globally declining and human food demand is booming, a

better prediction of pollination services becomes necessary for sustainable food security

(Aizen et al., 2022). Additionally, the scarcity of wild pollinators puts many natural

ecosystems at risk (Potts et al., 2010). These major stakes have given rise to several

modelling approaches aiming to predict the abundance of pollinators at large spatial scales

– from agricultural landscapes (Lonsdorf et al., 2009) to entire continents (Zulian et al.,

2013). These models are now commonly used for research and commercial purposes alike.

For example, the InVEST software serves the Natural Capital Project in more than 60
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countries to inform decision-makers about sustainable crop

management (Natural Capital Project, 2024).

For most plants, pollinators’ movements are central to the

process of pollination, since foraging animals passively disperse

pollen across plant populations. Behavioural studies show

pollinators rely on learning and memory to guide their movement

decisions. For instance, many nectarivore bees, butterflies, bats, and

birds follow repetitive foraging routes to revisit sets of profitable

flower patches on a regular basis (Lihoreau et al., 2012; Gilbert,

1975; Tello-Ramos et al., 2015; MaChado et al., 1998). However, in

current pollination models, these complex pollinators’ movements

are highly simplified, sometimes in the form of random movements

(Kortsch et al., 2023), or replaced by phenomenological rules that

derive pollinator presence from environmental constraints such as

the distance to nest and quality of food (Olsson et al., 2015). Such a

phenomenological approach might hinder the generalisation of

model predictions across different spatial scales and ecological

settings. Indeed, their predictions tend to be inaccurate when the

spatial distribution of resources is not homogeneous (Nicholson

et al., 2019). Moreover, these models are not designed to address the

complex mating patterns of plant populations, which are essential

to determine pollination quality within plant populations

(including, for example, self-pollination rates, mating distance

and mate diversity; Ohashi and Thomson, 2009). Such fine-scale

patterns could be directly derived from pollinators’ movements.

Adding realistic pollinator behaviours into pollination models

would thus provide a more robust mechanistic tool for

understanding and predicting pollination, both at the plant and

landscape scales. This new line of models could be achieved by

integrating current pollination models with pollinator movement

models (e.g., Reynolds and Rhodes, 2009), which are based on

recent advances in animal navigation and cognition research. Even

though such an interdisciplinary synthesis between animal

behaviour and plant ecology has been identified as one of the

main priorities for pollination ecology in the 21st century (Mayer

et al., 2011), too few studies have yet attempted to bridge this gap

(e.g., Ohashi and Thomson, 2009; Dorin et al., 2022; Kortsch

et al., 2023).

In this mini-review, we briefly describe the current types of

models used to predict plant pollination and their assumptions on

pollinator-mediated pollen dispersal. Next, we provide an overview

of the leading models of pollinator movements. Finally, we discuss

how integrating both kinds of models can be achieved and may

considerably improve our understanding and prediction of plant

pollination patterns and fitness.
2 Plant pollination models

Research in plant ecology uses pollen dispersal models to

predict plant mating patterns and fitness at different spatial scales,

from the plant level to the landscape level. These models typically

assume that pollen dispersal is diffusive, i.e. unbiased and

unimpacted by local environmental conditions (e.g., Shaw et al.,
Frontiers in Ecology and Evolution 02
2006). Different assumptions are used depending on the spatial

scale at which pollination is modelled.

At the plant level, some models (Table 1) predict the

outcrossing probability of two plants as a function of the distance

between them (Simpson et al., 2006). Others use a dispersal kernel –

also called “individual dispersion function” (e.g., Lavigne et al.,

1998; Klein et al., 2006). In this latter approach, the dispersal kernel

of a donor plant is a 2D function mapping the coordinates in space

of a receiver plant with the probability of receiving pollen from the

donor plant. Most of these statistical models assume that pollen

dispersal kernels are more fat-tailed than the normal distribution

and similar in all directions of space (i.e. isotropic) (Austerlitz et al.,

2004). Kernel-based models rely on a phenomenological approach:

the mechanisms behind pollen dispersal, i.e., pollinator movements,

are not represented explicitly. Using a dispersal kernel to model

pollen dispersal implicitly assumes that pollen trajectories only

depend on the characteristics and the distance separating the

donor and receiver flowers (Sasal and Morales, 2013). This

approximation is thus likely to be unrealistic when pollen is

dispersed by animals relying on perception and cognition for

spatial navigation and flower choices (e.g. Morán et al., 2023).

