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In recent decades, there has been a growing recognition thatmixotrophy, the ability to

utilize both phototrophy and phagotrophy, is more common among plankton than

previously assumed. Even thoughmixotrophs can become highly abundant, especially

under nutrient limitation, and significantly alter nutrient cycling and food-web

dynamics due to their dual nutritional modes, a comprehensive synthesis from a

stoichiometric perspective is still lacking. We conducted a systematic literature review

in which we identified over 130 studies that directly relate nutrient ratios to

mixotrophic protists at the organism to community scale. By conceptually linking

mixotrophy with the concept of ecological stoichiometry, we provide insights into (1)

the role of mixotrophic metabolism and nutrient limitation in regulating cellular

homeostasis, (2) mixotroph abundance and community scale responses to nutrient

limitation, and (3) the specific case of harmful algal bloom formingmixotrophs. On the

organism scale, the existing literature points towards a stabilizing effect of mixotrophic

metabolism on elemental composition, and the use of grazing as a compensation

mechanism under stoichiometric imbalances in thewater and prey. At the community

scale, mixotrophs were found to increase in abundance relative to strict autotrophs

and heterotrophs in nutrient-limited communities, and provide beneficial food for

zooplankton grazers by maintaining relatively low and stable stoichiometry.

Furthermore, global-scale models and studies of harmful algal blooms reveal the

increasing importance of mixotrophs under climate change – highlighting the need

for continued research addressing the interactions between mixotrophs and dynamic

stoichiometry to understand the impacts of mixotrophs on global nutrient cycles.
KEYWORDS

mixotrophy, protist, stoichiometry, nutrient limitation, C:N:P ratios, homeostasis, food
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Introduction

Planktonic protists play a fundamental role in aquatic

ecosystems, particularly in modulating nutrient dynamics. These

microorganisms constitute the base of the food web and are crucial

in transferring nutrients between trophic levels. Through cellular

processes like photosynthesis and nutrient uptake, planktonic

protists regulate key biogeochemical processes, including the

cycling of carbon (C), nitrogen (N), and phosphorus (P).

Phytoplankton contribute approximately 50% of global primary

production, fixing around 45-50 gigatons of C annually (Falkowski

et al., 1998). Both autotrophic and heterotrophic protists also

enhance the efficiency of nutrient recycling in aquatic ecosystems

(Sherr and Sherr, 2002). For instance, planktonic protists play a

pivotal role in the microbial food web by recycling organic matter

and facilitating the transfer of nutrients through microbial grazing

(Azam et al., 1983; Worden et al., 2015). Their contribution to

nutrient remineralization in surface waters supports the continuous

availability of nutrients for other organisms – highlighting their

importance in ecosystem and global scale nutrient cycling

(Pomeroy et al., 2007).

Traditionally, planktonic protists have been classified as

autotrophs or heterotrophs. However, there is increasing evidence

of the importance of mixotrophic plankton, which obtain energy

and nutrients from both autotrophy and heterotrophy through

photosynthesis and phagotrophy, allowing them to adapt to

variable environmental conditions by utilizing these two

metabolic strategies simultaneously (Flynn and Hansen, 2013;

Mitra et al., 2014; Stoecker et al., 2017). Many species previously

considered purely autotrophic or heterotrophic are now known to

be mixotrophic (Jones, 1997; Stoecker, 1998). Given the functional

diversity among these organisms, Mitra et al. (2016) proposed a

classification for mixotroph functional groups, distinguishing

between consti tutive mixotrophs that have an innate

photosynthetic ability (i.e., have their own photosystems) and

non-constitutive mixotrophs that acquire photosystems from

their prey (e.g., via kleptoplasty). Furthermore, previous studies

highlight the abundance and ecological importance of mixotrophic

protists in aquatic ecosystems, as well as their key role in nutrient

cycling and food web dynamics (Flynn et al., 2019). By combining

phototrophic and phagotrophic feeding modes, mixotrophs can

outcompete strict autotrophic protists in nutrient-poor conditions

by grazing on nutrient-rich prey when autotrophy is insufficient for

nutrient acquisition (Nygaard and Tobiesen, 1993; Yvon-Durocher

et al., 2017; Schenone et al., 2022). Additionally, mixotrophs play a

key role in the microbial food web, linking primary producers to

higher trophic levels (Zubkov and Tarran, 2008; Hartmann et al.,

2012; Schenone et al., 2021).

