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Sedimentary ancient DNA (sedaDNA) provides valuable insights into past

ecosystems, yet its functional diversity has remained unexplored due to

potential limitations in gene annotation for short-read data. Eukaryotes,

especially, are typically underrepresented and have low coverage in complex

metagenomic datasets from sediments. In this study, we evaluate the potential of

eukaryotic gene annotation in sedimentary ancient DNA (sedaDNA) time-series

data covering the last 23,000 years. We compared four gene annotation pipelines

(GAPs) that apply Prodigal (ProkGAP) and MetaEuk (EukGAP) with and without

taxonomic pre-classification. We identify ProkGAP as the pipeline which recovers

the largest gene catalog with 6,568,483 functional genes and the highest number

of eukaryotic functional genes (5,895 unique KEGG orthologs). Our findings

show that ProkGAP, originally invented for prokaryotic gene prediction, yields the

largest share of functional genes among all GAPs tested. At the same time, it

allows the analysis of prokaryotic and eukaryotic gene functions in parallel and

predicts most gene diversity. Interestingly, in our time-series data the gene

catalog size and diversity show an increasing trend towards recent times

indicating a more complex eukaryotic functional community during the

Holocene. However, all gene annotation pipelines are limited by incomplete

functional reference databases, which hamper the link between taxonomic-

functional relationships when considering lower taxonomic levels. Future

research on functional gene prediction from short read sedaDNA data should

focus on expanding the eukaryotic databases and increasing sequencing depth

to explore eukaryotic and prokaryotic functional composition and diversity in

past ecosystems and their relationships to environmental change.
KEYWORDS
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1 Introduction

Sedimentary ancient DNA (sedaDNA) is an established

approach in paleoecology providing community compositions for

the reconstruction of past ecosystems across decadal to millennial

timescales (Parducci et al., 2019; Capo et al., 2021; Huang et al.,

2021; Jia et al., 2024). In recent years, the short read metagenomic

data derived from sedaDNA has convincingly been shown to

identify temporal variation in eukaryotic communities using k-

mer classifiers such as Kraken2 (Courtin et al., 2022; Perfumo et al.,

2023; Zimmermann et al., 2023) or alignment-based classification

tools (Pedersen et al., 2016; Wang et al., 2021; Liu et al., 2024).

While the analysis of taxonomic dynamics from sedaDNA is

increasingly understood, the potential to recover temporal

functional dynamics is not fully explored. Characteristics such as

short read length and low coverage of metagenomes, particularly in

eukaryotic DNA derived from sediment DNA, challenge the

prediction of functional genes. While micro-eukaryotes (Derelle

et al., 2006) have a smaller genome size than multicellular

eukaryotes, such as plants (Leushkin et al., 2013; Stevens et al.,

2016), very few studies have focused on micro-eukaryotes, such as

phytoplankton, to recover their functional repertoire from

metagenomic data collected from surface ocean samples

(Carradec et al., 2018; Sunagawa et al., 2020; Delmont et al., 2022;

Duncan et al., 2022). However, testing gene prediction pipelines for

functional composition of eukaryotes in general has not yet been

applied to highly fragmented sedimentary ancient DNA data.

Basically, gene annotation pipelines (GAP) require longer DNA

fragments to infer functional genes and their corresponding

proteins from full or partial gene sequences (Tamames et al.,

2019; Belliardo et al., 2022). Although some tools can directly

predict short reads by translating them into amino acids, short

read-based predictions are limited in detecting distant protein

homologs (Wommack et al., 2008; Tamames et al., 2019) and

gene prediction accuracy rate increases as the fragment length

increases (Trimble et al., 2012; Zhang et al., 2017). To overcome

these limitations, it is necessary to apply de novo assembly

approaches that reconstruct longer sequences (contigs) using

short DNA reads. For instance, MEGAHIT (Li et al., 2015)

features a fast and memory-efficient approach making it ideal for

large and complex metagenomic datasets with low coverage (Li

et al., 2015; Georganas et al., 2018; Emiola and Oh, 2018). It also has

a lower rate of misassembly than other assembler tools (van der

Walt et al., 2017; Forouzan et al., 2018) or fewer errors with short

contigs in the assembly for modern (Olson et al., 2019) and higher

coverage for ancient DNA data (Klapper et al., 2023). Compared to

short read data, assembly based tools such as PyDamage (Borry

et al., 2021) can be applied for post-mortem damage analysis on the

contig level providing estimates on their ancient origin.

The functional gene annotation of assemblies from

metagenomic data is primarily focused on prokaryotes (Meyer

et al., 2008; Kim et al., 2016; Chen et al., 2019; Morais et al.,

2022). The prominent prokaryotic gene prediction tool Prodigal,

stands out as a best-overall ranking tool for gene prediction in

metagenomic data, particularly when dealing with short contigs
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(>=300 nucleotide) (DiMonaco et al., 2022) and for the discovery of

eukaryotic genes (Delmont et al., 2022; Patin and Goodwin, 2022).

Prodigal predicts genes by evaluating factors such as GC content

and start codons, without relying on extrinsic data like reference

databases (Hyatt et al., 2010; Hyatt et al., 2012). On the other hand,

MetaEuk aims to improve eukaryotic gene detection by searching

all possible reading frames (6-frame translation) of translated DNA

fragments within contigs using reference databases (Levy Karin

et al., 2020) and its reliance on the reference databases can limit the

prediction of novel genes not presented in the databases. However, a

direct comparative analysis between Prodigal and MetaEuk has yet

to be undertaken. Eukaryotic sequences (even in low abundance) in

metagenomic datasets (Delmont et al., 2011; Jacquiod et al., 2016;

Delmont et al., 2022; Gabrielli et al., 2023), allow searching for

eukaryotic genes in metagenomic data. Although kingdom-specific

prediction algorithms are available, the shared ancestry between

bacteria and eukaryotic mitochondria or chloroplasts (Zimorski

et al., 2014) and the uneven abundance of eukaryotic and

prokaryotic sequences in metagenomic data (Delmont et al.,

2022) may require a pre-classification prior to the prediction step.

Recently, pre-classification tools such as Tiara (Karlicki et al., 2022)

and Eukrep (West et al., 2018) were developed. Tiara appears to

outperform Eukrep because it manages more efficiently sequences

of inter-kingdom ancestral complexity (Gabrielli et al., 2023).