Accordingly, some studies show that dispersal kernels do not fit well

with real large-distance dispersal data, for instance because they

underestimate cross-pollination rates at large distances from the

donor flower (Devaux et al., 2008).

Other models (Table 1) have been developed to predict

pollination at the scale of landscapes (Zhao et al., 2019) or entire

countries (Polce et al., 2013). Here, habitat quality (nesting

suitability and flower resources) is used to predict the abundance

of pollinators in space, a proxy for pollination success and quality.

Pollinators’ movements are not modelled explicitly. Instead,

visitation rates are typically assumed to decrease similarly in all

directions of space and continuously with the distance to the nest in

an exponential decay (Lonsdorf et al., 2009, InVEST model). Such

approximations implicitly assume that pollinators “diffuse”

uniformly around the nest (i.e., isotropically). More behaviourally

realistic approaches (Olsson et al., 2015; CPF model) based on

optimal foraging theory (Charnov, 1976) assume that pollinator

abundance is a trade-off between the distance to the nest and flower

patch quality. This more refined assumption better predicts

pollinators’ abundance in the landscape (Nicholson et al., 2019),

and is now commonly integrated into habitat-selection pollination

models (InVEST software; Poll4Pop, Häussler et al., 2017). These

tools have recently been adapted to account for population growth

and bees’ dispersal (Häussler et al., 2017; Poll4Pop model; Blasi

et al., 2022; LandscapePhenoBee). They can also be coupled to

species distribution models (SDMs) to estimate pollinators’ spatial

distribution from sparse observations (Polce et al., 2013). However,

SDMs have been shown to perform poorly in changing conditions

(Maguire et al., 2016). Moreover, they do not explicitly model

behavioural mechanisms and thus may overlook some key aspects

of pollination, such as competition for plant resources (pollen,

nectar) and the use of cognition in movement decisions

(Pasquaretta et al., 2019). Finally, pollinator abundance may not
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TABLE 1 Summary of the characteristics of the different types of pollination models, movement models and integrated models, with examples of related publications (authors, year and model name if available).

atial scale
Pollination
metric Pollinators

hes of plants,
fields

Probability of pollen
dispersal
and outcrossing

Not explicitly included
in the model

e
scapes, countries

Pollinator abundance or
visitation rates

Not modelled
individually, only their
abundance in
the landscape

hes of plants,
fields

Not accounted for in
these models

Can be modelled in a
spatially explicit way
(Pyke, 1979) or not
(Dreisig, 1995)

hes of plants,
fields

Not accounted for in
these models

Individual pollinators
are explicitly and
spatially modelled

hes of plants,
fields

Not accounted for in
these models

Individual pollinators
are explicitly and
spatially modelled

hes of plants,
fields

Number of resources
foraged by pollinators
(Capera-Aragones et al.,
2021) or probability of
pollen dispersal of
individual plants
(Morris, 1993; Vallaeys
et al., 2017)

Individual pollinators
are explicitly and
spatially modelled
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Kernel-based models

Lavigne et al., 1998
Austerlitz et al., 2004
Klein et al., 2006
Simpson et al., 2006
Shaw et al., 2006

Extract the shape of the
pollen dispersal kernel from
experimental data

Pollen dispersal probability or outcrossing
probability is isotropic (the same in all directions
of space) and continuously decreases with the
distance to the flower. All flowers in a
population are assumed to have the same
dispersal kernel, regardless of their position
in space.