Despite the growing recognition of their ecological significance,

a comprehensive synthesis of the interactions between mixotrophic

protists and the relative abundance of nutrients (e.g., C:N:P ratios)

is still lacking. The dual nutritional mode of mixotrophs

complicates our understanding of how they respond to varying

environmental conditions, especially regarding nutrient uptake and

cycling (Flynn et al., 2019; Millette et al., 2023). For example, while
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autotrophic protists are typically constrained by light or inorganic

nutrient availability, and heterotrophic protists by prey abundance

and nutritional content, mixotrophs may navigate such limitations

by utilizing their metabolic plasticity (Flynn and Mitra, 2009; Flynn

et al., 2019). However, it remains unclear how they balance these

competing demands, and how their nutrient acquisition strategies

shift depending on resource ratios.

Ecological stoichiometry provides a powerful framework for

understanding nutrient dynamics in ecosystems, particularly in the

context of mixotrophy. This framework focuses on the balance of

elements (e.g., C:N:P) and the interplay between nutrient ratios and

biological processes (Sterner and Elser, 2002; Klausmeier et al.,

2004). For mixotrophs, ecological stoichiometry can be especially

useful in elucidating how nutrient availability and demand are

balanced between their autotrophic and heterotrophic modes of

nutrition. Important organismal traits, such as homeostasis (the

ability to maintain a stable internal nutrient composition) and

efficiency of nutrient acquisition, play critical roles in determining

how mixotrophs interact with their environment (Millette et al.,

2023). For example, the extent to which an organism’s elemental

composition remains stable in response to changing resource

supplies has important implications for organism-level responses

to nutrient limitation (Sterner and Elser, 2002; Persson et al., 2010),

community composition and stability (Yu et al., 2010, 2015), and

global C cycling and sequestration (Galbraith and Martiny, 2015).

Understanding these stoichiometric principles is therefore key for

predicting the role of mixotrophs in nutrient cycling, their

interactions with other organisms, and their overall effect on

ecosystem function.

Here, we performed a systematic review of the scientific

literature to synthesize how ecological stoichiometry can be

integrated into the study of mixotrophic protists. We identified,

classified, and analyzed papers linking mixotrophs’ cellular

elemental ratios with the elemental ratios of their environment,

prey, and predators. We focused on key characteristics influencing

the role of mixotrophs in nutrient cycles at the organism and

community scales – namely their metabolic rates as well as their

abundance and trophic links within natural planktonic

communities (Figure 1). We analyzed our results in terms of key

concepts from the ecological stoichiometry framework, such as

homeostasis, nutrient limitation, and trophic transfer efficiency.

Furthermore, we discussed our findings in terms of the functional

diversity of mixotrophs (Mitra et al., 2016) and their potential to

form harmful algal blooms (HABs) (Burkholder et al., 2008; Mitra

and Flynn, 2010). With this extensive review, we aim to expand the

understanding of mixotrophy in terms of ecological stoichiometry,

as well as detect gaps in the literature and identify future

research priorities.
Materials and methods

We performed a systematic search of the scientific literature

published until the 13th of September 2024. The digital database

from Web of Science was searched using the terms mixotroph*
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AND *plankton* OR *protist* OR *ciliate* OR *flagellate* OR

*protozo* OR dinophy* OR chrysophy* OR haptophy* OR

cryptophy* OR euglen* AND NOT veliger OR chemoauto* OR

chemolitho* OR “mixotrophic cultivation”. The term alga* was not

included because its results focused on the production of non-

phagotrophic taxa (e.g., Chlorella or Chlamydomonas) in

“mixotrophic cultures” enriched in dissolved organic C (i.e.,

defining mixotrophy as the combination of autotrophy

and osmotrophy).

The search returned 1807 papers. The step-wise paper selection

and screening followed the guidelines of Preferred Reporting Item for

Systematic Reviews and Meta-analysis in Ecology and Evolutionary

Biology (O’Dea et al., 2021) (Supplementary Figure S1). First, we

accounted only for scientific articles in English. We then read through

paper titles and abstracts and excluded those that were not studying

mixotrophic protists (e.g., mixotrophic prokaryotes, coral

endosymbionts, etc.) or that defined mixotrophy as the combination

of autotrophy and osmotrophy (rather than phagotrophy). For the

remaining 1641 articles (hereafter ‘all articles’), we performed three

classification steps. First, we checked if the studies considered ecological

stoichiometry by searching for the terms ‘stoich’ and/or ‘ratio’ within

the main text, keywords, and abstract. We only considered the term

‘ratio’ if it was connected to: nutrient(s), light:nutrient, or any ratio

between elements, cellular investments, or different dissolved,

particulate, or inorganic nutrients (e.g. TN: TP, POC: DOP, POC:
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PON, DIN: DIP, PSi: POC, Chl:C, FA:C, among others). In the second

