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Optical remote sensing (RS) enables the study of the elemental composition of Earth’s

surface over broad spatial extents by detecting reflected electromagnetic radiation.

Covalent bonds ofmacromolecular structures often reflect electromagnetic radiation

at specific wavelengths, and in some cases relate to bonds of specific elemental

identity. In other cases, interfering optical properties greatly impact the ability of RS to

measure elements directly, but advances in statistical methods and the theoretical

understanding of optical properties expand the capacity to quantify diverse elements

in many systems. When applied under the framework of ecological stoichiometry,

spatially and temporally explicit measurements of elemental composition permit

understanding of the drivers of ecological processes and variation over space and

through time. However, the multitude of available technologies and techniques

present a large barrier of entry into RS. In this paper we summarize the capabilities

and limitations of RS to quantify elements in terrestrial and aquatic systems. We

provide a practical guide for researchers interested in using RS to quantify elemental

ratios and discuss RS as an emerging tool in ecological stoichiometry. Finally, we pose

a set of emerging questions which integrating RS and ecological stoichiometry is

uniquely poised to address.
KEYWORDS
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Introduction

Ecological stoichiometry seeks to understand the drivers of ecological patterns by

studying the flux of chemicals and energy within organisms and ecosystems. Research in

this field focuses on how the elemental composition of organisms and their environment

influences biological processes and how these processes scale to higher levels of organization.
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Originally proposed by Sterner and Elser (2002), ecological

stoichiometry bridges the gap between individual organismal

physiology and broader ecological processes to understand how

elemental imbalances drive growth, reproduction, and survival of

individual organisms and how in turn, the life-history of these

organisms affect the nutrient availability, biogeochemical cycling

and productivity across ecosystems. The Redfield ratio, for instance,

is a specific, widely observed ratio of carbon, nitrogen, and

phosphorus (C:N:P) in marine phytoplankton (106:16:1), and

deviations from this ratio indicate nutrient limitation and altered

oceanic biogeochemical processes (Redfield, 1958). Ecological

stoichiometry has been applied across diverse ecosystem types and

levels of biological organization, from terrestrial vegetation-soil

interactions (e.g., Zeng et al., 2016) to whole lake food webs

(e.g., Elser et al., 2000).

Ecological stoichiometry continues to grow in importance as

environmental change, such as eutrophication and shifts in climate,

increasingly disrupts the elemental balances that sustain ecosystems.

Yet traditional methods of quantifying elemental ratios, mainly

chemical analysis from point samples, present significant logistical

challenges when applied to large-scale analyses. Optical remote

sensing (RS) provides a powerful alternative, enabling the study of

ecological stoichiometry across spatially continuous gradients and

through time. Using sensors mounted on satellites, rotary or fixed-

wing drones, RS captures electromagnetic radiation emitted by the

sun and reflected from the Earth's surface (Figure 1). Patterns of

absorption and transmission across the visible to short-wave infrared

spectrum (400–2500 nm) provide information about the physical and

chemical properties of the Earth's surface. Understanding the

relationship between the spectral properties of plants, soils and
Frontiers in Ecology and Evolution 02
their elemental composition has a relatively long scientific history

(Gates et al., 1965; Knipling, 1970). Specific reflection and absorption

features in these wavelengths have been directly linked to a leaf’s

concentration of cellulose, lignin, chlorophylls, nitrogen, starch, oils,

proteins, and water (Curran, 1989). For example, N in leaves, bound

in chlorophyll and proteins, is associated with specific wavelengths in

the visible to near-infrared (NIR) regions (460–480 nm, 650–670 nm,

and 1510–1600 nm; Kokaly, 2001; Smith et al., 2003). Similarly, soil

moisture content produces strong absorption features in the short-

wave infrared region, particularly at 1400 nm, 1900 nm, and 2200 nm,

while high levels of soil organic matter results in lower reflectance at

1700 nm and 2100–2300 nm, linked to the presence of carbon-based

compounds (Hunt and Salisbury, 1971; Ben-Dor et al., 1997).

By analyzing ecological samples for nutrient content, statistical

models can link the spectral reflectance of samples directly to

elemental composition. When applied to each pixel across an

image, these models can scale up point samples (known as

‘ground truth measurements’) to create spatially continuous maps

displaying elemental composition across both space and time. Maps

of plant, soil and water elemental composition produced using RS

span local to global scales (e.g., Aguirre-Gutiérrez et al., 2021; Asner

et al., 2016; Song et al., 2023; Switzer et al., 2003), driving insights

across ecosystems. Detailed maps (spatial resolution 0.05 – 5 m) of

plant C, N, P, as well as lesser-studied elements such as calcium,

potassium, magnesium and sodium reveal patterns of nutrient

distribution across temperate and tropical forests (Loozen et al.,

2020; Thomson et al., 2018), African savannah (Mutanga and

Kumar, 2007), grasslands (Rakotoarivony et al., 2024) and

agricultural systems (e.g., Costa et al., 2022; Blekanov et al., 2023).

Similarly, soil elemental maps and maps of chlorophyll-a and
FIGURE 1

Conceptual diagram depicting light-matter interactions in a leaf and detection by remote sensing platforms. Created in BioRender: BioRender.com/
c66i213. Platform image from Adobe Stock. Spectra adapted from Figure 1a in Li et al. (2023), published under Creative Commons license (https://
creativecommons.org/licenses/by/4.0/).
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suspended sediment in water bodies increase understanding of how

stoichiometric constraints shape ecosystem function (e.g., Zhang

et al., 2019; Tanioka et al., 2022). Monitoring change in elemental

composition through time enables insights into seasonal changes

(e.g., van Deventer et al., 2015), climate-driven environmental shifts

(e.g., Calizza et al., 2022) and pollution events (e.g., Choe et al.,

2008; Singh, 2024).

Growing public and commercial availability of imagery and

continuing technological advancements supports the development

of remote sensing for ecological stoichiometry. Yet, RS remains

underutilized in ecological stoichiometry. While the number of RS

publications has increased significantly over the past two decades,

only a modest number of studies apply RS techniques directly to

ecological questions, indicating a significant gap in integration

between these fields (Pettorelli et al., 2014). Most RS research

tends to be methodological, often published in specialized remote

sensing journals rather than in ecology or stoichiometry-focused

journals, limiting the exposure of ecologists to these tools.

Consequently, many ecologists are unfamiliar with how to

effectively apply RS in their research. While there is an increasing

amount of open-source technology, and accompanying user guides

to help researchers wishing to use optical RS, knowledge of which

imagery to acquire, what ground-truth data to collect, and how to

combine the two often constitute a high barrier to entry into this

field (Schmidtlein et al., 2012). However, leveraging RS to scale up

findings from localized studies is essential to test ecological

stoichiometry theories across broad spatial and temporal scales.

Addressing the integration of RS as a practical tool within the field

of ecological stoichiometry is therefore fundamental for furthering

stoichiometry research in an era shaped by environmental change

(Buchhorn et al., 2020).

The goals of this work are to: 1) Discuss the current capabilities

and limits of RS to quantify elements across terrestrial and aquatic

systems, 2) Provide a practical guide for applying RS to study

ecological stoichiometry at broad extents, and 3) Suggest future

research avenues employing RS to advance the field of

ecological stoichiometry.
Current capabilities and limitations

Terrestrial ecosystems

The first applications of RS in terrestrial stoichiometry began

with handheld spectrometers to measure the spectral reflectance of

vegetation and soils in the field. Early spectroradiometric research

details how absorption features across the electromagnetic

spectrum relate to specific covalent bonding dynamics, like

stretching or bending in the C - H bonds in starch, or N - H

bonds of protein (e.g., Baumgardner et al., 1986; Curran, 1989;

Fourty et al., 1996), and how these spectral features are useful in

deriving elemental concentrations (e.g., C or N). The launch of

Landsat in 1972, the first satellite-based multispectral sensor, marks

the beginning of large-scale environmental mapping, with

foundational spectroradiometric research applied to Landsat

images to map the ecological stoichiometry of natural ecosystems,
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soils, and agricultural systems. In 1986, the first imaging

spectrometer mounted on a NASA aircraft, with 224 spectral

bands, improved both spectral and spatial resolution of optical

imagery and facilitated production of high resolution maps of forest

elemental composition (e.g., Townsend et al., 2003). However,

aircraft-mounted sensors are unavailable to most researchers,

whereas the miniaturization of optical sensors and the rise of

drones supports the democratization of high-resolution imagery,

allowing researchers greater flexibility to study diverse ecosystems

and elements.