Although the precision of eukaryotic gene prediction improved

remarkably with new tools (Scalzitti et al., 2020; Bruna et al., 2024),

the functional classification is still limited by existing databases. The

eggNOG database (Huerta-Cepas et al., 2019) stands out as a

comprehensive resource for functionally annotated proteins and

includes diverse functional gene databases (Kyoto Encyclopedia of

Genes and Genomes (KEGG) with orthologs (KO), Gene Ontology

(GO), Protein Families (Pfam), etc.). Although the EggNOG

database includes a limited number of eukaryotic taxa (477

genomes) compared to prokaryotes (25,038 genomes), it links the

functional information to biological and metabolic pathways

defined in the KEGG database (Kanehisa and Goto, 2000).

Identifying functional and metabolic diversity in eukaryotes, such

as carbon and nitrogen cycling (Stein, 2018; Alexander et al., 2023)

or secondary metabolism, through time can provide substantial

insights into the ecological role of taxa in changing ecosystems such

as the terrestrial Arctic.

Our study exemplifies the investigation of functional dynamics

in eukaryotes in a sediment record from Lake Lama, Siberia, Russia.

Lake Lama is located in the tundra-taiga transition zone and the

lake sediment core covers approximately the last 23,000 years,

which includes the transition from the Last Glacial Maximum

(LGM) to the Holocene (Andreev et al., 2004; von Hippel et al.,

2023). Recently, a sedaDNA study from Lake Lama highlighted a

shift in plant and fungal community composition due to increasing

temperatures from the LGM to Holocene (von Hippel et al., 2022),

suggesting a change in the eukaryotic functional diversity

through time.

We compare four different functional gene annotation pipelines

for their use in detecting functional eukaryotic genes in

metagenomic shotgun sequencing from a sedaDNA dataset
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retrieved from Lake Lama spanning the last 23,000 years. Our

investigation focuses on the (1) overall evaluation of the

metagenome assembly and the potential of gene prediction tools

using highly fragmented sedaDNA, (2) temporal diversity changes

of functional genes from eukaryotic organisms, and (3) the

validation of temporal taxonomic changes recovered by

eukaryotic functional genes. Our study takes the initial steps

towards adjusting functional gene annotation pipelines for

sedaDNA metagenomic data.
2 Materials and methods

2.1 Study site

The sediment core samples were collected from Lake Lama,

which is located on the Taymyr Peninsula, north-central Siberia,

Russia (69.32°N, 90.12°E). The sediment core PG1341 was

recovered from 66 m water depth and spans a composite core

length of 18.85 m. Radiocarbon dating and age-depth modeling

estimated an age of about 23,000 years for basal sediment samples of

the core (von Hippel et al., 2023). Modern environmental and

climatic conditions at the lake are characterized by long, severe

winters and short summers. The annual precipitation ranges

between 300 and 800 mm at different elevations and the modern

temperatures are on average 12°C in July and −33°C in January

(Volochanka weather station, distance to the lake: 147 km; Russian

Institute of Hydrometeorological Information: World Data Center,

2021). The lake remains ice-covered from October to May with

thawing commencing in May and taking approximately one month

to complete. Based on this, winter is defined as lasting from October

to May, while summer conditions are limited to the period from

June to August (Kumke et al., 2005). The current catchment

vegetation around Lake Lama is predominantly classified as taiga

vegetation characterized by the prevalence of trees including Picea,

Larix, and Betula, and shrubs including Alnus, and Salix, as well as

dwarf shrubs (von Hippel et al., 2022).
2.2 SedaDNA extraction and sequencing

The core collection and subsampling procedure are described in

detail in a previous study (von Hippel et al., 2022). DNA extraction

and library preparation were conducted under stringent

contamination control in a dedicated paleogenetic laboratory at

the Alfred Wegener Institute, Helmholtz Centre for Polar and

Marine Research in Potsdam, Germany. All sedaDNA was

extracted with DNAeasy PowerMax Soil Kit (Qiagen, Germany)

and the single strand DNA libraries were prepared following the

Gansauge protocol (Gansauge and Meyer, 2013; Gansauge et al.,

2017) with slight modifications of the protocol as described in

(Schulte et al., 2021). The study encompassed four sequencing runs

in total. Among these, the pools APMG37-38 underwent

sequencing using the NovaSeq (2x100 bp) platform at Fasteris SA

(Switzerland) while the remaining two runs were processed using

the NextSeq 2000 (2x100 bp) platform at AWI Bremerhaven
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(Germany). In total, 77 libraries, including 42 samples, 6

extraction controls, and 13 library controls were sequenced.

Sixteen samples out of 42 were sequenced twice (depth, age, and

library information provided in Supplementary Table S1) and the

raw sequencing results were merged for bioinformatic processing.

Illumina paired-end sequencing of 42 samples (including

resequencing) resulted in raw sequencing data with a total size of

2.77 billion paired-end reads. The raw read statistics are provided in

Supplementary Table S2.
2.3 Data preprocessing

Raw sequencing data was filtered for low quality reads using

FastQC v0.11.9 (Andrews, 2010) and paired-end reads were merged

with Fastp v0.20.1 (Chen et al., 2018). PCR duplicates were removed

using clumpify from BBtools v38.87 (Bushnell, 2014). The quality of

reads before and after preprocessing was evaluated using FastQC

v0.11.9 (Andrews, 2010). The resulting quality-checked merged and

paired reads were used as input for the metagenome assembly.

Subsequently, paired and merged reads were taxonomically

classified using Kraken2 (Wood et al., 2019) and the nucleotide

(nt) database (download in 2022) at a confidence threshold of 0.8

and a k-mer minimizer of 31nt. The taxonomic classifications were

later used to compare taxonomic composition of short reads with

the taxonomic origin of functional proteins identified by the

annotation pipelines.
2.4 Metagenome assembly

For improving the assembly quality, an additional error-

correction of quality-checked reads was performed using tadpole

from BBtools v38.87 (Bushnell, 2014). After this, reads were

assembled into contigs using MEGAHIT v1.2.9 (Li et al., 2015)

with deviations from the default mode including: -minimum contig

length: 300 and preset: meta-large and with the default k-mer.