classification step, we retained primary research articles (i.e., excluded

reviews and opinion papers) which considered the terms ‘stoich’ and/or

‘ratio’ within their methods or results sections. Finally, in our third

classification step, we analyzed the remaining articles to assess if ratios

were used as quantitative response or predictor variables directly

related to mixotrophic protist(s). These links were further classified

depending on where the ratio was measured (e.g., cellular, sestonic, or

media/water C:N:P ratio) and the type of variable (e.g., mixotroph

grazing rate or abundance) associated with the mixotroph

(Supplementary Figure S2). With this final step, we excluded articles

in which ratios were not used as variables or were not related to

mixotrophy. Additionally, we extracted information such as the study

system (e.g., laboratory culture, field sampling) and whether the article

was focused on HAB-forming mixotrophs by searching for the words

‘harmful’, ‘toxic’, and ‘bloom’ in the title, abstract, keywords,

and introduction.

From the 1641 articles that passed the initial screening, 32.9%

contained the terms ‘stoichiometry’ and/or ‘ratio’ in the main text,

18.6% considered ratios in the methods and/or results sections, and

8.2% of the articles used ratios as response or predictor variables

linked to another variable related to mixotrophs (Figure 2).

Therefore, our literature search identified 132 papers relating

stoichiometric ratios with mixotrophic protists. While our

workflow allowed for multiple types of ratios, the vast majority of
FIGURE 1

Conceptual framework illustrating the interplay between ecological stoichiometry and mixotrophic protists across organismal and community scales.
At the organism scale, mixotrophic protists regulate both autotrophic and heterotrophic metabolic pathways in response to the resource availability,
allowing them to maintain greater stoichiometric homeostasis. At the community scale, nutrient limitation and the stoichiometric regulation of
mixotrophs shape community composition and food web dynamics, influencing overall seston stoichiometry. This framework is also relevant to
harmful algal blooms (HABs) produced by mixotrophs, demonstrating the broader ecological relevance of stoichiometric dynamics.
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papers that passed through our classification process considered

C:N:P ratios (90%), and thus this was the focus of our discussion.

Most of these publications studied mixotroph stoichiometry in

laboratory experiments (30%), whereas seston stoichiometry and

dissolved nutrient ratios were more commonly assessed in field

studies (16% and 25% of the final papers, respectively) (Figure 3).

Still, studies on predator and prey stoichiometry associated with

mixotrophs were scarce across all study types (<3% each). Articles

focused on modeling were also scarce across all categories of ratios

measured. To streamline the analysis, we further categorized the 132

papers into those focused on the metabolism and/or composition of

individual mixotrophic organisms (organism-scale studies, 55

articles, 42%) and those addressing mixotrophs’ effects on

community variables and sestonic ratios (community-scale studies,

70 articles, 53%) (Supplementary Figure S1), with 7 articles (5%)

assigned to both categories. At the organism level, the majority of

studies examined the influence of dissolved or cellular nutrient ratios

on metabolic traits (40%) and the impact of resource manipulations

on the cellular composition of mixotrophs (48%). At the community

level, the plurality of papers focused on how dissolved nutrient ratios

affect community composition and processes (40%), followed by

studies considering the impact of spatial-temporal variables (27%)

and resource availability (18%) on sestonic ratios. A limited number

of studies explored the interactions among mixotrophic metabolism,

predator traits, and internal nutrient ratios (6%). Finally, 31 of the

final 132 articles (23%) were focused on HAB-forming mixotrophs,
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from which 9 articles included the effect of nutrient ratios on toxin

production. Based on these findings, we organized our discussion into

sections addressing the organism and community scales, as well as a

separate discussion regarding HAB forming mixotrophs and

their toxicity.
Results and discussion

Organism scale

Mixotrophic metabolism promotes
stoichiometric homeostasis

Stoichiometric homeostasis is a central tenet of ecological

stoichiometry, with significant organism and ecosystem scale

effects (Koojiman, 1995; Sterner and Elser, 2002). Mixotrophs

derive energy and nutrients from both autotrophy and

heterotrophy (Stoecker et al., 2017), giving them significant

nutritional flexibility. This flexibility may help maintain a

relatively stable elemental composition, with laboratory studies

showing interquartiles of cellular N:P ratios from 8.53-31.37 for

autotrophic plankton and 12.32-25.40 for mixotrophic plankton

(Moorthi et al., 2017). A study of the primarily phototrophic

species, Chrysochromulina brevifilum, revealed that cells had a

slightly lower C:N ratio when grown as a mixotroph (C:N =

5.8:1) versus autotroph (C:N = 6.4:1) under low light. When

grown autotrophically, C:N decreased marginally (6.4:1 to 5.6:1)