Leaf N is a key element frequently measured in terrestrial

ecosystems due to its influence on photosynthetic pigments,

detectable through the red edge and NIR portions of the

spectrum (Wessman et al., 1988; Curran, 1989; Fourty et al.,

1996; Curran et al., 1997; Martin and Aber, 1997; Kokaly et al.,

2009). Leaf C is derivable through its effect on leaf structure

components such as cellulose, starch, and lignin (Peterson et al.,

1988; Martin and Aber, 1997; Serrano et al., 2002; Wang et al., 2015;

Buitrago et al., 2018; Féret et al., 2021). Alternatively, leaf P is

present mostly in energetic and genetic molecules (e.g., NADPH

and DNA), and low P concentrations typical of leaves do not

directly relate to leaf chromophores (Porder et al., 2005; Mutanga

and Kumar, 2007; Homolová et al., 2013; Mandelmilch et al., 2021).

However, methods which quantify P using indirect spectral

chromophores in the NIR-SWIR regions demonstrate relatively

high accuracy (R2 = 0.54 – 0.96) in spectral P prediction

(Mandelmilch et al., 2021). Previous research suggests that water

and canopy structure affect P quantification via detection of indirect

chromophores, especially in SWIR regions, and that methods

accounting for the spectral influence of water and structure

perform better than those which do not (Porder et al., 2005;

Mutanga and Kumar, 2007; Knox et al., 2011; Homolová et al.,

2013; Houborg et al., 2015; Mandelmilch et al., 2021).

Many RS approaches to quantify plant elemental composition

originate from agricultural studies, as nutrient management is

critical for optimizing yield and sustainability, making accurate

nutrient measurement a priority (Haboudane et al., 2004; Huang

et al., 2021; Lu et al., 2021). Under laboratory conditions, Pandey

et al. (2017) found good-to-high prediction accuracy (R2 > 0.60-

0.92) between maize and soybean spectra and leaf N, P, potassium

(K), magnesium (Mg), calcium (Ca), sulfur (S), iron (Fe),

manganese (Mn), copper (Cu), and zinc (Zn) content, but poor

prediction accuracy (R2 < 0.3) for boron (B) and sodium (Na). In

monocultural settings, where plant species are homogeneous,

changes in spectral signatures are potentially attributable to

differences in elemental content. However, in more natural

ecosystems, the diversity of plant species presents challenges for

researchers. Across 96 tropical forest species, Asner et al. (2011)

found satisfactory-to-good prediction accuracy (R2 = 0.4 – 0.77)

between leaf spectra and leaf N, P, C, soluble C, K, Ca, Mg, B and Fe

but poor prediction accuracy (R2 < 0.3) for Zn and Mn. See Table 1

for a comprehensive list of target ecological elements retrieved

from RS.

Most remote sensing studies tend to focus on the retrieval of

individual elements rather than element ratios. While ratios are a

major focus of ecological stoichiometry, single-element estimates
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are essential precursors to calculating stoichiometric ratios. Some

studies successfully extract plant C:N ratios from RS imagery (e.g.,

Thomson et al., 2021). However, combining remotely-sensed

elements to form ratios requires that models of each element are

independent of each other and do not rely on the same correlator

(e.g., similar wavelengths) for predictions (Porder et al., 2005).

Many aspects of leaf structure and canopy organization similarly

relate to patterns of nutrient allocation, and separating the

individual influences of elements on spectra (e.g., to measure

stoichiometry) thus requires great care (Ollinger, 2011;

Mandelmilch et al., 2021).

Scaling up spectra-element models with satellite and airborne

imagery, spatially continuous maps of foliar chemistry reflect spatial
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gradients in temperature (Moreno-Martı ́nez et al., 2018),

precipitation (Thomson et al., 2018), soil type (Asner et al., 2016;

2017) and species (Gholizadeh et al., 2022). These maps improve the

accuracy of ecosystem models by providing spatially explicit data on

key nutrients. RS-derived data informmodels of primary productivity

and nutrient cycling across landscapes by integrating maps of plant

nutrients and associated functioning into large-scale biogeochemical

models (Yang et al., 2015; Wieczynski et al., 2022). Despite the large

potential for RS to improve biogeochemical modeling estimates,

more work in this area is required (Abraham et al., 2023).

Across exposed soils, RS techniques commonly measure properties

such as mineral composition, texture, iron content, moisture levels,

organic carbon, salinity, and carbonate concentrations (Mulder et al.,
TABLE 1 Select examples of terrestrial studies demonstrating the capacity to quantify diverse elements.

Target Element Citations

Plants

Carbon (C) Asner et al. (2015); Chadwick et al. (2020)

Nitrogen (N)
Asner et al. (2015); Chadwick and Asner (2016); Chadwick et al. (2020); Gamon et al. (1997); Martin and
Aber (1997); Ollinger (2011); Martin et al. (2008); Mahajan et al. (2014); Thomson et al. (2018)

Phosphorus (P)
Asner et al. (2015); Chadwick and Asner (2016); Mandelmilch et al. (2021); Kawamura et al. (2011); Lu
et al. (2021); Mahajan et al. (2014); Thomson et al. (2018)

Sulfur (S Mahajan et al. (2014)

Boron (B) Asner et al. (2015)

Calcium (Ca) Asner et al. (2015); Chadwick and Asner (2016); Thomson et al. (2018)

Iron (Fe) Asner et al. (2015)

Potassium (K)
Asner et al. (2015); Chadwick and Asner (2016); Kawamura et al. (2011); Mahajan et al. (2014); Mutanga
and Kumar (2007)

Sodium (Na) Mutanga et al. (2004)

Magnesium (Mg) Asner et al. (2015); Chadwick and Asner (2016); Thomson et al. (2018)

Soils

C Stevens et al. (2008); Grinand et al. (2017)

N Xu et al. (2018); Zhang et al. (2019)

P Bajwa and Tian (2005)

Ca Bajwa and Tian (2005)

K Bajwa and Tian (2005)

Na Wang et al. (2022)

Mg Bajwa and Tian (2005)

Fe Fang et al. (2018)

Copper (Cu) Peng et al. (2016); Lamine et al. (2019); Shokr et al. (2016); Fang et al. (2018)

Zinc (Zn) Lamine et al. (2019); Peng et al. (2016); Shokr et al. (2016); Sun et al. (2022)

Nickel (Ni) Peng et al. (2016); Shokr et al. (2016)

Arsenic (As) Boente et al. (2020); Liu et al. (2019); Peng et al. (2016)

Cadmium (Cd) Liu et al. (2017); Liu et al. (2019)

Chromium (Cr) Peng et al. (2016); Shokr et al. (2016)

Mercury (Hg) Boente et al. (2020); Liu et al. (2017); Liu et al. (2019)

Lead (Pb) Peng et al. (2016); Lamine et al. (2019); Liu et al. (2017)

Vanadium (V) Shokr et al. (2016)
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2011). Studies of soil chromophores, such as iron oxides, clay,

carbonates, water, and soil organic carbon (SOC), demonstrate

strong relationships between these components and optical soil

reflectance, and relationships between reflectance and many mineral

and pollutant elements in soils show promising performance (Ben-Dor

et al., 1997, 1999; Gomez et al., 2012; Castaldi et al., 2016; Yu et al.,

2020). RS retrieval of soil properties displays better performance at local

and regional scales, particularly when soils are exposed, and vegetation

cover and moisture levels are minimal (Escribano et al., 2017).

One significant constraint is that RS captures only the surface of

ecosystems, such as the canopy layer in forests, while leaving the

understory unsampled, where distinct stoichiometric dynamics may

occur (e.g., Martin et al., 2020). Similarly, in soils, optical remote

sensing detects only surface strata, often missing deeper layers

where nutrient cycling, microbial activity, and elemental

dynamics may differ (Hagen-Thorn et al., 2004; Mulder et al.,

2011; Hengl et al., 2017). Radar-based remote sensing penetrates

deeper into forests and soils but is limited in its ability to provide

stoichiometric data, as it measures physical structure rather than

elemental composition. In densely vegetated areas, inferring below-

ground stoichiometry from aboveground optical data remains a

challenge (Cavender-Bares et al., 2022; Rakotoarivony et al., 2024)

and typically relies on indirect retrievals using soil indicators, such

as plant functional groups as proxies (see Escribano et al., 2017 and

Mulder et al., 2011 for a review).

Links between the stoichiometry of producer organisms (plants

and soils) and consumers (animals) remains an area relatively

unexplored using remote sensing. Animals play a key role as vectors

of nutrients across landscapes, and mediate biogeochemical processes

through their influence on NPP, ecosystem structure and soil physical

and chemical properties. Remote sensing may therefore quantify

zoogeochemical effects (Schmitz et al., 2018; Abraham et al., 2023).