Pat
cro

Habitat-selection models

Lonsdorf et al., 2009
(InVEST)
Olsson et al., 2015 (CPF
model)
Häussler et al., 2017
(Poll4Pop)
Blasi et al., 2022

Predict pollinator
abundance across
the landscape

Pollinator presence depends on habitat quality
(nesting suitability, floral resource availability).
Pollinator abundance decreases exponentially
with the distance to the nest (Lonsdorf et al.,
2009) or is a trade-off between food patch
quality and distance to the nest (Olsson et al.,
2015; Häussler et al., 2017; Blasi et al., 2022).
The most recent habitat-selection models
account for population growth and dispersal
(Häussler et al., 2017) and seasonality (Blasi
et al., 2022).
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decisions to maximise their intake rate and to
know the necessary information from the
environment (flower quality or position, etc) to
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Trajectory models

Reynolds and Rhodes,
2009
Lenz et al., 2013
Tyson et al., 2011
Morán et al., 2023

Reproduce pollinators’
trajectory in space

Pollinators’ cognitive processes can be absent
(e.g., Reynolds and Rhodes, 2009) or integrated
with more or less precision (Morán et al., 2023).
These models typically do not involve learning
or memory.
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Flower visitation
sequence models

Ohashi and Thomson,
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route optimisation.
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Analytical models

Morris, 1993
Vallaeys et al., 2017
Capera-Aragones
et al., 2021
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from pollinators’ movements

Pollinators’ movements are usually modelled
with simple rules (derived from summary
statistics of observed movements, Morris, 1993;
derived from Lévy-flight equations, Vallaeys
et al., 2017; using advection-diffusion equations,
Capera-Aragones et al., 2021).
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always be a good predictor of pollination quality (e.g. Ohashi and

Thomson, 2009). Factors such as the spatial context of the plant

(e.g., density and quality of neighbouring mates; Stehlik et al., 2006),

selfing and outcrossing rates (Barrett and Harder, 1996) and mate

diversity (Kron and Husband, 2006) can also influence plant

reproductive success.
3 Pollinator movement models

Research on animal behaviour uses movement models to study

spatial cognition and foraging strategies in nectarivore foragers such

as bees, birds and bats. Early models of optimal foraging theory

relied on the strong assumption that animals were omniscient about

their environment and would exploit resources to maximise net

energy intake rate (e.g. Dreisig, 1995; Charnov, 1976; Pyke, 1979).

More recently, studies on animal navigation based on new

experimental tracking tools such as radars (Riley et al., 1996) and

GPS (Goldshtein et al., 2024) have refined our understanding of

pollinators’ foraging patterns in the field. Now, different classes of

models have emerged that focus on different aspects of

pollinator movements.

The first type of models focuses on replicating the flight

trajectories of individual foragers (Reynolds and Rhodes, 2009;

Lenz et al., 2013; Morán et al., 2023) or of groups (Tyson et al.,

2011). These analytical models have been parameterised with the

characteristics of real flight trajectories and typically do not

integrate cognitive processes. More complex models, such as the

one developed by Morán et al. (2023), integrate sensory perception

and suggest, for instance, the existence of “masking effects”, by

which some plants are visited less than expected from their distance

to the nest because foragers are intercepted by a plant lying in

between. This effect is also known as the “shadow effect” in the

broader ecology literature (Riotte-Lambert and Laroche, 2021).

While many of these models explicitly implement aspects of

spatial cognition (e.g. path integration), they have overlooked

many other aspects of the cognitive abilities used by pollinators to

choose the flowers they visit. In particular, when foraging,

pollinators learn to localise and recognise flowers and return to

familiar locations based on spatial, visual, olfactory and thermal

cues (Chittka, 2022). This enables many pollinators to return to the

same feeding locations over time, as long as these are not depleted

(Ribbands, 1949), sometimes revisiting familiar patches in a

repeated order (Janzen, 1971; Thomson et al., 1982; Lihoreau

et al., 2012; Buatois and Lihoreau, 2016).