as irradiance increased (20 to 100 µmol photons m-2 s-1) (Jones

et al., 1995). The C:N ratio under mixotrophic growth at 20 µmol

photons m-2 s-1 was therefore most similar to autotrophic C:N

under sufficient light, indicating that mixotrophy may act as a

stabilizing force on stoichiometry when resources are limited. This

result, together with studies showing relatively stable cellular ratios

in mixotrophs over a range of experimental treatments (Katechakis

et al., 2005; González-Olalla et al., 2021; Fischer et al., 2022),

supports the hypothesis that mixotroph stoichiometry does not

vary substantially with shifts in nutrition or external supply rates,

but instead is kept balanced by using multiple metabolic pathways

to access resources. Elemental ratios in mixotrophs also appear to be

less variable than those of strict autotrophs (Figure 4) (Smalley et al.,

2003; Katechakis et al., 2005; Leonardos and Geider, 2005). Two

mixotrophic species, Ochromonas tuberculata and Cryptomonas sp.,

exhibited lower and more stable C:P ratios than an autotrophic

phytoplankton, Scenedesmus obliquus, in response to light and P

availability – particularly under low P and high light conditions,

where the use of phagotrophy resulted in 2-3 times lower C:P ratios

(Katechakis et al., 2005). This provides evidence that mixotrophy

may have a more significant impact on organism homeostasis under

resource limitation or imbalance compared to replete conditions.

However, this stabilizing effect may require that mixotrophy is

sufficient for the relief of said limitation. Barbaglia et al. (2024)

cultured eight strains of Ochromonas and showed that C:N ratios

were greater and more variable in low bacteria treatments, which

experienced nutrient limitation, than in high prey cultures. Further

studies offer mixed support for the potentially stabilizing effects of

mixotrophy (Wilken et al., 2014a; Liu et al., 2021). In contrast to the
FIGURE 2

Flow diagram of the paper selection and classification process. The
colors of the boxes indicate the workflow step (i.e., orange indicates
the literature search and primary exclusion of papers, gray
represents the stepwise classification process, and blue denotes the
information extraction step). The number of studies at each step is
denoted by n. A detailed PRISMA-style flow diagram can be found in
the Supplementary Material (Supplementary Figure S1).
frontiersin.org

https://doi.org/10.3389/fevo.2024.1505037
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Schenone et al. 10.3389/fevo.2024.1505037
above findings, Wilken et al. (2014a) found substantially greater

variability in the cellular C:N ratio of Ochromonas danica when

grown mixotrophically (C:N = 19.5 ± 9.9) versus autotrophically

(C:N = 13.4 ± 1.2), but no data was available for the stoichiometry of

the prey nor for the dissolved nutrient concentrations after

inoculation, preventing further analysis of what may have driven

the observed differences across treatments. Liu et al. (2021) also

provided evidence for weak homeostasis, as the C:N ratio of

Lepidodinium sp. in a nutrient-replete temperature manipulation

experiment both was higher under mixotrophic (C:N = 6.45 ± 0.275

and 7.30 ± 0.275 at 22 and 31°C respectively) versus autotrophic

growth (C:N = 6.22 ± 0.095 and 6.65 ± 0.0314 at 22 and 31°C

respectively) and increased with ingestion rate, suggesting that the

observed cellular composition under mixotrophic growth may have

been impacted by the high C:N ratio of the prey. Despite these

caveats, which deserve further consideration, the literature points to

mixotrophy as a stabilizing force due to the usage of dual

metabolic pathways.

Because the organismal C:N:P of plankton is a function of cellular

macromolecular composition, meaning that investment in cellular

pools such as the photosynthetic apparatus are directly related to

stoichiometry (Geider and La Roche, 2002; Finkel et al., 2016; Inomura

et al., 2020), metabolic rates can help elucidate the mechanisms

supporting stoichiometric homeostasis in mixotrophs. In primarily

phototrophic organisms, nutrient limited cultures exhibited positive

correlations between ingestion rate and both cellular C:N and C:P

ratios (Li et al., 2000; Smalley et al., 2003; González-Olalla et al., 2021),

and, in eight strains of Ochromonas ranging from facultative

heterotroph to autotroph, C:N ratios and investments in

phagotrophy were both elevated under low prey concentrations

(Barbaglia et al., 2024). Importantly, Smalley et al. (2003) found that

the stimulation of phagotrophy in batch cultures of Neoceratium furca

lagged several days behind nutrient depletion and increased as cellular

composition deviated beyond an optimal range of C:N:P values,

resulting in correlation coefficients of 0.439 and 0.480 for ingestion

rate vs C:N in N-limited cultures and C:P in P-limited cultures
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respectively. This offers a potential mechanism for the observed