Some work uses active remote sensing, particularly LiDAR, to assess

animal impacts on ecosystem structure and carbon stocks (e.g.,

Petersen et al., 2023; Davies and Asner, 2019; Russo et al., 2023), but

fewer studies employ optical remote sensing to study the impact of

animals on ecological stoichiometry. Exceptions include Thomson

et al., 2021, who investigated the impact of seabird guano on plant

nutrient status and Román et al., 2023, who investigated the effect of

penguin guano on vegetation chlorophyll production. Thus, there

remains a significant gap in understanding how spatial variation in

producer stoichiometry cascades through ecosystems and how

consumer behavior feeds back to producer stoichiometry, which RS

is well-suited to address. Previous efforts to investigate these

relationships link the distribution of consumers to resource

stoichiometry (see Leroux et al., 2017; Hurley et al., 2014 and

Pettorelli et al., 2011 for a review), but more work is needed to

directly link remotely-sensed stoichiometric data to animal

distributions, performance, and subsequent patterns in ecosystem

function (Ellis-Soto et al., 2023; McLeod et al., 2024).
Aquatic ecosystems

The theoretical basis of RS does not differ between terrestrial

and aquatic systems, allowing for elemental measures to be derived
Frontiers in Ecology and Evolution 05
from several optical targets in water (Table 2). However, differences

in the optical properties of fluid and gaseous media, and the ability

to isolate image targets from media, greatly influence which

elements may be quantified and which methods are successful in

each system. In aquatic systems, Radiative Transfer Theory is used

to mathematically model how electromagnetic radiation interacts

with water and its constituents (e.g., sediments, plankton, dissolved

organic matter, etc.) to estimate inherent optical properties (IOPs)

and apparent optical properties (AOPs) (Mobley, 1994). These

models, known as Radiative Transfer models (RTMs), simulate

the absorption and scattering, estimate light propagation, and

account for reflection and refraction at the surface-water interface

(more details provided in Dickey et al., 2006). RTMs are used to

estimate IOPs from AOPs with specific environmental parameters,

i.e., direct models, and estimate the spatial and temporal structure

of IOPs from normalized spectral water leaving radiance, i.e.,

inverse models (Dickey et al., 2006). Relationships between IOPs

and AOPs can collapse during periods of low sun angle, high

concentration of bubbles, and high densities of reflective

organisms (e.g., coccolithophores and coccoliths) (Stramska and

Frye, 1997; Zhang et al., 1998; Zheng et al., 2002).

Based on AOPs, aquatic systems are classified into two

categories: Case 1 and Case 2. Case 1 primarily consists of the

open ocean, while Case 2 waters tend to be shallow coastal and

inland waters, where optical properties capture phytoplankton (as

Chlorophyll-a), CDOM, and detritus (Wei et al., 2022). In Case 2

waters, suspended particles, minerals, CDOM, and microbubbles

impact spectra, and it is more challenging to spectrally detect
TABLE 2 Select examples of aquatic studies demonstrating the capacity
to quantify diverse elements.

Target Element Citations

Chl-a

C
Tanioka et al. (2020); Shang et al.
(2021), LaCapra et al. (1996)

N Arteaga et al. (2015)

P Wu et al. (2010)

CDOM
C

Swan et al. (2009); Brezonik et al.
(2015); Ross et al. (2019); Zhao (2024)

N Zhao (2024)

Suspended
Sediment

C Shang et al. (2021)

N Sun et al. (2014)

P Shang et al. (2021); Song et al. (2012)

Cu Krishnakumar et al. (2021)

Cr Krishnakumar et al. (2021)

Fe Krishnakumar et al. (2021)

Ni Krishnakumar et al. (2021)

Zn Krishnakumar et al. (2021)

Aluminum (Al) Krishnakumar et al. (2021)

Other
Ca Heine et al. (2017)

Oxygen (O) Wang et al. (2010)
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biological and chemical properties. Many inland freshwater systems

are small and spatially complex, requiring moderate to small pixel

sizes, although RS of large lakes is feasible with coarser resolution,

satellite data (Hestir et al., 2015). It should be noted that Case-1 and

Case-2 waters reflect broad categorization of optical properties of

diverse water bodies. Recent work has formally classified water

bodies globally into 13 distinct optical water body types based on

specific combinations of bio-geo-optical characteristics that

maximize differences in the spectral shape and magnitude of RS

reflectance (Spyrakos et al., 2018; Neil et al., 2019).

Chlorophyll-a (Chl-a) is often used as a proxy for

phytoplankton production in aquatic ecosystems and is one of the

most optically active variables across systems (Blondeau-Patissier

et al., 2014). Primary producers assimilate C from the atmosphere

into biomass, supplying energy for consumers and substrate for C

burial in sediments (Pacheco et al., 2014). With the advent of

satellite-based hyperspectral sensors, algorithms that utilize the

entire spectral reflectance range can provide more accurate

estimates for Chl-a as compared to multispectral and IOP

inversion methods (Zhou et al., 2014; Pahlevan et al., 2021).

Further enhancements are expected in the spectral capability to

estimate primary production across aquatic ecosystems with the

launching of NASA’s Plankton, Aerosol, and Cloud Ecosystem

(PACE) this year (NASA 2024). Despite the large amount of

work demonstrating that optical properties enable and limitations

constraining quantification of Chl-a in aquatic systems, obtaining

stoichiometric information from Chl-a is challenging. There are no

direct methods for estimating C, N, P or other elements from

spectral responses and concentrations of these elements must derive

from models (i.e., RTMs) combining Chl-a concentrations with

other environmental variables (e.g., sea surface temperature).

Dissolved organic matter (DOM) contains autochthonous and

allochthonous detritus, as well as allochthonous refractory material

from melting permafrost and pyrogenic (black) carbon, and DOM

plays a critical role in the global C cycle (Battin et al., 2008; Dittmar and

Paeng, 2009; Dittmar et al., 2012; Coppola et al., 2022; Kong et al., 2024;

Ruben et al., 2024). Chromophoric dissolved organic matter (CDOM)

is an optically measurable portion of DOM in aquatic ecosystems

(Brando and Dekker, 2003), which impacts chemical, physical, and

biological processes in the water column. Waters with high CDOM

concentrations tend to appear colored and can look green-yellow or

brown (Aiken et al., 1985). A summary of the various spectral bands

and measurements used for remotely estimating CDOM is provided by

Gholizadeh et al. (2016). In contrast to pure water, CDOM absorbs

short wavelengths of solar radiation (Brezonik et al., 2015). CDOM is

particularly rich in C but contains other elements in abundance as well

(e.g., oxygen, hydrogen, N, S, and P; Xenopoulos et al., 2021). Shifts in

the optical properties of CDOM have been linked to variation in

nutrient concentrations (e.g., N, P; Shang et al., 2021), but relationships

between CDOM absorbance and nutrient concentrations are rarely

used for predicting nutrient concentrations (Zhao, 2024). However,

CDOM composition is optically apparent in a lab setting (Nebbioso

and Piccolo, 2013), suggesting that RS could be used to obtain the

quantities and ratios of elements in CDOM.

Particulate matter from terrestrial landscapes is exported to

aquatic ecosystems and tends to settle in lentic and coastal areas or
Frontiers in Ecology and Evolution 06
remain suspended in lentic or riverine systems (i.e., Case 2 waters).

Deriving suspended particulate matter concentrations for Case 2

waters requires water body depth to account for impacts from the

bottom of water bodies on spectra and local calibration to achieve

adequate accuracy (Volpe et al., 2011). Single band and

computational ratio algorithms can be used to estimate suspended

sediment concentration (Baruah et al., 2002). Turbid, sediment-rich

water tends to be rich in C, nutrients, and heavy metals (e.g., Fe,

chromium (Cr), Ni, Al, Cu, Zn). Although optical properties of

individual elements may be obscured, relationships between

sediment and elements (e.g., regression models) based on land

use can be used to infer elemental concentrations from spectra

detecting suspended sediment.

From optically active constituents, elements can be estimated

using modeled relationships. For C, estimates can be derived by

models accounting for the various carbon species available in Chl-a,

CDOM, and suspended sediments. For CDOM, the largest portion

of C is represented by Dissolved Organic Carbon (DOC) (Mohseni

et al., 2022). Estimation of DOC is highly dependent on optical

water type, for example DOC concentrations in the open ocean are

low and consistent (Mohseni et al., 2022) and highly variable in

coastal and inland waters (Liu et al., 2014). Correlations between

CDOM and DOC are stronger in Case 1 waters (Ferrari, 2000; Del

Vecchio and Blough, 2004; Guéguen et al., 2005; Fichot and Benner,

2012) as compared to Case 2 waters. Consequently, satellite-derived

CDOM may be used to estimate DOC concentration but is most

reliable in the ocean, followed by coastal (Liu et al., 2013; Swan et al.,

2009; Matsuoka et al., 2013) and inland waters (De Stefano et al.,

2022). Particulate Organic Carbon (POC) can be estimated from

Chl-a and suspended sediments using models and algorithms that

combine in-situmeasurements with multispectral satellite data (Son

et al., 2009; Huang et al., 2017; Jiang et al., 2019; Stramski et al.,

2022). For Case 1 waters, particulate inorganic C can be estimated

from coccolithophore biomass, a halophyte phytoplankton group

with strong backscattering properties, using quantitative algorithms

(reviewed by Balch and Mitchell, 2023).