Subsequently, QUAST v5.2.0 (Gurevich et al., 2013) was used to

obtain contigs statistics per sample including total number of

contigs, contig length, and median length (N50).
2.5 Assessment of post mortem
damage patterns

We used PyDamage v0.72 (Borry et al., 2021) to analyze damage

patterns in contigs derived from de novo assemblies. PyDamage is

specifically designed to identify and estimate characteristic damage

in de novo assembly data, using a likelihood ratio test to distinguish

between ancient and modern DNA (Borry et al., 2021). Initially, all

quality-checked merged and paired reads were aligned to the

assembly data using BWA-MEM v0.7.17 (Li and Durbin, 2009)

with default parameters, followed by data conversion with Samtools

v1.16.1 (Danecek et al., 2021) and BamTools 2.5.2 (Barnett et al.,

2011). PyDamage was then executed with the analyze function,

taking the final alignment output (BAM file) as input.
frontiersin.org

https://doi.org/10.3389/fevo.2025.1459690
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
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The contigs from each sample assembly were taxonomically

classified using Kraken2 with the nt database at a 0-confidence

threshold. Subsequently, the outputs from PyDamage and Kraken2

were combined in R. Eukaryotic and Streptophyta contigs with a

length of min. 600 and a prediction accuracy of min. 0.5 were

selected for further analysis. The mean frequency of C-to-T

substitutions across positions was calculated for all samples.

Additionally, the first positions of C-to-T substitutions in the

contigs were extracted, and linear regression at the first position

changes over time was performed using the R vegan package

(Oksanen et al., 2022). All figures are visualized in R.
2.6 Gene prediction

After the metagenome assembly step, we applied four different

gene prediction pipelines for the downstream analysis. The

pipelines are 1. ProkGAP without any prior taxonomic pre-

classification of the contigs, 2. ProkGAP including a pre-

classification of contigs into pro- or (called hereafter: Pre-class

ProkGAP), 3. EukGAP without any prior taxonomic pre-

classification of the contigs and 4. EukGAP including a pre-

classification of contigs into pro- or eukaryotic contigs (called

hereafter: Pre-class EukGAP).

2.6.1 ProkGAP
The ProkGAP pipeline uses the gene prediction tool Prodigal

v2.6.3 (Hyatt et al., 2012) with parameters -g 1 -p meta. The p

parameter defines the metagenomic data and parameter g

incorporates the translation table in gene prediction. We used ‘the

standard code’ for parameter g, adhering to the National Center for

Biotechnology Information (NCBI) genetic code guidelines, where

Adenine-Uracil-Guanine (AUG) defines the initial codon.

2.6.2 EukGAP
The EukGAP pipeline uses MetaEuk v6-a5d39d9 (Levy Karin

et al., 2020) for gene prediction. MetaEuk is a reference-based tool

to discover protein-coding genes, both single- and multi-exon,

within eukaryotic metagenomic datasets. We used the Uniref50

database, which was built using the following parameters –min-

ungapped-score 35 –min-exon-aa 20 –min-length 40 (default

setting: –min-exon-aa 11, –min-length 15, –min-ungapped-score

15). The Uniref50 database was selected as it improves sensitivity in

identifying distant proteins, which makes it particularly

advantageous for large-scale analyses or when dealing with poorly

characterized organisms (Suzek et al., 2015).
2.6.3 Contig pre-classification-based GAP
Tiara v1.0.3 (Karlicki et al., 2022) was used to pre-classify the

assembly into prokaryotic (bacteria and archaea) and eukaryotic

contigs. Tiara is a deep learning-based classification tool that

performs a classification approach for the eukaryotic origin of

contigs. It classifies contigs to kingdom level (Archaea, Bacteria,

Prokarya, nuclear and organelle Eukaryotes) or as unknown

taxonomy. Tiara was run with default parameters except for –
Frontiers in Ecology and Evolution 04
min_len 300 (default 3000). We aggregated all contigs classified as

eukaryotes and both pipelines (ProkGAP and EukGAP) were

implemented on eukaryotic and prokaryotic bins.
2.7 Functional gene/protein catalog

The four functional redundant catalogs were generated from the

prediction pipelines (Figure 1) and present the functional diversity

at gene and protein level aggregated from all sediment core samples.

The non-redundant protein catalogs were built by clustering the

proteins at a similarity threshold of 95% and an alignment coverage

rate of 85% using CD-HIT v4.8.1 (Li and Godzik, 2006) with the

default parameters except for -c 0.95 -G 0 -aS 0.85 -d 0 (default

parameter: -c 0.9 -aS 0 -G 1 -d 20). Recent benchmarking studies

have demonstrated that CD-HIT provides a reliable clustering

algorithm for protein sequences and outcompetes UCLUST,

VSEARCH, LinClust and others (Zou et al., 2020; Wei et al., 2023).
2.8 Gene abundance estimation

The corresponding four non-redundant gene catalogs were used

to estimate the gene abundance for each sample using the tool

Salmon v1.10.1 (Patro et al., 2017) with the parameter –meta –

libType IU for the quality-checked paired-reads and –meta –

libType U for the quality-checked merged reads. Subsequently,

the gene counts based on paired and merged reads were

aggregated per sample. The gene abundance was normalized by

calculating normalized gene count (NGC) values using the formula

1 (qi: reads mapped to ith gene, li: i
th gene length, N: total number of

genes in the non-redundant catalog). To standardize the different

gene catalog sizes across the pipelines, the formula was used to

multiply by the number of genes in the dataset instead of one

million.

NGCi =  
qi
li

oN
j=1

qj
lj

 ! � (Npipeline) (1)
2.9 Functional and taxonomic annotation

Protein functions from the four non-redundant protein catalogs

were annotated using eggNOG-mapper v2.1.12 (Cantalapiedra

et al., 2021) with the default parameter and Diamond mode

against the eggNOG Orthologous Groups database v5.0 (Huerta-

Cepas et al., 2019). The eggNOG-mapper offers three searching

modes, Diamond, HMMER3, and MMseqs2. The default Diamond

mode offers the best selection for speed and memory consumption

amongst the modes (Cantalapiedra et al., 2021). The eggNOG

database contains protein data from 4,445 representative bacteria,

168 archaea, 477 eukaryotic genomes, and 2,502 viruses. It

integrates several annotations from multiple sources, including

Kyoto Encyclopedia of Genes and Genomes (KEGG) including
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KEGG Orthologs (KO) (Kanehisa and Goto, 2000), Carbohydrate-

active enzymes (CAZy) database (Drula et al., 2022), Pfam

(Sonnhammer et al., 1997; Mistry et al., 2021), Gene Ontology

(GO) (The Gene Ontology Consortium et al., 2023), and Cluster of

Orthologous Groups (COG) categories (Galperin et al., 2021) and

thus provides the currently most comprehensive functional

database available. The eggNOG-mapper (Cantalapiedra et al.,

2021) is integrated into the eggNOG database to perform query

searches in the database and provides fast and highly accurate

information based on several benchmarks (Yang et al., 2021).