relationships between metabolic rates and cellular ratios, whereby

external nutrient availability alters mixotroph stoichiometry, and the

resulting deviations in stoichiometry and/or limitation subsequently

initiate shifts in the use of phagotrophic and/or photosynthetic

nutritional pathways (Smalley et al., 2003, 2012). High C:nutrient

ratios in the organism, as observed in the aforementioned studies,

are indicative of nutrient limitation (Sterner et al., 1997; Elser et al.,

2003b), while increased grazing is a known strategy for supplementing

inorganic nutrients (Caron et al., 1993; Carpenter et al., 2018) –

allowing the mixotrophic plankton a means by which to counter this

limitation and ultimately maintain a relatively stable elemental

composition. Furthermore, while changes in metabolic rate may

occur in response to internal stoichiometry, mixotroph metabolism

can also drive internal ratios. For instance, it was observed that low

light levels increased investments in the photosynthetic apparatus of

Isochrysis galbana due to photoacclimation, which elevated cellular C:N

ratios (from 8.08 to 8.86 at 100 and 25 µmol photons m-2 s-1

respectively) alongside an increase in bacterivory (González-Olalla

et al., 2019, 2021). It should also be noted that shifts in C:N and

C:P ratios are indicative of growth rate as well as nutrient limitation,

with increased allocation to protein and RNA under high growth

rates leading to decreased C:N and C:P ratios (Flynn et al., 2010;

Inomura et al., 2020). Overall, studies indicate that external resources

alter mixotroph physiology, resulting in significant bidirectional

impacts between metabolic rates and internal stoichiometry.

It should be noted that, because most papers considering both

metabolic rates and cellular ratios focused on inducing phagotrophy

in obligate or primarily phototrophic species, data on

photosynthetic rates in primarily phagotrophic species, such as

Poterioochromonas malhamensis, is minimal (Caron et al., 1990;

Sanders et al., 1990). However, we hypothesize that the same theory

will hold true for photosynthetic rates, such that, similar to the use

of heterotrophy to obtain N and P when organism C:nutrient was

high, photosynthesis will be upregulated to provide an additional C

source when cellular C:nutrient ratios are low. This is supported by
FIGURE 3

Number of studies conducted in combinations of study type and where the ratios were measured. Circles sizes and colors denote the number of
papers. If no circle is present, no study was found for this combination.
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the modeling study of Edwards (2019) which showed that, when

phagotrophs are C limited due to feeding on nutrient-enriched

bacterioplankton, mixotrophs can outcompete these strict

heterotrophs by relieving C limitation via photosynthesis. Further

laboratory experiments inducing photosynthesis in mixotrophic

plankton could help to test this hypothesis and provide additional

insight into how physiology mediates the relationship between

external and internal elemental ratios.

Metabolic plasticity benefits mixotrophic protists
under nutrient limitation

As evidenced above, external nutrient availability plays a key

role in regulating mixotrophic metabolism. Among the papers

identified via our workflow, several studies examined how

ingestion rates of primarily phototrophic mixotrophs respond to

dissolved N:P ratios, illustrating the importance of both absolute

and relative nutrient concentrations for modulating phagotrophy.

Studies on the dinoflagellates Gyrodinium galatheanum and

N. furca found that inorganic nutrient ratios are instrumental in

determining feeding rates (Li et al., 2000; Smalley and Coats, 2002;

Smalley et al., 2012). Nutrient addition experiments revealed no

clear relationship between absolute nutrient concentration and

ingestion rate in field samples of N. furca. Instead, these

experiments pointed to the importance of inorganic nutrient

ratios as an indicator of nutrient limitation, with added N under

low dissolved N:P (∼7:1) and added P under high N:P (∼16.5:1-
22:1) both decreasing phagotrophy (Smalley et al., 2012).