While the macromolecular content of phytoplankton protein,

carbohydrate, and lipid can be determined from Chl-a (Roy, 2018),

only C:P ratios have been estimated using optical RS products.

Tanioka et al. (2020) derived phytoplankton growth rates,

chlorophyll to C ratios for cyanobacteria, Synechococcus linearis,

and nutrient depletion temperatures from a phytoplankton

stoichiometry model, which is combined with remotely sensed

estimates of Chl-a and POC. This method can be extended to

estimate C:N ratios for Case-1 waters globally. There is potential for

a similar approach to be used for assessing stoichiometric ratios for

other important elements in marine ecosystems such as Ca, Si, Fe,

Cd, and Ni.

N and P are macro-elements driving phytoplankton production

in freshwater and marine ecosystems. Both of these elements are

non-optically active and cannot be directly quantified from spectral

reflectance (Wang et al., 2022). However, Total N (TN) and Total P

(TP) are highly correlated with optically active constituents such as

suspended sediments, Chl-a, CDOM, and Secchi Disk depth (e.g.,

Song et al., 2012; Arteaga et al., 2015; Shang et al., 2021). The

dependence of both N and P on other parameters is a primary
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limitation on the capacity to study aquatic ecological stoichiometry

using RS, as these methods explicitly or parametrically fix

stoichiometry. Hyperspectral satellite missions tuned for aquatic

systems (e.g., NASA PACE) improve detection of organismal and

community traits relevant to nutrient dynamics (e.g. ,

phytoplankton absorption, pigments, community composition, C,

etc.) (Cetinić et al., 2020), but the non-optical nature of aquatic N

and P remains a primary obstacle to quantifying N:P stoichiometry

using remote sensing.

Previous work applies various retrieval models to estimate N

and P, ranging from statistical methods to those employing

machine learning and deep learning techniques (Li et al., 2022;

Siriwardana et al., 2024). Statistical methods retrieve optically active

parameters (e.g., Chl-a, CDOM) using spectral reflectance which is

corrected for atmospheric interference using high precision

algorithms (Li et al., 2022). Only a few studies focus on the

retrieval of TN and TP from RS data, primarily from Case 2

inland waters (Song et al., 2012; Liu et al., 2015; Yu et al., 2016;

Soomets et al., 2022; Zhong et al., 2024). Due to light reflection from

the substrate in shallow waters (e.g., Case 2 coastal regions)

estimating N and P can be problematic and validation requires

in-situ data (Gholizadeh et al., 2016). In Case 1 waters, recent work

in the North-Eastern Baltic Sea and Bohai Sea provides accurate

estimates of TN and DIN (Yu et al., 2016; Soomets et al., 2022), and

Zhong et al. (2024) provide first estimates of global Sea Surface

Nitrate (SSN) using physical variables such as Sea Surface

Temperature (SST), Mixing Depth (MD), Photosynthetically

Active Radiation (PAR) along with RS sensed Chl-a.
Practical user guide

As ecological RS is highly interdisciplinary, communication of

emergent techniques and best practices must be inclusive and

ongoing. In this section, we present a practical guide designed to

help readers navigate a typical remote sensing workflow. This guide

aims to assist in selecting appropriate sensors, understanding the

importance of ground-truthing to validate remote sensing findings, as

well as highlight essential considerations when scaling up models to

create spatially continuous maps. By synthesizing best practices, we

aim to equip researchers with the knowledge they need to successfully

integrate remote sensing into their ecological research endeavors.
Choosing imagery

When selecting imagery to study ecological stoichiometry, it is

important to consider the spectral resolution, spatial resolution, spatial

coverage, temporal resolution, temporal record and costs associated

with a chosen imagery source (Figure 2; Table 3). Incoming solar

radiation interacts with the optical properties of surfaces and is

reflected back into the atmosphere (Figure 2.1) (Ustin and Gamon,

2010). The spectral resolution of a sensor defines the number and

width of spectral bands captured by the sensor and thus which

elements or target features can be captured at what accuracy. The

spatial resolution dictates the level of detail in the imagery crucial for
Frontiers in Ecology and Evolution 07
observing fine-scale features, while spatial coverage determines the

extent of the landscape covered. Temporal resolution (or revisit time) is

the frequency at which imagery is captured, which is essential for

monitoring changes over time, such as seasonal variations or rapid

environmental shifts. The temporal record refers to the duration over

which a sensor has been capturing data, which determines how far back

in time changes can be detected. The monetary cost may play a critical

role in determining which data sources are feasible; although many

freely available platforms exist, higher spatial and spectral resolution

and more frequent data often come at a higher cost. Balancing these

factors with the system and elements in question, and the scale at which

target features exist, will help select the most appropriate and cost-

effective imagery for your research needs.
Spectral resolution

Imagery can be single-band, single-band panchromatic (i.e.,

covers the entire visible spectrum), RGB (three spectral bands: red,

green, and blue), multispectral or hyperspectral (Figure 2.2).

Generally, multispectral and hyperspectral imagery is well-suited

for quantifying elemental composition of targets. Multispectral

imagery captures a broad range of wavelengths, typically 4 to 12

bands, including both visible and infra-red (NIR and SWIR) regions.

The NIR region (~750 to ~1,300 nm) contains a large amount of

ecological information and allows for insights beyond the capabilities

of the human eye. For example, reflectance in the NIR region relates

strongly to plant N status, and a thorough body of work details

several spectral strategies for quantifying plant N (e.g., Kokaly, 2001;

Smith et al., 2003; Kanke et al., 2012). Fewer multispectral platforms

contain bands in the SWIR region (~1,300 - 2,500 nm), but this

region is rich in information related to the water and mineral content

of many targets, particularly soil (Hunt and Salisbury, 1971; Ben-Dor

et al., 1997). Most freely available and commercial satellites offer

multispectral imagery, and there are many options to purchase

integrated multispectral drone systems (Table 3). Thus,

multispectral imagery is relatively easily accessible for researchers.

Hyperspectral imagery, or imaging spectroscopy, detects

radiation continuously in hundreds of narrow spectral bands

across the electromagnetic spectrum and allows for the detection

of subtle differences in material composition and chemistry.

Hyperspectral imagery has been used to retrieve the elemental

composition of terrestrial and aquatic systems at high accuracy

(Pandey et al., 2017; Asner et al., 2015). However, the decrease in

bandwidth resulting from an increase in spectral resolution

decreases the signal-to-noise ratio in all bands and may make it

more challenging to accurately retrieve spectral properties,

especially under low-light conditions or in areas with high

atmospheric interference (Castaldi et al., 2016). There are a

handful of hyperspectral satellites already in operation, including

PRISMA, EnMAP and DESIS, with more planned for launch (e.g.,

HyspIRI, Tanager, CHIME and SHALOM). Recently, there have

also been some hyperspectral drone sensors coming to market (e.g.,

Headwall Micro-Hyperspec, Cubert UHD and 185-Firefly).

The decision of which spectral resolution is best suited for the

research question must be informed by which wavelengths are likely
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TABLE 3 Specifications of available imagery platforms (non-exhaustive).

Platform Spatial Resolution
Spectral

Resolution
Temporal
Resolution

Temporal
Record

Cost
Key

References

Handheld
spectrometer

Point measurements
High (100s of

bands, hyperspectral)
On-demand

(user-controlled)
Since 1960s

(spectrometer use)
$$$$$ (device) Hommersom et al., 2012

Drone
1-10 cm (depends on

altitude/sensor)

Varies (RGB,
multispectral

or hyperspectral)

On-demand
(user-controlled)

Since 2010s (drone
imagery use)

$$-$$$$ (drone
and sensor)

Cotten et al., 2023

Aircraft
5 cm to meters (depends on

flight altitude)

Varies (RGB,
multispectral

or hyperspectral)

On-demand
(flight scheduling)

Since 1980s
(airborne sensing)

$$-$$
$ (imagery)

Asner et al., 2012; Green
et al., 2022

MODIS
250 m (visible/NIR), 500 m (SWIR),

1 km (thermal)
36 bands 1-2 days

Since 1999
(Terra),

2002 (Aqua)

Free
(for research)

Justice et al., 2002;
Salomonson et al., 1989

Landsat-9
15 m (panchromatic), 30 m

(multispectral), 100 m (thermal)
7-11 bands (depending

on version)
16 days

Since 1972
(Landsat 1)

Free
(for research)

Wulder et al.,
2019, 2022

Sentinel-2
10 m (visible/NIR), 20 m (NIR),

60 m (SWIR)
13 bands 5 days

Since 2015
(Sentinel-2A)

Free
(for research)