The four gene annotation pipelines resulted in four datasets of

proteins, which were finally assigned to eukaryotes in the eggNOG

annotation step. In order to confirm the taxonomic assignment, we

cross-checked the four protein datasets against the NCBI protein

database, because taxonomic assignments in eggNOG are likely

incomplete for eukaryotes. Therefore, a NCBI nr database (version

September 2023) was built using MMseqs2 v14.7e284 (Steinegger

and Söding, 2017) and eukaryotic proteins were searched using

MMseqs2 with the parameters: mmseqs taxonomy -e 0.00001 –lca-

mode 3 -s 5 –taxon-list 2759 (default setting: -e 1 -s 2).

Further, the four eggNOG outputs were analyzed according to

their KEGG ortholog (KO) annotations. Proteins associated with
Frontiers in Ecology and Evolution 05
multiple KO identifiers were discarded to reduce ambiguous

annotations. Eukaryotic and prokaryotic proteins based on the

eggNOG taxonomy for each of the four pipelines, a total of eight

datasets, were used for the KO diversity and pathway time-series

analysis. The number of unique KOs from the eight datasets was

used as an estimate of the KO diversity. Total diversity of the eight

datasets and their intersection are visualized using Venn diagrams.

Sample-wise, eukaryotic KO richness was resampled to correct for

differences in gene abundance and visualized in a bar plot showing

changes in KO richness over time.

The relative abundance of KOs over time from the eight datasets

was calculated using the NGC values from the gene abundance

estimation. Further, we inferred KEGG pathways from KO

annotations by using the KEGG database (Kanehisa and Goto,

2000) with a custom R script. KEGG pathways related to human

diseases were discarded from the datasets. KOs associated with

Streptophyta phylum from the KEGG Photosynthesis pathway were

extracted. A heatmap of the KOs in the photosynthesis pathway was

plotted across the four prediction pipelines. Subsequently, their

normalized gene counts (NGC) were summed up based on gene

abundance estimations and aggregated at the pathway level and

visualized using a bar plot over time.
FIGURE 1

Metagenomic data processing using four functional gene annotation pipelines. Following metagenome assembly, the pipelines were identified as
ProkGAP (blue), EukGAP (yellow), Pre-class EukGAP (green), and Pre-class ProkGAP (purple). The workflow started with the data processing: initial
short-read quality checks using FASTQC (Andrews, 2010), followed by quality filtering and read merging with fastp (Chen et al., 2018), and
deduplication using clumpify (Bushnell, 2014). Taxonomy classification of short reads was performed using Kraken2 (Wood et al., 2019), and error
correction utilized tadpole (Bushnell, 2014) before metagenome assembly with MEGAHIT (Li et al., 2015). For the pre-classification prediction
pipelines, Tiara (Karlicki et al., 2022) was performed for the contig separation. Gene prediction tools included Prodigal (Hyatt et al., 2012) for
ProkGAP and Pre-class ProkGAP pipelines, and MetaEuk (Levy Karin et al., 2020) for EukGAP and Pre-class EukGAP pipelines. A non-redundant
protein catalog was constructed using CD-HIT (Li and Godzik, 2006) from all predicted genes in each prediction pipelines. Gene abundances were
estimated using Salmon (Patro et al., 2017) across the pipelines. Functional annotation was performed using eggNOG (Cantalapiedra et al., 2021) and
eukaryotic protein taxonomy was re-assigned using MMseqs2 (Steinegger and Söding, 2017). Additionally, aDNA post-mortem damage workflow
including bwa (Li and Durbin, 2009), PyDamage (Borry et al., 2021), and Kraken2 (Wood et al., 2019) was applied to the assemblies.
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2.10 Numerical analysis

Numerical analyses and graphics were conducted with the

open-source software R v4.3.1 and Python v3.6.8. Venn and bar

plots were prepared using the R packages ggplot2 v3.4.2 (Wickham,

2016), and ggvenn v0.1.10 (Yan, 2024). The NGC formula which

was used to calculate the relative gene abundance from the non-

redundant gene catalogs was implemented with a custom python

script. Richness was calculated with resampling using the iNext v3

package (Hsieh et al., 2024) in R. Correlation tests between the

resampled eukaryotic KO richness and the assembly statistics were

performed with a Spearman correlation analysis in R providing

correlation coefficient and p-values using the function ggpairs in the

R package GGally v2.2.1 (Schloerke et al., 2024).

The correlation analysis was applied to the results of the

taxonomic classification with Kraken2 and the protein

classification based on the nr NCBI database using MMSeq2. The

relative abundance of plant family datasets was calculated on the

total subset of Streptophyta taxonomic assignments. The

correlation of plant family taxonomy from the pipelines was

assessed by a Spearman correlation analysis using the function

cor, and the matrix was constructed using corrplot v0.92 (Wei and

Simko, 2021).
3 Results

3.1 DNA sequencing results and
assembly statistics

In this study, 42 sediment samples collected from the Lake

Lama sediment core (PG1341) spanning the last 23,000 yr were

prepared for shotgun sequencing using a single-stranded DNA

library preparation (von Hippel, 2024). The 42 time slices can be

distinguished into Glacial (11,501 to 23,000 yr) and Holocene (50 to

11,500 yr) samples. The raw sequencing output of the 42 samples

comprises 5.54 billion reads in total. The extraction blanks yielded

18.75 million total read counts and the library blanks 74.90 million.

After deduplication, the dataset accounts for 4.59 billion total reads.

After quality filtering of merged and paired reads, the total sum of

reads is 2.94 billion (Figure 2, Supplementary Figure S1,

Supplementary Figure S2, and Supplementary Table S2). The de

novo assembly of short read data into contigs (concatenated short

reads into longer DNA contigs) is similar for the four different gene

annotation pipelines (Figure 1) applied. After de novo assembly and

error-correction of quality-checked and deduplicated merged and

paired reads, 6,910,228 contigs in total are recovered across all 42

sample depths. Although the sequence depths were normalized

when calculating abundance of genes, there is no significant

difference in the raw read and assembly statistics between the

different sequencing platforms (Wilcoxon rank sum test; p<0.05)

(Supplementary Figure S3). The total sum of reads mapped to the

contigs is 2.02 billion (Supplementary Figure S1).