Investigation of feeding in G. galatheanum showed that grazing

was not only upregulated in response to nutrient limitation, but also
Frontiers in Ecology and Evolution 06
increased as the medium N:P deviated further from the organism’s

optimal ratio of 10:1, with ingestion rates increasing by >50% under

N-starvation (Li et al., 2000). Laboratory studies of chrysophytes

Chrysolepidomonas dendrolepidota and Dinobryon sociale in

nutrient replete, reduced N, reduced P, and reduced N+P media

both reported increased grazing rates under macro-nutrient

limitation, providing evidence that this upregulation of

bacterivory was sensitive to the concentration as well as the

stoichiometry of available dissolved nutrients (Princiotta et al.,

2016; Hamsher et al., 2020). Increases in D. sociale ingestion rate

were similar in reduced N (N:P = 5:1), reduced P (N:P = 20:1), and

reduced N+P (N:P = 16:1) treatments, all exhibiting grazing rates of

~2-2.25 compared to ~1.4 bacteria cell-1 hr-1 under nutrient replete

conditions (Princiotta et al., 2016). These findings suggest that the

observed shifts in nutritional balance, meaning the relative

contributions of photosynthesis versus phagotrophy, are triggered

by dissolved nutrient limitation (i.e., absolute concentrations) in

addition to imbalances in N:P availability (i.e., changes in media

stoichiometry). While phagotrophy may be upregulated to

compensate for imbalances in nutrient availability when external

N:P ratios differ greatly from the Redfield or organism-specific

optimal ratio, increased grazing can also be a response to

imbalances in internal C:N and C:P ratios when inorganic

nutrient concentrations are low. This may explain the similar

grazing responses observed in C. dendrolepidota and D. sociale

under single- and co- nutrient limitation. Therefore, while

additional data is necessary to elucidate potential taxon-specific

responses, these studies provide further evidence that mixotrophs

become more heterotrophic in response to nutrient limitation
FIGURE 4

Response of autotrophic and mixotrophic plankton C:P ratios to external P availability (µM P), with mixotrophs exhibiting lower ratios under nutrient
limitation and more stable cellular stoichiometry across all treatments (greater homeostatic regulation). Data shown for autotrophic species (circles)
Rhinomonas reticulata (Leonardos and Geider, 2005) and Scenedesmus obliquus (Katechakis et al., 2005) and for primarily phototrophic mixotrophs
(triangles) Ceratium furca (Smalley et al., 2003), Cryptomonas sp., and Ochromonas tuberculata (Katechakis et al., 2005). Curves were calculated
using a logarithmic regression and brackets indicate the range of observed cellular C:P ratios for the plotted autotrophic and mixotrophic protists.
The black dashed line represents Redfield C:P ratio.
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(Caron et al., 1993; Carpenter et al., 2018), with phagotrophy

upregulated in response to both dissolved nutrient concentration

and ratios.

In addition to the body of literature addressing the use of

phagotrophy to relieve inorganic nutrient limitation, an additional

set of experimental studies examined how mixotroph ingestion and

growth rates are influenced by the C:N:P ratios of their prey, with

consistent results. Under P limitation, high C:P and N:P ratios in

protistan prey resulted in increased ingestion in mixotrophic

predators (Wickham and Wimmer, 2019; Liu et al., 2022) and

increased growth rates in mixotrophic predator O. danica [0.069 h-1

± 0.004 at high N:P ratios compared to 0.016 h-1 ± 0.001 at balanced

ratios (Chrzanowski et al., 2010)]. In their model simulation, Mitra

and Flynn (2023) also observed that a high C:P ratio of

cyanobacteria prey led to higher ingestion rates by mixotrophs. In

N-limited conditions, high prey C:N ratios resulted in increased

grazing but a four-fold reduction in growth rates in the mixotroph

Ochromonas (Wilken et al., 2014b). These observations are often

explained by the assumption that mixotrophs exhibit a strategy of

“compensatory feeding” to relieve nutrient limitation, where high

prey ingestion compensates for lower stoichiometric nutritional

quality to satisfy elemental nutrient requirements (Cruz-Rivera and

Hay, 2000; Meunier et al., 2012; Wei et al., 2020). These findings

suggest that prey stoichiometry has an impact on mixotroph

metabolic rates, with unbalanced C:P or C:N ratios leading to

increased ingestion rates in mixotrophic predators to counter

nutrient deficiency. Therefore, increased grazing is used to

compensate not only for limited inorganic nutrients but also

when prey stoichiometry deviates from the optimal ratio for the

predator. Overall, these studies show that individual traits of

mixotrophs, such as homeostasis and metabolic plasticity, may

prove particularly beneficial under nutrient limitation, giving

them a competitive advantage over strict autotrophs.
Community scale

Prevalence of mixotrophs under nutrient
limitation partially drives sestonic C:N:P

Mixotrophic protists can become highly abundant in response to

nutrient limitation, thus affecting and being affected by nutrient ratios

in natural aquatic systems (Lagus et al., 2004; De Lima et al., 2019;

Leruste et al., 2021). For example, in the Mediterranean Biguglia

Lagoon, mixotrophic protists were particularly dominant during

nitrogen and phosphorus co-limitation (relative abundance of 60-

90%), constituting the highest proportions of the planktonic

community under N:P ratios ranging from 65 to 125 in autumn

and spring (Leruste et al., 2021). In a nutrient enrichment experiment

using a natural planktonic community from the northern Baltic Sea,

Lagus et al. (2004) observed that the biomass of the mixotrophic

chrysophyte Uroglena increased significantly in treatments with

higher N:P ratios (39 ± 2). This result suggests that Uroglena might

have been compensating for P limitation by potentially feeding on P-

rich bacteria, though phagotrophy was not directly measured.