Drusch et al., 2012;
Spoto et al., 2012

(Continued)
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FIGURE 2

Flow diagram connecting (1) the reflectance of solar electromagnetic radiation to (2) the specifications of optical sensors, (3) modeling frameworks,
(4) model validation, and (5) mapping. Created in Biorender. BioRender.com/a76q686.
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TABLE 3 Continued

Platform Spatial Resolution
Spectral

Resolution
Temporal
Resolution

Temporal
Record

Cost
Key

References

Planet
(RapidEye)

5 m
5 bands (including

Red Edge)
5.5 days 2008-2020 $$ (imagery)*

Frazier and
Hemingway, 2021

Planet
(PlanetScope)

3-5m 4 bands (RGB, NIR) Daily Since 2014 $$ (imagery)*
Frazier and

Hemingway, 2021

Venµs 5 m 12 bands (VNIR) Tasking required Since 2017 $$$ (imagery) Dick et al., 2022

Ziyuan 3-02
2.1 m (panchromatic),
6 m (multispectral)

4 bands + panchromatic Tasking required
Since 2012

(Ziyuan 3-01)
$$$ (imagery) Pan et al., 2013

SPOT-7 1.5 m 4 bands + panchromatic Archive only
2012-2023 (SPOT-

6, 7)
$$$ (imagery) Cheng, 2015

IKONOS
82 cm (panchromatic),
3.2 m (multispectral

4 bands + panchromatic Archive only 1999-2015 $$ (imagery)* Dial et al., 2003

QuickBird
65 cm (panchromatic),
2.62 m (multispectral)

4 bands + panchromatic Archive only 2001-2015 $$$ (imagery)
Toutin and
Cheng (2002)

Kompsat-3
55 cm (panchromatic),
2.8 m (multispectral)

4 bands + panchromatic Tasking required Since 2012 $$$ (imagery) Kim et al., 2015

Planet
(SkySat)

50 cm (panchromatic),
1 m (multispectral)

4 bands + panchromatic Tasking required
Since 2013
(SkySat-1)

$$$ (imagery)
Dyer and

McClelland, 2016

Pleiades-1
50 cm (panchromatic),
2 m (multispectral)

4 bands + panchromatic Tasking required Since 2011 $$$ (imagery) Gleyzes et al., 2012

GeoEye-1
41 cm (panchromatic),
1.65 m (multispectral)

4 bands + panchromatic Archive only Since 2008 $$$ (imagery)* Aguilar et al., 2012

Pleiades Neo
30 cm (panchromatic),
1.2 m (multispectral)

4 bands + panchromatic Tasking required Since 2021 $$$ (imagery) Cantrell et al., 2023

Worldview-3
31 cm (panchromatic), 1.24 m

(VNIR),
3.7 m (SWIR)

8 VNIR + 8 SWIR
+ panchromatic

Tasking required
Since 2007

(Worldview-1)
$$$ (imagery)

Anderson and
Marchisio, 2012

CHRIS 18 m or 36 m (depending on mode) 19 or 66 bands (VNIR) Tasking required Since 2001
Free

(for research)
Barnsley et al., 2004

PRISMA
5 m (panchromatic),
30 m (hyperspectral)

244 bands (400-2500
nm) + panchromatic

Tasking required Since 2019
Free

(for research)
Cogliati et al., 2021

DESIS 30 m
235 bands (400-

1000 nm)
Tasking required Since 2018

Free
(for research)

Krutz et al., 2018

EnMAP 30 m
235 bands (400-

2500 nm)
Tasking required Since 2022

Free
(for research)

Carmona et al., 2024

Gaofen-5 30 m
330 bands (400-

2000 nm)
Tasking required Since 2018

Free
(for research)

Chen et al., 2022

ZY1-02D
2.5 m (panchromatic),
10 m (multispectral),
30 m (hyperspectral)

166 bands (400-2000
nm)

8 bands (VNIR)
+ panchromatic

Tasking required Since 2019 $$$ (imagery) Liu et al., 2022

Satellogic
70 cm (panchromatic)
1 m (multispectral)
25 m (hyperspectral)

4 bands (VNIR)
32 bands (460 - 830 nm)

Tasking required Since 2018 $$$ (imagery) Vrabel et al., 2022

Jilin-1 5 m 26 bands Tasking required Since 2019 $$$ (imagery) Li et al., 2021

PACE (OCI)
(Oceans)

300 m 18 bands (400 - 900 nm) 3-4 days Since 2024
Free

(for research)
Meister et al., 2024
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The number of $ symbols listed under the 'Cost' column indicate the relative cost of obtaining equipment or imagery. *Licensing options available.
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to correspond to the IOPs of a given material or organism. Thus,

exploring the spectroscopy literature of the target feature is useful

for identifying the specific absorption features and relevant spectral

bands for the study’s objectives. While it is tempting to pick imagery

at the highest spectral resolution, increasing spectral resolution

linearly increases file size and processing requirements. Despite the

clear advantage of increased spectral resolution, it has been shown

that many of the current limitations to the optical RS of vegetation

properties are not related to spectral resolution (Thomson et al.,

2021). Instead, improving the collection and georeferencing of

ground-truthed data may increase feature retrieval accuracies

more than increasing the number of spectral bands.
Spatial resolution and coverage

The spatial resolution of optical imagery determines the level of

detail that can be captured and varies widely among providers

(Table 3; Figure 2.2). Simply, the ‘spatial resolution’ is the length of

one side of a pixel in a given image. Deciding spatial resolution

requirements depends on the size of your target feature. For

example, delineating individual tree crowns generally requires

imagery of < 5 m, while identifying individual alpine plants

would require imagery < 10 cm. Satellites often have different

spatial resolutions for different bands. Pansharpening is a process

that combines a high-resolution panchromatic band with the lower-

resolution multispectral bands to enhance the spatial resolution of

the multispectral bands. Commercial satellite imagery can often be

bought pansharpened. It is important to note that there is a

quadratic relationship between spatial resolution and file size, so

when the spatial resolution is doubled, the size of the imagery file

increases by approximately four times.

The spatial coverage of imagery varies significantly depending

on the platform used. Satellite images typically span hundreds or

thousands of kilometers, making them ideal for regional or global

monitoring. Aircraft imagery, on the other hand, can range from

local (e.g., 10s of km, AVIRIS) to country-wide coverage (e.g.,

Bluesky/Vexcel). Drones offer the most localized spatial extent,

making them suitable for small-scale, high-resolution studies. The

extent of drone imagery depends on the type of drone. Fixed-wing

drones can cover larger areas in a single flight (~100 ha) due to their

energy-efficient design, making them ideal for surveying extensive

fields or landscapes. Rotary drones (e.g., quadcopters) provide more

flexibility in maneuvering and hovering, but they typically cover

smaller areas (>10 ha) due to their shorter flight times and lower

speeds. In general, there is a trade-off between spatial resolution and

coverage, with higher altitude platforms covering more area but at a

lower spatial resolution.
Temporal resolution and record

Temporal resolution (or revisit time) is important for change-

over-time studies, such as investigating seasonal variations, the

impact of climate change or the effect of events such as wildfires

or pollution (Figure 2.2). Satellites orbit the earth with a set
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frequency, and imagery collected at regular intervals supports the

study of temporal patterns in ecological stoichiometry at broad

extents. Public platforms provide regular imagery for the globe,

while most commercial satellites do not image the entire globe but

operate on a ‘tasking’ basis - only taking imagery that has been

requested on a certain time and date and adding the imagery to the

archive catalog after a certain amount of time has elapsed. While

images are taken on a set schedule, it is important to remember that

for satellite imagery, clouds can substantially decrease the number

of usable images. In particularly cloudy parts of the world (e.g., the

tropics), or in certain seasons, there may only be one or two cloud-

free images available. This is where daily imagery collection comes

in handy, as it increases the chances of collecting a time-series of

cloud-free images with high temporal resolution. The timescale over

which your target feature is likely to change, and the likely

cloudiness of your study site is a good place to start when

considering the required temporal resolution.

The temporal record of imagery constrains how far back in

time your analysis can go. While Landsat started in 1972 and is the

longest satellite-based optical sensor in operation, most commercial

imagery providers have very short temporal records. When

selecting imagery, it is important to ensure that the temporal

record of your imagery provider aligns with your spatial, spectral

and temporal resolution requirements.
Budget

Lastly, decisions on which imagery to use are always

constrained by cost. Landsat, MODIS, and Sentinel satellite

imagery are available for free, thanks to initiatives like the USGS's

free-and-open data policy established in 2008 for Landsat data.

Higher spatial resolution and spectral resolution imagery typically

incur costs, which can range from approximately $10 to $500 per

square kilometer, depending on the provider. While drones can

generate a large volume of high-resolution imagery, they come with

high fixed costs, including those for the system and sensor

themselves, pilot licensure, vehicle registration, and often hefty

subscription costs to imagery processing software (Table 3).