The assembly step for the extraction and library blanks failed

due to the expected low quality of the sequencing data. Assembly
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statistics per lake sediment-core sample, summarizing number of

contigs, contig length, and median contig length distribution (N50)

are given in Figure 2, Supplementary Figure S1, and Supplementary

Table S3. Generally, a higher number of raw reads and contigs is

detected for the Holocene compared to the Glacial sediment

samples, but slightly longer contigs with fewer raw read counts

are detected in the Glacial samples. The median contig length over

all samples is 565 bp.
3.2 Gene annotation pipelines and
gene catalogs

After de novo assembly and four gene prediction pipelines, four

functional catalogs (Figure 3) were created. The largest functional

catalog comprising 12,878,757 redundant predicted proteins

resulted from the ProkGAP. Of these, 6,568,483 proteins (51% of

total) are clustered into the non-redundant functional catalog,

which at this stage includes prokaryotic and eukaryotic proteins.

A smaller functional catalog comprising 9,251,484 redundant

proteins is recovered by the EukGAP. About 50% of proteins

(4,631,120 proteins) cluster into a non-redundant catalog. The

prediction pipelines that include taxonomic pre-classification,

pre-classify eukaryotic and prokaryotic contigs from the de novo

assembly step. Pre-class ProkGAP was then applied on the

prokaryotic bin resulting in a functional catalog containing

11,715,853 redundant predicted proteins whereof 5,930,831

proteins (50% of total) cluster into a non-redundant functional

catalog. The Pre-class EukGAP, which was applied to the eukaryotic

bin, resulted in 494,779 redundant proteins, whereof 76% (380,105

proteins) cluster into a non-redundant functional catalog. The

results show that the largest non-redundant functional catalog is

created by ProkGAP compared to EukGAP and the predictions

based on pre-classified contigs. The smallest functional catalog is

retrieved from the Pre-class EukGAP.
3.3 EggNOG annotation and gene
abundance estimation

The total gene abundance was calculated by mapping short

reads of each sample to the non-redundant gene catalogs

(Supplementary Figure S4). Then, the gene abundance per sample

was normalized by calculating the normalized gene count (NGC)

(Figure 4, Supplementary Table S5). The normalized gene

abundances were extracted for eukaryotic and prokaryotic

datasets derived from the four prediction pipelines and its

taxonomic identity based on the eggNOG assignments. The gene

abundance variations through time for the gene annotation

pipelines are visualized in Figure 4. The annotation steps using

eggNOG reduce the size of the initial functional catalogs of the four

prediction pipelines (Figure 3). For ProkGAP, 57.14% (3,753,367)

of the non-redundant functional catalog is annotated with eggNOG,

whereof 3.56% are eukaryotic and 96.44% prokaryotic proteins. For

EukGAP, 76.17% (3,527,719 proteins) of the non-redundant
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functional catalog is annotated with eggNOG. Of these annotated

proteins, 3.95% are eukaryotic, while 96.05% are prokaryotic. For

the Pre-class ProkGAP, 59.79% (3,545,757 proteins) of the non-

redundant functional catalog is annotated with eggNOG. Although

this uses only prokaryotic contigs, still 1.89% of the annotated

proteins are of eukaryotic origin. For the Pre-class EukGAP, 78.99%

(300,240 proteins) of the non-redundant functional catalog is

annotated with eggNOG. Although using only eukaryotic contigs

in this pipeline, 79.10% of the annotated proteins originate from

prokaryotes. The normalized gene abundance of annotated proteins

within eggNOG resulting from prediction pipelines was calculated

by weighting the abundance value based on their respective non-

redundant gene catalog sizes. Across all datasets (including
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eggNOG, Gene, and KO subsets), with the exception of the

eukaryotic gene subset, ProkGAP consistently yields the highest

abundance values compared to EukGAP, Pre-class ProkGAP, and

Pre-class EukGAP (Figure 4, Supplementary Figure S5). In contrast,

within the eukaryotic gene subset, EukGAP shows slightly higher

abundance than the other pipelines (Supplementary Figure S5).
3.4 KEGG ortholog annotation
and diversity

KEGG ortholog (KO) diversity of annotated proteins was

extracted from the eggNOG output. KOs of eukaryotic and
FIGURE 2

Raw sequencing results and assembly statistics in thousands (K). Raw sequencing counts, filtered counts, total contig number, largest contig length
and median contig length (N50) in base-pairs (bp) are given across sample ages of the Lake Lama sediment core.
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prokaryotic protein subsets were compared and visualized in a

Venn diagram (Figures 5A, B) and details are given in

Supplementary Table S4. For ProkGAP, 47% of annotated

proteins result in 1,756,228 KOs whereof 5,895 unique KOs relate

to eukaryotes and 7,431 unique KOs to prokaryotes. In EukGAP,

46% of annotated proteins yield 1,609,173 KOs including 5,853

unique KOs related to eukaryotes and 7,377 unique KOs to

prokaryotes. For the Pre-class ProkGAP, 47% of annotated

proteins result in 1,662,141 KOs whereof 4,753 unique KOs relate

to eukaryotes and 7,397 unique KOs to prokaryotes. Regarding the

Pre-class EukGAP, 44% of annotated proteins result in 130,678

KOs, comprising 5,139 unique KOs related to eukaryotes and 5,212

unique KOs to prokaryotes.

In total, 6,244 unique KOs are identified for the eukaryotic

datasets whereof 3,911 KOs (62.6%) are detected in all prediction

pipelines. ProkGAP covers the largest proportion of all KOs

identified (94.41% of total KOs). EukGAP covers fewer KOs

(93.74% of total KOs). Still the highest number of unique KOs is

recovered by ProkGAP (2.7%, 171 KOs) while EukGAP, Pre-class
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EukGAP, and Pre-class ProkGAP reveal 83 (1.13%), 36 (0.6%), and

6 (0.1%) unique KOs, respectively. The comparison between

ProkGAP and EukGAP reveals a higher number of unique KOs

(348, 5.5%) in ProkGAP, whereas 306 (4.8%) unique KOs are found

using EukGAP.