However, not all mixotrophic species in this community exhibited

similar responses; for instance, Dinobryon faculiferum did not show a
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clear positive relationship with the N:P ratio, indicating that responses

to nutrient variations may vary based on species-specific traits (Lagus

et al., 2004). Furthermore, additional mesocosm and experimental

food web studies showed that the prevalence of mixotrophic protists

can lead to distinct shifts in sestonic nutrient ratios as a result of their

flexible nutrient acquisition strategies (Ptacnik et al., 2004; Faithfull

et al., 2011; Carrillo et al., 2017), for example, lowering and stabilizing

C:P ratios (Figure 5) (Katechakis and Stibor, 2006; Jäger et al., 2014).

Katechakis and Stibor (2006) found that under low dissolved N and P

supplies, the mixotroph O. tuberculata achieved a high relative

abundance (92%), which led to lower sestonic C:P ratios compared

to treatments where strict autotrophs were more abundant. Similarly,

using mesocosm experiments, Faithfull et al. (2011) and Jäger et al.

(2014) reported that when the community was dominated by

mixotrophic flagellates such as Dinobryon (60-90% of relative

abundance), sestonic C:P ratios remained lower and less variable

compared to communities dominated by the strict autotrophs. These

findings align with the expectations detailed at the organismal scale.

Conversely, Ptacnik et al. (2004) demonstrated that the presence of

the mixotrophic nanoflagellate Chrysochromulina polylepis increased

sestonic C:N ratios from 8 to 11 in experimental food webs released

from N limitation – shifting the C:N ratio farther from the canonical

Redfield value and indicating greater N limitation. On the other hand,

field studies identified from our workflow did not show a clear

relation between sestonic nutrient ratios and the abundance of

mixotrophic protists in the natural community (Lavrentyev et al.,

1998; Novotná et al., 2010; González-Olalla et al., 2018). This

discrepancy may be explained by natural community stoichiometry

being a function of a complex set of abiotic and biotic factors. For

example, while the increasing abundance of mixotrophic protists may

lower sestonic C:N:P ratios, their increasing abundance is also

correlated with nutrient limitation – complicating the observed

signal. It should also be noted that while the lack of papers showing

predominantly mixotrophic communities in nutrient replete

environments is likely related to a decreased competitive advantage

of mixotrophs against strict autotrophs and heterotrophs under these

scenarios (Flynn and Mitra, 2009; Fischer et al., 2017) it could also be

a product of bias in our classification framework, which focused on

communities where mixotrophs were abundant. Still, the results

shown here highlight the ability of mixotrophs to thrive in

classically unfavorable environments (i.e., oligotrophic systems) by

compensating for imbalances in their elemental ratios through

efficient acquisition of resources.

Zooplankton grazers may benefit from
mixotroph homeostasis

Mixotrophs may also alter plankton community structure and

trophic transfer through their role as prey. In particular,

mixotrophs’ more stable elemental ratios relative to autotrophic

plankton have significant implications for grazer performance,

because this plasticity may reduce the nutrient mismatch between

consumer nutrient requirements and the elemental composition of

their prey – thus providing food of better nutritional quality

(Hessen et al., 2013; Golz et al., 2015; Karpowicz et al., 2019;

Zhou and Declerck, 2019). Several studies have explored how the

relatively stable stoichiometry of mixotrophic prey impacts
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predator growth and physiology. Overall, these studies show that

elemental composition of mixotrophic prey is an important

nutritional trait affecting zooplankton, although effects on

predator performance are often contrasting. The C:N:P ratios of

mixotrophs are generally lower than strict autotrophs [e.g.

autotrophic Rhodomonas salina N:P = 18.6 ± 1.34 vs.