Ultimately, the choice of imagery provider involves balancing the

need for spatial and temporal resolution against budget constraints

and project size.
Integrating ground truth data with imagery

Ground truth data refers to real-world information collected

through direct observation or measurement, which is used to train

and validate the relationship between raw spectra and the target

(i.e., element) of interest. In supervised learning, a model is fed

input data (imagery) along with corresponding ground truth data

(labels), allowing the model to identify patterns and relationships

between the imagery and the labeled outputs. For example, ground

truth data might involve collecting leaf samples and analyzing leaf N

content. The model uses this labeled ‘ground-truthed’ data to adjust

its internal parameters during training, improving its ability to
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accurately predict leaf N concentration from unseen reflectance

spectra. When validating models, ground truth data not used in

model training can be used to evaluate a model's accuracy by

comparing its predictions to the directly observed, or measured,

reality (see Model Evaluation section for more information). When

planning ground truth data collection, there are two important

points to bear in mind; ensuring that ground truthed data is

properly matched to imagery in space and time, and that the

scale at which ground truth data is collected is appropriate for the

spatial resolution of the imagery.

Ground truth data must be accurately matched to imagery in both

space and time. Since models are only as good as the data they learn

from, inputting poor-quality or incorrectly aligned training data can

lead to inaccurate predictions and suboptimal performance. Ensuring

precise alignment between ground truth data and imagery is key to

parameterizing the relationship between reflectance and physical

measurements. When recording the coordinates of ground truth

data, the accuracy of your GPS device should align with the spatial

resolution of the feature being studied. For instance, a handheld GPS

with an accuracy of 5–10 m may be sufficient for marking the location

of large areas of monoculture, where a 10 m spatial offset would still fall

within the same species/habitat type. However, it would be inadequate

for pinpointing tree crowns, where a 10-meter offset could result in

recording the location of a neighboring tree rather than the intended

one. In more heterogeneous landscapes, or for precise mapping of

small features, a differential GPS with an accuracy of 1–3 cm may be

required. To improve the matching of ground truth data to imagery, it

can be helpful to mark observation or sampling sites that are visible in

the imagery itself. Ground-truthed data must also be matched in time.

Natural features may change over time due to seasonal variation,

human activity, or natural events, so collecting ground truth data at a

different time than the imagery could lead to inaccuracies. In some

cases, features may change within a matter of hours (for example

nutrient loads in water bodies) so swift imagery collection (or ground

truth data collection) is vital.

Scaling up ground truth data to match the pixel size of imagery

requires careful consideration of both the spatial resolution of the

imagery and the detail of the ground truth data. If your ground

truth data exists at a finer scale than the imagery’s resolution (e.g.,

individual tree measurements vs. a 10 m pixel), you will need to

aggregate or generalize the ground truth data. For example, instead

of using individual leaves, you may need to average the leaves to

generate a single value per tree crown. Or instead of using

individual tree data, you may need to average data for all trees

within the area represented by a 30 m pixel. The most important

question to consider is whether your ground-truth data is

representative of the likely pixel value. For example, one soil P

measurement within a pixel size of 10 m may not be representative

of soil P across the entire pixel.
Model selection

When analyzing imagery, selecting the appropriate model

depends on your objectives and target prediction(s). Generally,

model analysis falls under two categories: mechanistic models (i.e.,
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RTMs and indices), and statistical models, which include machine

learning models, and deep learning techniques (e.g., neural

networks: Figure 2.3). Mechanistic models are based on

underlying physical principles that describe how light interacts

with a surface, such as water, vegetation or soil. These models

apply general principles of how radiation is absorbed, reflected, or

transmitted to generate insights into the physical characteristics of

the surface, for example its extent and biochemical properties.

Mechanistic models are grounded in fundamental science, often

providing interpretable and generalizable results. In contrast,

statistical models rely on data-driven approaches to find patterns

and correlations in large datasets without necessarily understanding

the underlying mechanisms. These models are highly flexible and

accurate in prediction (especially locally) but often function as

"black boxes" with less interpretability or insight into the processes

driving the observed patterns.

Indices are mathematical combinations of spectral bands designed

to highlight specific environmental features. These are commonly used

for quick, effective analyses, often over large areas. Examples of indices

include Normalized Difference Vegetation Index (NDVI), which is one

of the most widely used indices. NDVI captures the absorption of red

light by chlorophyll and the high NIR reflectance caused by

intercellular backscattering of leaves (Figure 1), and values range

from -1 to 1, where values closer to 1 indicate healthier, denser

vegetation. This index is often applied to monitor forest cover and

drought impacts (e.g., Nanzad et al., 2019; Pompa-Garcıá et al., 2021).

Other examples of indices include Normalized Difference Water Index

(NDWI), Soil-Adjusted Vegetation Index (SAVI), and Enhanced

Vegetation Index (EVI) for monitoring water content, reducing soil

background effects in sparse vegetation areas, and improving

sensitivities in regions with dense vegetation, respectively. While

these indices are simple and computationally efficient, they can only

model linear relationships and may perform poorly in heterogeneous

environments. However, they may be a useful starting point for users

new to remote sensing approaches.

Machine learning models are useful to identify more complex

relationships frommultidimensional datasets. Examples of machine

learning models used in RS include Partial Least Squares Regression

(PLSR), a powerful regression technique that can model

mathematical relationships between several independent variables

(spectral bands) and a dependent variable (Haaland and Thomas,

1988). PLSR reduces the dimensionality of the data, making it

effective in handling multicollinear data from hyperspectral sensors.

Random Forest (RF) is an ensemble classification and regression

technique that constructs multiple decision trees to produce robust

predictions (Breiman, 2001). It's commonly used for land cover

classification (e.g., distinguishing between different types of forests,

grasslands, and urban areas) as well as for regression tasks. RF

handles large datasets well, manages missing data, and can model

complex interactions between variables. Support Vector Machines

(SVM) is another common machine learning algorithm used for

classification tasks, particularly when separating classes with

nonlinear boundaries (Cortes, 1995).

Deep learning techniques, particularly those involving

convolutional neural networks (CNNs), enable advanced imagery

analysis through automated feature detection and sophisticated
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pattern recognition. For example, neural networks are excellent for

handling large and complex datasets like imagery. These models are

particularly useful for identifying features and spatial patterns that

might not be immediately apparent through traditional pixel-by-pixel

analysis techniques. CNNs excel in tasks like segmenting individual

trees, mapping roads and rivers or detecting animals in imagery. Neural

networks are capable of both classification (e.g., identifying habitat

types; Pérez-Carabaza et al., 2021) and regression (e.g., estimating plant

nutrient deficiencies; Watchareeruetai et al., 2018). However, neural

networks typically require large, labeled training datasets and

significant computational resources.

When choosing a model, it may be helpful to consider the

difference between classification and regression. Classification is

used when the goal is to categorize data into discrete classes, for

example different types of vegetation or land use (e.g., forest,

grassland, urban areas). In contrast, regression models are used to

predict continuous variables (e.g., leaf N) rather than discrete

categories. RF, SVMs and neural networks can be applied to both

classification and regression tasks, whereas PLSR can only be used

for regression.

There are numerous tools and packages that exist to implement

and validate models, and spatially map elements. We do not provide

a comprehensive list of these due to the large number available

across various programming languages and platforms, and constant

development of new approaches. Instead, we encourage the reader

to refer to practical RS guides in their field (e.g., Moses et al., 2022)

or programming language (e.g., Esmaili, 2021; de Carvalho Alves

and Sanches, 2023).
Model evaluation

Evaluating the output of mechanistic and statistical models is

crucial to ensure that they have accurately captured a mathematical

relationship between the input data (e.g., imagery) and the target

feature (e.g., leaf N). For both mechanistic and statistical models,

this process typically involves dividing data into training and testing

sets, followed by applying various evaluation techniques to assess

model performance (Figure 2.4). The training set is a subset of data

that is used to train the model, allowing it to learn the relationships

between input features (e.g., spectral bands) and output variables

(e.g., elements). The testing set is a separate subset of data that is

used to evaluate the model's performance on unseen data. Cross-

validation techniques frequently split and validate data iteratively

with a set percentage of observed data held out (e.g., 10 bootstraps

with 70% training and 30% testing). This step is essential to

determine how well the model generalizes to new data and avoids

overfitting (where the model performs well on the training set but

poorly on unseen data).