In the Venn diagram representing prokaryotic protein subsets, a

total of 7,481 unique KOs is identified (Figure 5). Of these, 5,172

KOs (69.1%) are identified across all pipelines. ProkGAP covers

99.3% of all identified KOs, while EukGAP covers 98.6%. The Pre-

class ProkGAP and Pre-class EukGAP include fewer KOs at 98.9%

and 69.7%, respectively. Among these pipelines, EukGAP identifies

the highest number of unique KOs (0.5%, 35 KOs), followed by

ProkGAP (0.1%, 11 KOs), Pre-class ProkGAP (0.01%, 1 KO), and

Pre-class EukGAP (0.1%, 4 KOs). The comparison between

ProkGAP and EukGAP reveals a higher number of unique KOs

(99,1.2%) in ProkGAP than in EukGAP (45 0.6%). In total, the

dataset derived from all prediction pipelines shows that 1,465

(11.9%) KOs are shared among eukaryotes and prokaryotes. In

contrast, 4,779 (39%) unique KOs are found only in the eukaryotic
FIGURE 3

Functional protein catalogs derived from four prediction pipelines. The bar plot in thousands (K) compares the total protein/gene counts of
redundant proteins vs non-redundant gene catalog, the total count of the eggNOG annotated vs unannotated proteins of the non-redundant gene
catalog and the total count of eukaryotic vs prokaryotic orthologous genes (OG) from the eggNOG annotated catalog. Overall, ProkGAP predicted
more proteins than the other pipelines in all comparisons while EukGAP predicted slightly more eukaryotic OG proteins than ProkGAP and the other
prediction pipelines.
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subset, while 6,016 KOs (49.1%) belong exclusively to the

prokaryotic subset. Both KO subsets of normalized gene

abundance over time among the pipelines show that ProkGAP

has a higher normalized abundance (Figure 4, Supplementary

Figure S5). For the KO richness of eukaryotic protein subsets

from the prediction pipelines, ProkGAP gives higher richness

than the EukGAP and pre-class pipelines. ProkGAP outperforms

other prediction tools for the recovery of eukaryotic KO diversity

(Figure 6, Supplementary Figure S6). Pairwise Spearman

correlations reveal a strong positive correlation between

resampled eukaryotic KO richness and contig number (R=0.498,

p<0.001). All the prediction pipelines (except Pre-class EukGAP)

show a strong positive correlation trend for resampled eukaryotic

KOs richness with contig number (Supplementary Figure S7). A

Wilcoxon rank sum test on the ProkGAP data indicated a higher
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resampled eukaryotic KO richness in the Holocene (median=

2792.98) compared to the Glacial (median=2095.56) (p=0.00115).
3.5 KEGG pathway analysis

We performed KEGG pathway analysis using KO abundance

over time and focused on the Photosynthesis pathway in the

Streptophyta phylum from the eukaryotic protein subsets across

the pipelines. All the pipelines show a decreasing trend for the

abundance of KO related to the KEGG3 Photosynthesis pathway

over time (Supplementary Figure S8). The normalized gene

abundance is higher in ProkGAP compared to EukGAP and pre-

class pipelines. The coverage of KEGG3 Photosynthesis (29 KOs

recovered in total dataset) varies across the prediction pipelines
FIGURE 4

Gene abundances normalized to their gene catalog size. The temporal normalized gene count is given for the four prediction pipelines. The gene
abundance was normalized by calculating normalized gene count (NGC) in the non-redundant gene catalog in each prediction pipeline and all
subsets were derived from this abundance, respectively. In the ProkGAP, the normalized gene/protein counts resulted in the highest abundance
across the pipelines based on their catalog size and showed a similar pattern in the subsets derived from the non-redundant gene catalog, with
Glacial samples generally showing higher abundance compared to Holocene samples across all prediction pipelines.
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FIGURE 5

(A) Eukaryotic and prokaryotic KEGG ortholog (KO) diversity compared between the four prediction pipelines. The Venn diagram shows the shared
and unique proportions of KO diversity in the eukaryotic (total KOs=6244) vs prokaryotic (total KOs=7481) bin. (B) Share of KOs between all
eukaryotic and prokaryotic datasets.
FIGURE 6

Temporal richness changes (with original and resampled data) of eukaryotic KEGG orthologs (KOs) derived from the four prediction pipelines. For
resampling a minimum base count of 46,564 (ProkGAP), 63,945 (EukGAP), 41,075 (Pre-class ProkGAP), and 5628 (Pre-class EukGAP) was applied.
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showing the highest coverage of 93% (n=27) by ProkGAP and Pre-

class ProkGAP, followed by EukGAP with 86% (n=25) and Pre-

class EukGAP with 62% (n=18) (Supplementary Figure S9).
3.6 Taxonomic assignments of
eukaryotic proteins

A comparative analysis of plant protein (MMseq2) and short

read (Kraken2) taxonomic classification was used to validate the

taxonomic origin of the annotated proteins in the sediment core.

The comparison between the datasets was restricted to the relative

abundance of Streptophyta families represented in both datasets.

The predominant families, for example Betulaceae, Salicaceae, and

Rosaceae show a positive relationship between the abundances

derived from ProkGAP and Kraken2 (Betulaceae R=0.23,

p<0.001, Salicaceae R=0.76, p<0.001; Rosaceae R=0.93, p<0.001)

(Supplementary Table S6).
3.7 Ancient DNA authentication
using PyDamage

We evaluated a total of 6,910,228 contigs using PyDamage.

Eukaryotic and Streptophyta contigs were filtered out, resulting in

600 contig lengths with a prediction accuracy of 0.5 for further

filtering. After applying these filters, 238,327 eukaryotic contigs and

29,883 Streptophyta contigs remained in the dataset. The filtered

subsets comprise 3,629 eukaryotic taxa and 647 Streptophyta taxa,

respectively. A total of 179,682,955 reads were mapped to the

eukaryotic contigs, while 15,003,880 reads were mapped to the

Streptophyta contigs. The mean 5′ damage results for these contigs

are shown in Supplementary Figures S1OA, B. Additionally, we

analyzed the first position of C-to-T substitution frequency and

performed a linear regression analysis over time, as shown in

Supplementary Figures S10C, D. Our analysis reveals a weak but

significant relationship between C-to-T substitution frequency at

the first position over time for both datasets (Eukaryotes: R=0.11,

p<0.001; Streptophyta: R=0.1, p<0.001).
4 Discussion

4.1 Size variation of the assembly and the
functional gene catalogs

The high abundance of short reads and low coverage of

eukaryotic genomes in the metagenomic assembly is challenging

for gene annotation. In our pipeline, we used a minimum contig

length of 300 bp compared to 600 (or even higher) in modern DNA

assemblies (Chen et al., 2021; Karlicki et al., 2022). This allows us to

keep the majority of contigs in our dataset (54.80% contigs from

total contigs are between 300 and 600 bp). Short contigs (<1000 bp)