To tackle this problem, a second type of models abstracts from

trajectories to focus on the flower visitation sequences resulting

from learning and memory. Initially, these models were developed

to understand the cognitive mechanisms underlying the formation

of repeated foraging routes between flower patches – also known as

“traplines” (Thomson et al., 1997). Ohashi and Thomson (2005)

modelled different foraging strategies (random, area-restricted

search, complete traplining, sample-and-shift traplining) using

different probabilities of transitions between flowers. Follow-up

models formalised the choice of transitions between flowers

through iterative improvement and reinforcement learning, thus
T
A
B
LE

1
C
o
n
ti
n
u
e
d T
yp

e
o
f
m
o
d
e
l

A
u
th
o
rs
,
ye

ar
(m

o
d
e
l
n
am

e
)

G
o
al

M
ai
n
as
su

m
p
ti
o
n
s

Sp
at
ia
l
sc
al
e

P
o
lli
n
at
io
n

m
e
tr
ic

P
o
lli
n
at
o
rs

C
om

pu
ta
ti
on

al
in
di
vi
du

al
-b
as
ed

m
od

el
s

O
ha
sh
i
an
d
T
ho

m
so
n,

20
09

K
or
ts
ch

et
al
.,
20
23

N
ew

to
n
et

al
.,
20
19

E
ve
ra
ar
s
et

al
.,
20
18

(S
O
LB

E
E
)

D
or
in

et
al
.,
20
22

P
re
di
ct

po
lli
na
ti
on

se
rv
ic
es

fr
om

po
lli
na
to
rs
’
m
ov
em

en
ts

P
ol
lin

at
or
s’
m
ov
em

en
ts
ar
e
us
ua
lly

m
od

el
le
d

w
it
h
si
m
pl
e
ru
le
s
(c
or
re
la
te
d
ra
nd

om
w
al
k,

N
ew

to
n
et

al
.,
20
19
;K

or
ts
ch

et
al
.,
20
23
;n

ea
re
st
-

ne
ig
hb

ou
r
ch
oi
ce
s,
E
ve
ra
ar
s
et

al
.,
20
18
).
O
ha
sh
i

an
d
T
ho

m
so
n
(2
00
9)

te
st
ed

di
ffe
re
nt

co
gn
it
iv
e

st
ra
te
gi
es

(e
.g
.,
tr
ap
lin

in
g-
lik
e
m
ov
em

en
ts
).

D
or
in

et
al
.(
20
22
)
in
te
gr
at
ed

sh
or
t-
te
rm

m
em

or
y
an
d
fl
ow

er
co
ns
ta
nc
y
in

th
ei
r

m
ov
em

en
t
m
od

el
.

P
at
ch
es

of
pl
an
ts
,c
ro
p

fi
el
ds
,l
an
ds
ca
pe
s

E
xp
lic
it
po

lle
n
tr
an
sf
er

fu
nc
ti
on

s
(O

ha
sh
i
an
d

T
ho

m
so
n,

20
09
;D

or
in

et
al
.,
20
22
),
de
du

ce
d

fr
om

po
lli
na
to
r

m
ov
em

en
ts
(K

or
ts
ch

et
al
.,
20
23
),
or

as
si
m
ila
te
d
to

ot
he
r

m
et
ri
cs

lik
e
vi
si
ta
ti
on

ra
te
s
(N

ew
to
n
et

al
.,

20
19
;E

ve
ra
ar
s

et
al
.,
20
18
)

In
di
vi
du

al
po

lli
na
to
rs

ar
e
ex
pl
ic
it
ly

an
d

sp
at
ia
lly

m
od

el
le
d

frontiersin.org

https://doi.org/10.3389/fevo.2025.1504480
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Mailly et al. 10.3389/fevo.2025.1504480
adopting a more cognitive approach (Lihoreau et al., 2012; Reynolds

et al., 2013; Dubois et al., 2021). So far, these models have been used

to simulate only one or very few foragers simultaneously. However,

simulating several individuals simultaneously can sometimes give

rise to unsuspected patterns (e.g., nonterritorial spatial segregation;

Riotte-Lambert et al., 2015; Aarts et al., 2021).
4 Integrating pollinator movement
models into plant pollination models

As seen above, models have been developed separately to study

pollinators’ movements and plant pollination. As a result,

movement models have largely been restricted to the scope of

animal behaviour, while pollination models may be imprecise

depending on the spatial scale of interest. Here, we argue that the

time is ripe for integrating both approaches. Such synthesis will

provide more robust mechanistic models of plant reproduction

mediated by animals, enabling insightful predictions across a

broader range of spatial scales and ecological contexts.