For RS approaches in particular, spatial autocorrelation should

be considered in the modeling process (Figure 2.5). Spatial

autocorrelation is related to Tobler’s First Law of Geography,

which states that "everything is related to everything else, but

near things are more related than distant things." This means that

environmental variables, such as leaf N tend to be more similar in

locations that are close together than in places that are farther apart.
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However, predictor variables, such as image reflectance values also

tend to be more similar in places that are closer together. This

creates a challenge in model validation, as nearby observations can

be overly similar due to their proximity, violating the assumption of

independence and potentially leading to overoptimistic assessment

of model predictive power. For example, Ploton et al. (2020) showed

how a RF model appeared to show high predictive power of

aboveground biomass in Africa but revealed quasi-null predictive

power when spatial autocorrelation effects were accounted for. To

account for spatial autocorrelation, Ploton et al. (2020), recommend

using a spatial cross-validation approach that ensures an

observation point cannot serve as an independent validation of a

nearby training data point. This involves spatially ‘buffering’

training points so points that are too close together don’t appear

in both the training and validation dataset. Spatial buffering or

blocking data are especially important in cases where ground truth

data is highly clustered in environmental plots (Roberts et al., 2017;

Ploton et al., 2020).
Creating spatially continuous maps

Scaling up quantitative models enables the creation of spatially

continuous maps of your variable of interest, allowing for

landscape-scale analysis and insights. For indices, the relevant

equation can be applied to each imagery pixel to generate a map

of that index (e.g., NDVI). For machine learning models (including

deep learning models) to scale effectively, maps require all predictor

variables used to train the spectral - target model to be present

across the entire area where predictions are being made (Roberts

et al., 2017). Without an input value for each predictor variable, the

model cannot produce a unique output value for each pixel. The

same applies for RTMs; input variables for all AOPs and IOPs must

occur at every pixel for the model to adequately track the transfer of

radiation from the surface to the sensor. Scaling over areas which

contain insufficient data leads to inaccurate inference, and these

areas should be masked (i.e., removed) from analysis.

When scaling up machine learning and deep learning models,

caution must be exercised when scaling to ensure that the target

area is well-represented by training data. For example, if a model

was trained only on specific habitat types, it won’t be able to predict

new habitat classes that it hasn't encountered before. For

continuous variables, certain models like Partial Least Squares

Regression (PLSR) can extrapolate beyond their training data

range, meaning they can make predictions even when input

values fall outside what the model has previously seen. In

contrast, models like RF cannot extrapolate outside the training

range, as they rely on decision trees that are strictly based on values

encountered in training data. Therefore, selecting the appropriate

model for your scaling task is crucial for producing reliable results.

Scaling up should be avoided if your model performs poorly in

training or validation, as this indicates that it will likely give

inaccurate predictions across larger regions. A poorly calibrated

or overfitted model may give misleading results when generalized.

In summary, scaling up your machine learning model requires

maps of all predictor variables over the target area, a model trained
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on representative data for the target environment, an understanding

of your model’s ability to extrapolate, and caution if the model

demonstrates poor performance, as scaling will amplify errors

across the landscape.
Discussion

From its inception, ecological stoichiometry has been rooted in

linking the elemental composition of organisms and the matrix which

they inhabit (i.e., water, soil, and air), with their functional roles across

ecological scales, from individual physiology to global element cycling

(e.g., C, N, P). Over the last 40 years, ecological stoichiometry research

has established two key paradigms: the Growth Rate Hypothesis

(GRH) and Elemental Homeostasis (EH). The GRH suggests that C:

N ratios in organisms are influenced by the allocation of P to ribosomal

RNA during growth (Acharya et al., 2004; Isanta-Navarro et al., 2022).

EH refers to the regulatory processes that maintain stable levels of 25

essential elements within organisms compared to their surroundings

(Hessen et al., 2013) and is modeled using a variety of techniques

(Sterner and Elser, 2002; Meunier et al., 2014). An organism's

investment in growth and homeostasis impacts elemental fluxes at

broader biological scales, influencing population dynamics, community

structure, and ecosystem functioning (Sterner and Elser, 2002; Elser et

al., 2010; González et al., 2018). Understanding how elemental fluxes

scale across space and time remains a significant challenge, but RS

provides a powerful tool for scaling and testing ecological

stoichiometry models.

Emerging frameworks, such as ionomics and stoichiometric

distribution models, offer promising avenues for integrating RS with

ecological stoichiometry to gain deeper insights (Filipiak, 2016; Kaspari

and Powers, 2016; Jeyasingh et al., 2017; González et al., 2017; Meunier

et al., 2017; Leroux et al., 2017; El-Sabaawi et al., 2023). While optical

RS can provide direct estimation of some elements from spectra,

alternative approaches include using stoichiometric models to

estimate elemental availability indirectly via remotely-sensed proxies,

which are then correlated with ground-truth element data. Recent work

following this approach include van Beest et al. (2023); Collins et al.

(2017); Soranno et al. (2019) and Balluffi-Fry et al. (2020). Such efforts

are inherently interdisciplinary, requiring collaboration across fields of

ecology, remote sensing, and modeling.
Remote sensing as a tool for assessing
ecological stoichiometry across space

Substantial differences exist in the distribution of the 25 essential

elements between different habitats, such as terrestrial and aquatic

ecosystems, where nutrient availability can vary greatly due to

differences in geochemistry and biogeochemical cycling (Williams,

1997; Sterner and Elser, 2002; Kaspari et al., 2008). Optical RS

technologies offer the potential to compare the distribution of these

essential elements across larger ecological and geographic scales,

enabling researchers to assess whether patterns observed at smaller

scales, such as within species from a single location, are indicative of

broader trends (Asner and Martin, 2016; Ollinger, 2011). Additionally,
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RS may facilitate integration of spatial patterns in non-metabolic

elements (e.g., As, Cd, Pb) and enable inference of the effects of

accumulation in biological tissues on function at various levels of

organization (Muller et al., 2010; Peace et al., 2021; Rashid et al.,

2023). Understanding these complex interactions between organisms

and their chemical environment at broad scales requires advanced RS

tools, which are increasingly recognized as essential for studying these

dynamics in a comprehensive manner (Ustin et al., 2004; Asner

et al., 2015).

Identifying limiting elements at different spatial scales using RS

data can be useful in developing specific hypotheses for outcomes of

selection on the ecological stoichiometry of populations or species of

interest at these scales, their expected elemental phenotypes,

physiological rates and stoichiometric reaction norms, and response

to stressors, which can then be tested using lab and field experiments

(Jeyasingh et al., 2014; Leal et al., 2017; El-Sabaawi et al., 2023).

Information about the elemental composition and stoichiometry at

smaller spatial scales can be juxtaposed with those at larger spatial

scales and used in conjunction with field measurements of elemental

phenotypes to determine the contributions of selection (i.e., strength of

association between elemental phenotype and limiting element

availability within a patch) and dispersal (i.e., strength of association

between elemental phenotype within a patch and limiting element

within a region). Finally, relative availability of elements and elemental

constraints provided from optical RS tools can be used to compare the

relative strength of selection of ecological stoichiometry to other

selective forces such as predation, feeding strategy, and access to

mates (Kay et al., 2005).
Remote sensing as an emerging tool for
assessing ecological stoichiometry
across time

Data from optical RS can be also used to detect temporal patterns

in the relative availability of elements across broad spatial scales. These

temporal patterns can be linked to the changes in the abundance of

elemental phenotypes, populations and species collected from long-

term observation studies to identify macroevolutionary trajectories

(Kay et al., 2005). For macroelements such as C, N and P, the links

between availability and fitness consequences have been established in

diverse biota ranging from aquatic snails, green algae, and Drosophila

species (Elser et al., 2003; Neiman and Krist, 2016; Bernhardt et al.,

2020). Multi-spectral and hyperspectral RS data allows researchers to

determine the landscape availability of elements beyond C, N and P.

Combined with nutritional geometry experiments, where organisms

are reared on resources with different elemental compositions, the

relationship between micro elements (e.g., Mn, Fe, Mg) and fitness can

be determined (Sperfeld et al., 2016, 2017) and extrapolated using RS.

Changes in nutrient availability can cause cascading effects

across multiple ecological scales, from individual organisms to

entire ecosystems (Vitousek and Howarth, 1991). Ecosystems

respond to nutrient enrichment in diverse ways, with acute

responses often differing from chronic ones (Smith et al., 1999;

Elser et al., 2007). The scale of measurement also plays a crucial role

in understanding these impacts, as localized studies may not
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capture the broader regional or global patterns driven by

widespread human activities (Vitousek et al., 1997). Moreover,

organisms within these ecosystems do not respond uniformly to

changes in elemental availability; their responses are shaped by their

evolutionary and ecological histories, as well as the biochemical

characteristics of their habitats (Sterner and Elser, 2002). These

interactions can create feedback loops, where changes in nutrient

availability further alter ecosystem dynamics and the selective

pressures on species (Gruner et al., 2008; Gholizadeh et al., 2024).