in modern data are typically excluded prior to eukaryotic gene

annotation due to a higher likelihood of mis-annotations (Belliardo

et al., 2022), because the median protein length of eukaryotes is
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about 350 amino acids (Nevers et al., 2023). However, short amino

acids (<100 bp) present partial conservative genes or small proteins

of unknown relevance (Steinberg and Koch, 2021) that can still

provide functional information. Our time-series data shows

variation of N50 and the largest contigs. The reason for the

varying length of contigs can be explained by the DNA quality,

which depends on the DNA preservation in the sediments. DNA

preservation depends on the environmental conditions during the

burial of DNA. After burial, DNA degrades with increasing age

resulting in higher fragmentation (McGaughran, 2020) and

modifications (post-mortem damage patterns) on the DNA

strands (Briggs et al., 2007). Especially during glacial times, DNA

preservation can be enhanced due to the presence of minerals

facilitating the binding and stabilization of DNA onto sediment

particles (Pedersen et al., 2015) Further, lower temperatures and

slightly alkaline lake water conditions are beneficial for DNA

preservation (Jia et al., 2022).

We demonstrate an increased contig number (Figure 2) in

Holocene samples (r=0.7, p<0.001), assuming an increased

community complexity. This is supported by the fact that more

plant and fungal taxa were detected by metabarcoding data

throughout the Holocene (von Hippel et al., 2022). Generally, soil

metagenomes are complex (Naylor et al., 2020; Leite et al., 2022)

due to their taxonomic richness compared to low-diversity

environments such as extreme habitats including thermal springs

(Pedron et al., 2019) or host-gut studies from modern (Ma et al.,

2020; Qin et al., 2010) or ancient humans (Wibowo et al., 2021).

Along with the contig size and abundance, the gene catalog size

from complex soils is assumed to be larger than from low-diversity

samples (Howe et al., 2014; Ma et al., 2023). However, the number

of eukaryotic proteins from soil or sediment is largely unknown. In

our data, we retrieved the largest non-redundant eukaryotic gene

catalog (derived from all 42 sediment samples) from the EukGAP

(139,026), while ProkGAP provides slightly fewer eukaryotic

proteins (133,288). About half are identified in the Pre-class

ProkGAP (67,015) and Pre-class EukGAP (63,050) approaches.

To date, only a few studies have considered eukaryotic

functional gene diversity from modern metagenomic data (Zhu

et al., 2021; Belliardo et al., 2022; Saraiva et al., 2023). More than 100

million eukaryotic gene clusters – the largest gene catalog dataset –

from the global ocean is presented by Carradec et al. (2018). In

comparison to our study, Zhu et al. (2021) report a dataset of 70,291

non-redundant marine eukaryotic genes from metagenomic

samples taken from different water depths in the ocean, reaching

a maximum of 10,500 meters. They used MetaEuk to predict

eukaryotic genes instead of Prodigal, and also employed Eukrep,

another eukaryotic contig separation tool. However, they also state

that some non-eukaryotic proteins were found in those contigs later

and removed them from their catalog. Notably, their non-

redundant gene catalog was created using a 97% similarity

threshold, while we used a minimum 95% similarity level to

create our non-redundant gene catalog, consistent with previous

catalog studies (Almeida et al., 2021; Chen et al., 2021;

Commichaux et al., 2021).

To find the optimal gene prediction tool for sedaDNA data

analysis, we implemented two different gene prediction tools in four
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Çabuk et al. 10.3389/fevo.2025.1459690
bioinformatic pipelines. Despite being originally designed for

prokaryotes, Prodigal within the ProkGAP was identified as the

optimal choice for analyzing sedaDNA samples, exhibiting a better

overall performance and yielding a greater number of potential

predicted genes in total.

The deep learning-based contig classification (pre-classification

GAPs) method shows promise but requires refinement for accurate

segregation of short contigs. This is crucial before it can effectively

be applied to sedaDNA data. We found missassignments at the

contig separation level for 300 bp length which we assessed in the

eggNOG annotation step. Although Tiara has demonstrated

superior performance on longer contigs to separate eukaryotes

(e.g., Karlicki et al., 2022; Gabrielli et al., 2023), our findings

confirm the results of Karlicki et al. (2022) and indicate its

suboptimal performance on predominantly short contig lengths.
4.2 Protein diversity in eukaryotes

To understand protein diversity, we annotated the non-

redundant proteins using the eggNOG database in order to gain

the KEGG ortholog (KO) diversity. The ProkGAP demonstrates

better efficiency in recovering protein diversity in eukaryotes

compared to the other prediction pipelines. The recovery of high

protein diversity in KOs is highly important for inferring

biogeochemical or biological pathways in the community and has

been applied to understand, for example, soil-microbe systems and

their response to plant organic carbon sources (Neal et al., 2020).

We recovered 5,895 eukaryotic unique KOs using ProkGAP from

42 sample ages, which is comparable to prokaryotic KO diversity

from spatially diverse soils (Neal et al., 2020). Using EukGAP for

protein diversity estimates might result in lower KO orthologs

diversity (Hoff et al., 2008) as it applies a homology-based

approach, which uses pre-existing reference databases limiting the

detection of potential KOs.

Besides KO diversity, protein diversity can be estimated by

using protein family (Pfam) domains which are integrated into

various bioinformatic annotation pipelines, such as eggNOG and

InterproScan. InterproScan allows for the functional annotation of

protein by searching sequences against multiple motifs and protein

databases (Jones et al., 2014). It includes Pfam (Mistry et al., 2021),

SMART (Letunic and Bork, 2018), TIGRFAMs (Haft et al., 2003),

and SUPERFAMILY (Pandurangan et al., 2019), but does not allow

for KEGG and CAZy annotations. A fully-integrative gene

annotation procedure including all existing reference databases is

still missing, but would allow the improvement of the identification

of gene functions in general, giving better estimates of gene diversity

especially from complex and fragmented environmental DNA.

Protein diversity in our data estimated by the resampled KO

richness in our time-series data indicates an increasing KO diversity

over time, which supports the appearance of a more taxonomic and

functionally diverse eukaryotic community. Our results align with

Zhu et al. (2021) who find a higher abundance of annotated genes in

the deeper ocean zones characterized by more extreme conditions

compared to surface zones. Our dataset shows concordance with

these findings in Glacial samples, which represent more extreme
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conditions and, in contrast, we observe increased functional

richness during the Holocene period, coinciding with changing

environmental conditions.