Developing mechanistic models based on a detailed

implementation of pollinators’ movements will enable us to cope

with the limits of phenomenological approaches as used in current

pollination models (Lonsdorf et al., 2009). Although these existing

models can predict pollinator abundance in homogeneous

landscapes, their predictions are not robust in heterogeneous,

complex landscapes (Nicholson et al., 2019). They are also not

designed to predict pollination in dynamic environments. As

climate change and anthropogenic pressures lead to rapidly

changing and ever-more-fragmented environments, mechanistic

approaches are more easily generalisable to different contexts as

they focus on the processes by which global patterns emerge and not

solely on the patterns themselves (Gustafson, 2013; Morin and

Lechowicz, 2008).

It is also important to mention that pollinator abundance is

often used as a proxy for pollination quality in current models,

which is only one part of the full picture. Other factors, such as self-

pollination rate, mating distance, and mate diversity, also determine

pollination success and quality (Ohashi and Thomson, 2009; Stehlik

et al., 2006; Holsinger, 1991). These metrics are defined at the plant

level and can be directly derived from predictions of pollinators’

movements. Thus, not only would a mechanistic approach enable

the computation of these metrics and the better prediction of

pollination quality, but it would also refine our understanding of

plant–pollinator interactions. In the long term, we believe such a

mechanistic approach can be used to predict pollination processes

across a larger range of contexts and, for instance, improve

precision pollination in crop fields or greenhouses.

Somestudies havebegun tobridge this gap. For instance, analytical

trajectory models have been used to infer pollen dispersal functions

(Morris, 1993; Vallaeys et al., 2017). Pollination services have been

inferred from pollinators’ quantity of resources collected (Capera-

Aragones et al., 2021). Computational agent-based models have been

developed to simulate individual pollinators’ movements and their

consequences on pollination. Here again, pollen transfers can be
Frontiers in Ecology and Evolution 05
integrated explicitly (Ohashi and Thomson, 2009; Dorin et al., 2022),

deduced from pollinator movements (Kortsch et al., 2023), or

pollination can be assimilated to other metrics such as visitation

rates (Newton et al., 2019; Everaars et al., 2018). While most of these

models still rely on relatively simplistic movement rules (e.g. diffusion

equations,Morris, 1993; correlated randomwalk,Newton et al., 2019),

some studies also integrated cognitive-based movements: Ohashi and

Thomson (2009) suggested that informed movements lead to higher

flowermating distances andmate diversity and lower selfing rates than

more random pollinator movement. Recently, Dorin et al. (2022)

improved upon a long line of agent-based models (Waser, 1978; Dyer

et al., 2012; Bukovac et al., 2013; Dyer et al., 2014; Bukovac et al., 2017;

Dorin et al., 2018) by integratingmechanisms such asflower constancy

(i.e. the tendency of individual pollinators to specialise on one plant

species) and short-term memory into a randommovement model.

While this is an important first step, real pollinators exhibit

much more diverse movement patterns and dynamically modify

their foraging sequences as they gain experience (Lihoreau et al.,

2012). They continually alternate between route-following and

exploration, even when they developed stable and efficient routes,

presumably to sample information about potential new profitable

resources in their environment (Woodgate et al., 2017). We thus

argue that future research should focus on integrating the latest

findings in pollinator behaviour into pollination models for more

robust predictions. Several existing models could readily be used as

a starting point for implementing different modules to be assembled

within a common platform (Figure 1). This integrated model could

have the following modules:

1. A map of individual plants in space (as in Kortsch et al., 2023)

with complementary information about their attractivity for the

pollinators (e.g. signalling, nutritional values), self-compatibility,

and genetic diversity.