At the broadest extent, global climate change affects the ecology

of organisms and the flow of matter through ecosystems. Primary

producers experience nutrient dilution as a result of rising

atmospheric carbon dioxide, whereby plants accumulate C at a

faster rate than other non-C nutrients. While the direct

consequences for the nutrition of consumers and function of

singular ecosystems may be difficult to predict, the global nature

of this phenomenon suggests that major reorganization of food

webs and shifts in ecosystem function are likely (Kaspari et al., 2022;

Kaspari and Welti, 2024; Welti and Kaspari, 2024). The expansive

body of literature testing the capabilities of remote sensing to

quantify the chemical composition of terrestrial plant tissues may

facilitate the study of nutrient dilution and its consequences for

function at all levels of biological organization. Although applying

RS requires a thorough understanding of the explicit spatial data

characteristics and the operational spatial scale of processes in

question, gains in understanding of processes related to nutrient

dilution (e.g., metabolism of primary producers, mineral nutrient

acquisition, herbivory, sediment de-/stabilization, etc.) and their

optical properties may permit application of RS to quantify relevant

fluxes across broad extents.
Conclusion and outlook

We provided an overview of how researchers can apply RS

techniques to obtain data necessary for addressing core ecological

stoichiometry research goals. However, incorporating optical RS within

an ecological stoichiometry framework can also open new research

frontiers. Below, we provide a limited set of questions where data

obtained from optical RS can provide new insights and drive progress

in our understanding of how elemental availability underpins

ecological systems. For example, what is the role of stoichiometry in

ecosystem response to global environmental changes, such as

permafrost thawing, agricultural intensification, nutrient dilution and

ocean acidification? How will stoichiometric observations inform

global biogeochemical models used to simulate the distribution of

elements in the biosphere? How do stoichiometry and biodiversity

feedback through ecological dynamics, such as dispersion, carrying

capacity, and species invasion? Finally, are stoichiometric ratios and

limits phylogenetically conserved, and how do phenotypic plasticity

and genetic variation contribute to the evolutionary outcomes

experienced by organisms?

The integration of optical remote sensing (RS) with ecological

stoichiometry holds immense potential for advancing our

understanding of nutrient dynamics across ecosystems. By enabling

the study of elemental ratios over large spatial and temporal scales, RS
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provides a powerful tool for overcoming the limitations of traditional

point-based sampling methods. This paper has outlined the capabilities

and limitations of RS in quantifying elements, offered a practical guide

for its application in ecological stoichiometry research, and highlighted

future research directions which bridge the gap between these fields. As

environmental change continues to alter the balance of elements in

ecosystems, the adoption of RS in stoichiometric studies is essential for

addressing global ecological challenges. Expanding the use of RS will

not only enhance the scale and resolution of ecological studies but also

pave the way for novel insights into how stoichiometric constraints

shape ecosystem function.
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et al. (2021). Pantropical modelling of canopy functional traits using Sentinel-2 remote
sensing data. Remote Sens. Environ. 252, 112122. doi: 10.1016/j.rse.2020.112122

Aiken, G. R., McKnight, D. M., Wershaw, R. L., and MacArthy, P. (1985). Humic
Substances in Soil, Sediment and Water: Geochemistry, Isolation and Characterization
(New York: J. Wiley and Sons), 692.

Anderson, N. T., andMarchisio, G. B. (2012). “WorldView-2 and the evolution of the
DigitalGlobe remote sensing satellite constellation: introductory paper for the special
session on WorldView-2,” in Algorithms and Technologies for Multispectral,
Hyperspectral, and Ultraspectral Imagery XVIII, vol. 8390. (Baltimore MD, USA:
SPIE), 166–180.

Arteaga, L., Pahlow, M., and Oschlies, A. (2015). Global monthly sea surface nitrate
fields estimated from remotely sensed sea surface temperature, chlorophyll, and
modeled mixed layer depth. Geophysical Res. Lett. 42, 1130–1138. doi: 10.1002/
2014GL062937

Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., and Vaughn, N. (2016).
Large-scale climatic and geophysical controls on the leaf economics spectrum. Proc.
Natl. Acad. Sci. 113, E4043–E4051. doi: 10.1073/pnas.1604863113

Asner, G. P., Knapp, D. E., Boardman, J., Green, R. O., Kennedy-Bowdoin, T.,
Eastwood, M., et al. (2012). Carnegie Airborne Observatory-2: Increasing science data
dimensionality via high-fidelity multi-sensor fusion. Remote Sens. Environ. 124, 454–
465. doi: 10.1016/j.rse.2012.06.012

Asner, G. P., and Martin, R. E. (2016). Convergent elevation trends in canopy
chemical traits of tropical forests. Global Change Biol. 22, 2216–2227. doi: 10.1111/
gcb.2016.22.issue-6

Asner, G. P., Martin, R. E., Anderson, C. B., and Knapp, D. E. (2015). Quantifying
forest canopy traits: Imaging spectroscopy versus field survey. Remote Sens. Environ.
158, 15–27. doi: 10.1016/j.rse.2014.11.011

Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C., Carranza, L.,
et al. (2011). Spectroscopy of canopy chemicals in humid tropical forests. Remote Sens.
Environ. 115, 3587–3598. doi: 10.1016/j.rse.2011.08.020

Asner, G. P., Martin, R. E., Knapp, D. E., Tupayachi, R., Anderson, C. B., Sinca, F.,
et al. (2017). Airborne laser-guided imaging spectroscopy to map forest trait diversity
and guide conservation. Science 355, 385–389. doi: 10.1126/science.aaj1987

Bajwa, S. G., and Tian, L. F. (2005). Soil fertility characterization in agricultural fields using
hyperspectral remote sensing. Trans. ASAE 48, 2399–2406. doi: 10.13031/2013.20079

Balch, W. M., and Mitchell, C. (2023). Remote sensing algorithms for particulate
inorganic carbon (PIC) and the global cycle of PIC. Earth-Science Rev. 239, 104363.
doi: 10.1016/j.earscirev.2023.104363

Balluffi-Fry, J., Leroux, S. J., Wiersma, Y. F., Heckford, T. R., Rizzuto, M., Richmond,
I. C., et al. (2020). Quantity–quality trade-offs revealed using a multiscale test of
herbivore resource selection on elemental landscapes. Ecol. Evol. 10, 13847–13859.
doi: 10.1002/ece3.6975

Barnsley, M. J., Settle, J. J., Cutter, M. A., Lobb, D. R., and Teston, F. (2004). The
PROBA/CHRIS mission: A low-cost smallsat for hyperspectral multiangle observations
of the earth surface and atmosphere. IEEE Trans. Geosci. Remote Sens. 42, 1512–1520.
doi: 10.1109/TGRS.2004.827260

Baruah, P. J., Tamura, M., Oki, K., and Nishimura, H. (2002). January. Neural
network modeling of surface chlorophyll and sediment content in inland water from
Landsat Thematic Mapper imagery using multidate spectrometer data. Ocean Optics:
Remote Sens. Underwater Imaging 4488, 205–212. doi: 10.1117/12.452815

Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I.,
et al. (2008). Biophysical controls on organic carbon fluxes in fluvial networks. Nat.
Geosci. 1, 95–100. doi: 10.1038/ngeo101

Baumgardner, M. F., Silva, L. F., Biehl, L. L., and Stoner, E. R. (1986). Reflectance
properties of soils. Adv. Agron. 38, 1–44. doi: 10.1016/S0065-2113(08)60672-0
Ben-Dor, E., Inbar, Y., and Chen, Y. (1997). The reflectance spectra of organic matter
in the visible near-infrared and short wave infrared region (400–2500 nm) during a
controlled decomposition process. Remote Sens. Environ. 61, 1–15. doi: 10.1016/S0034-
4257(96)00120-4

Ben-Dor, E., Irons, J. R., and Epema, G. F. (1999). Soil reflectance. Remote Sens. Earth
sciences: Manual Remote Sens. 3, 111–188.

Bernhardt, J. R., Kratina, P., Pereira, A. L., Tamminen, M., Thomas, M. K., and
Narwani, A. (2020). The evolution of competitive ability for essential resources. Philos.
Trans. R. Soc. B 375, 20190247. doi: 10.1098/rstb.2019.0247

Blekanov, I., Molin, A., Zhang, D., Mitrofanov, E., Mitrofanova, O., and Li, Y. (2023).
Monitoring of grain crops nitrogen status from uav multispectral images coupled with
deep learning approaches. Comput. Electron. Agric. 212, 108047. doi: 10.1016/
j.compag.2023.108047

Blondeau-Patissier, D., Gower, J. F., Dekker, A. G., Phinn, S. R., and Brando, V. E.
(2014). A review of ocean color remote sensing methods and statistical techniques for
the detection, mapping and analysis of phytoplankton blooms in coastal and open
oceans. Prog. Oceanography 123, 123–144. doi: 10.1016/j.pocean.2013.12.008

Boente, C., Salgado, L., Romero-Macıás, E., Colina, A., López-Sánchez, C. A., and
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