Incomplete KEGG pathways resulting from losses during gene

prediction (Supplementary Figure S9) can affect the quantitative

representation of the pathway as a whole and this may lead to

misinterpretation (Albright et al., 2019). Therefore, it is crucial to

recover KOs within KEGG pathways to accurately interpret

abundance changes in sedaDNA over time. We show all KOs

recovered from the Streptophyta Photosynthesis pathway in

Supplementary Figure S9 and obtain the most complete pathway

from the ProkGAP and Pre-class ProkGAP compared to the other

prediction pipelines.
4.3 Taxonomic identity of
functional proteins

We used MMseqs2 to improve taxonomic classification,

because eggNOG classifications may not be sensitive enough to

taxonomically classify proteins. Functional protein databases such

as eggNOG can provide insights into the functions of the organisms

or community. However, because eggNOG focuses on well-

characterized proteins from model organisms, and representative

genomes may limit the taxonomy of the protein, especially for

eukaryotes (Frioux et al., 2020), it still provides high confidence

about the functions because the proteins are shared by different

organisms defined as orthologs (Koonin and Galperin, 2003). In

order to expand our taxonomic information for eukaryotic proteins

from eggNOG, we used the NCBI nr database and focused on plant

proteins. We applied the dual BLAST last common ancestor

(2bLCA) to assign taxonomic labels to the eukaryotic functional

proteins. This approach involves a two-step BLAST process, where

the best hit is used in a second round of search to identify

homologous sequences. The taxonomic classification is finally

determined by the lowest common ancestor (LCA) of the

homologous hits. We applied an E-value ≤ 10-5 (default = 1) for

the initial search, and ≤ 10-12 (default) for the second search to

increase the confidence of the taxonomic validation of the

functional proteins (Hingamp et al., 2013; Steinegger and

Söding, 2017).

To assess the similarity between our functional protein

taxonomy from Mmseqs2 and short-read based DNA sequence

taxonomy from Kraken2, we compared their respective

abundances. The comparison reveals a strong positive correlation

(for example, Rosaceae R=0.93, p<0.001, shown in Supplementary

Table S6) over time between the ProkGAP and Kraken2 pipelines,

specifically within the dominant plant families.
4.4 Improvements of GAP for
sedaDNA data

Sequencing depth plays a crucial role in revealing low-

abundance species or genes within sedaDNA data, particularly for

assembly-based approaches (Ma et al., 2023) and their associated
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gene annotation pipelines. Our analysis of deeper sequenced

samples demonstrates a positive correlation between raw read

count and contig length (Figure 7), suggesting need for sufficient

sequencing depth to capture a more comprehensive snapshot of the

ancient community.

While the mapping and assembly approaches have their merits

and drawbacks, assembly offers advantages such as more compact

data, longer sequences, and the potential discovery of novel

sequences absent from existing databases (Lapidus and

Korobeynikov, 2021). However, in highly diverse sedaDNA

datasets, the assembly process favors dominant taxa because their

higher abundance results in more sequencing reads, which provide

better coverage and overlap for assembly algorithms. This can lead
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to longer sequences from dominant taxa, while sequences from low-

abundant taxa may be fragmented or poorly represented, hindering

the detection of rare taxa with specific ecological roles (Lin et al.,

2022). Although the focus of this study is not specifically on

assemblers, it is important to point out that assembler selection

plays an important role in metagenomic analyses (Zhang et al.,

2023). Currently, there are multiple assembly approaches available

(Liao et al., 2019), and the performance of each assembler can vary

depending on the specific characteristics of the sample (Forouzan

et al., 2018). Optimizing the choice of the assembler for each sample

can be a challenging task (Mendes et al., 2023). One potential

solution to address this issue is the application of machine learning

techniques. By analyzing raw data features—such as GC content,
FIGURE 7

Pairwise Spearman correlations testing the relationship between age (cal years BP), resampled eukaryotic KEGG ortholog (KO) richness (ProkGAP
prediction), number of contigs (N), median contig length (bp), and short read counts over time. Correlation coefficient and p-values (*0.05; **0.01;
***0.001; no star non-significant) are given in the upper right corner.
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repetitive sequences, sequencing depth, and fragment length

variation in different k-mers—machine learning models could

help identify the most suitable assembler for a given dataset.

These models could enable the benchmarking of assemblers based

on sedaDNA dataset-specific characteristics, thereby improving the

efficiency and accuracy of the assembly process. Another challenge

related to the assembly step is chimerism. Particularly, in complex

communities with closely related taxa, genome similarities can

result in insufficient coverage of individual genomes (Orakov

et al., 2021; Chang et al., 2024). This can lead to erroneous

joining of sequences into a single contig. MEGAHIT addresses

chimerism by distinguishing reliable sequences (solid k-mers) from

less common ones (mercy k-mers) and iteratively refining

assemblies by removing errors such as disconnected branches,

redundant paths, and low-quality connections. While stringent

assembly parameters (k-mer occurrences, –min-count > 3, or –

no-mercy) might mitigate chimerism, they risk significant data loss

or low abundance species, especially for low-depth sequencing

depth (Li et al., 2015). For eukaryotic contigs, direct chimerism

assessment tools are lacking; manual evaluation using BLASTn

(Camacho et al., 2009) against nucleotide databases can identify

heterogeneity within contigs, allowing for filtering of potential

chimeric sequences based on stringent similarity thresholds.

Generally, the detection of new genes using de novo assembly is

promising, only 2.04% of the total predicted genes by ProkGAP are

eukaryotic. Although there are specific prediction tools for

eukaryotic genes, for example, AUGUSTUS (Stanke et al., 2004)

and Gene-Mark (Bruna et al., 2020), the requirement of genome-

specific models for high accuracy rates (DiMonaco et al., 2022)

make them unsuitable for complex metagenomic data such as

sedaDNA shotgun data. Therefore, improving gene prediction for

complex and low-quality metagenomic data requires the

applicability of taxon-specific prediction tools on big datasets and

the completeness of reference databases, particularly for

eukaryotic functions.

The combination of existing gene annotation tools selected

according to their suitability for complex and low-quality data

contributes to the implementation of a functional gene prediction

pipeline suitable for ancient sedimentary DNA time-series data. Our

approach is a first baseline for the analysis of functional diversity

including prokaryotic and eukaryotic genes at the same time.

However, future developments are needed to further improve

prediction for low-abundant taxa allowing unbiased gene

identification for understanding functional changes of past ecosystems.
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