2. A movement module relying on cognitive assumptions,

which can be used to predict the flower visitation sequence (as in

Dubois et al., 2021). This module would drive the foraging

behaviour, which causes nectar and pollen depletion and,

therefore, competition between individuals. It can also be refined

by considering the variation of quality across nectars and pollen of

different plants and the nutritional needs of pollinators, for

instance, using models of nutritional ecology (Lihoreau et al., 2015).

3. A colony-level population dynamics module that simulates

the colony’s growth and dynamics over time depending on nutrient

intake (e.g., Becher et al., 2014). Such a module could be adapted to

the pollinator species. It should also be dependent on the nutritional

state of the colony. Several colonies of the same or different species

could be included to model more complex community-level plant-

pollinator interactions (Burkle and Alarcón, 2011).

4. A module of pollen dispersal by the moving pollinators. It

should account for pollen carryover (i.e., how much pollen is

dragged to the subsequent flowers in the visit sequence; as in

Bateman, 1947). This module should also clarify which

pollination events will result in a successful reproduction.

Such an integrative model could then be used to measure the

fitness of both plants and pollinators. For this, several metrics could

be outputted from the model, both at the plant level (quality of
frontiersin.org
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pollination visits or pollination success, parenting outcomes, gene

flow, etc.) and at the pollinator level (foraging efficiency, the

nutritional state of the colony, population growth, etc).
5 Concluding remarks

Recent conceptual advances in animal behaviour and plant

ecology enable a theoretical synthesis that could help predict and

study patterns of animal-mediated pollination with unprecedented

details. Several models have been developed and could readily be

integrated into a unifying platform connecting animal behaviour

and pollination. Insights from these new kinds of models will help

refine expectations of pollinator visit function and pollen dispersal

kernels. Ultimately, these outputs could be integrated back into

landscape-level models (such as Poll4Pop or InVEST), which are

also used to predict population dynamics and dispersal.

We believe that the fine-scale resolution of the model outputs

in terms of pollination metrics (crossing patterns, gene flow) has

the potential to provide new lines of investigation with highly

detailed predictions about the genetic structures and population

dynamics of plant populations. Such a modelling approach would

thus constitute a unique tool to address key questions in

pollination ecology. For instance, pollen dispersal could be

studied at the scale of several colonies. Current trending models,

such as habitat-scale models (Lonsdorf et al., 2009), do not

encompass competition between colonies – more colonies

simply result in more pollination. However, competition might

act as a regulating mechanism and might put a cap on pollinator

abundance in disputed areas. Notably, we might expect resource

depletion to promote spatial segregation between colonies (e.g.
Frontiers in Ecology and Evolution 06
Aarts et al., 2021 in marine birds and mammals; Morinay et al.,

2023 in lesser kestrels). These predictions might help optimise the

number and position of commercially introduced pollinator

colonies in crops (such as honey bees or bumblebees). Even at

small spatial scales, studying pollen dispersal through an

integrated model could help understand how individual

movements and competitive and social interactions can shape

pollen dispersal (Mailly et al., 2024). Both the tools and the new

knowledge derived from this integrative approach in pollination

ecology thus have the potential to revolutionise our usage of

pollinators by providing more accurate predictions to inform

actions for precision conservation and crop pollination.
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FIGURE 1
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simulated environment contains plants whose nectar and pollen resources (1) and coordinates in space (2) influence pollinators’ decisions, learning,
memory, perception, etc. The colony’s population dynamics (3) and current nutritional state (4) are also integrated into the cognitive processes of
the foragers. These cognitive capacities drive pollinators’ behaviour (5). They move from flower to flower, causing floral resources to deplete (6) and
pollen dispersal (7). Pollen dispersal causes plant mating (8), which influences the plant population’s dynamics and, thus, the spatial configuration of
the next generation of plants (9).
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