mixotrophic Strombidium arenicola N:P = 10.3 ± 1.10 (Traboni

et al., 2020)] and more stable (Maselli et al., 2022) than those of

green algae and autotrophically-grown strains of the same species

[at P-limited conditions, autotroph Karlodinium veneficum C:N:P

ratio = 110:17 vs. mixotrophic K. veneficum C:N:P ratio = 96:15

(Traboni et al., 2021)]. However, there is substantial variability

among mixotrophic species (Vad et al., 2020). Still, experimental

studies highlight that feeding on mixotrophic prey improves

(Katechakis et al., 2005; Trochine et al., 2019; Vad et al., 2021) or

does not change (Vad et al., 2020) zooplankton growth and

reproduction [egg production efficiency of Paracartia grani fed

mixotrophic K. veneficum = 24.81 ± 1.16 eggs individual-1 day-1 vs.

fed autotrophic K. veneficum = 27.13 ± 2.32 eggs individual-1 day-1

(Traboni et al., 2020)] due to more balanced nutrient ratios.

Nevertheless, despite their ability to maintain more stable

elemental ratios, utilizing mixotrophs as prey can also impair

zooplankton grazer performance (Katechakis et al., 2005;

Vad et al., 2020; Traboni et al., 2021), even leading to null growth

rates (Katechakis et al., 2005). For example, other food quality traits

such as poly-unsaturated fatty acid content, edibility, and toxicity,

can therefore impact zooplankton growth more strongly than

stoichiometry (Weithoff and Wacker, 2007). Scarcity of fatty acids

and toxin production in mixotrophs, in particular when used as

single prey, were often determined as detrimental for zooplankton
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grazers, regardless of the stoichiometric ratios (Katechakis et al.,

2005; Traboni et al., 2021). Furthermore, prey size has been shown

to constrain zooplankton performance, and specifically of copepods

(Traboni et al., 2020, 2021). Ultimately, these studies suggest

that the relatively low and stable elemental composition of

mixotrophs is beneficial for zooplankton grazers, but additional

non-stoichiometric food quality traits may have significant negative

impacts on the predator response, potentially covering the positive

stoichiometric effects.

Models highlight the impact of mixotrophs on
global biogeochemistry

Modeling studies can provide insight into the large-scale impacts

of mixotrophy. Previous studies have explored how the inclusion of

mixotrophs and the manipulation of nutrient stoichiometry in model

systems affect trophic transfer efficiency, nutrient dynamics, and

global biogeochemical cycles. At the community level, mixotrophic

nutrition allows nanoplankton to accumulate higher ratios of

C:limiting elements, which is coupled with a shift toward larger

size classes (Ward and Follows, 2016; Ho et al., 2020). However, such

responses may be sensitive to the functional diversity of mixotrophs

(Ghyoot et al., 2017; Mitra, 2024), with varying groups dominating

depending on the light and nutrient regime (Leles et al., 2018).

Carbon fixation patterns can also differ based on function type, with

non-constitutive mixotrophs specifically providing a significant

contribution to community dynamics and the C cycle (Mitra,

2024). Furthermore, grazing by mixotrophs can contribute to

nutrient remineralisation and thus increase the abundance of

primary producers and productivity (up to 17%), indirectly

supporting marine copepods (Ghyoot et al., 2017). These
FIGURE 5

The influence of mixotrophic protists in decreasing and stabilizing sestonic C:P ratios as they became prevalent in the planktonic community. Data
points were extracted from the experimental studies in Katechakis and Stibor (2006) and Jäger et al. (2014), which were selected during the last step
of our classification framework. The curve was calculated using a logarithmic regression. Nutrient availability was estimated from N and P supply
treatments (Katechakis and Stibor, 2006), as well as P initial limitation followed by its subsequent alleviation (Jäger et al., 2014).
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ecosystem-scale findings have significant implications for global

biogeochemistry, for food web dynamics [increase of up to 31% in

trophic transfer efficiency (Ghyoot et al., 2017)] and for organic

matter export (Mitra et al., 2014; Ward and Follows, 2016; Ghyoot

et al., 2017; Leles et al., 2018), potentially leading to a ~35% increase

in C flux to the deep ocean (Ward and Follows, 2016). Therefore,

representing the mixotrophic fraction of the microbial community is

essential for capturing nutrient dynamics in global biogeochemical

models. As existing studies set one or several nutrient ratios as fixed

parameters in their simulations, future work considering the dynamic

nature of C:N:P ratios is necessary to further understand the role of

mixotrophs at the global scale, particularly in the context of ongoing

climate change and associated shifts in nutrient availability.
Ecological stoichiometry and toxicity in
HAB-forming mixotrophs

Particular attention has been drawn to mixotrophic organisms

that are known to trigger HABs (Burkholder et al., 2008). These

events of high biomass and potential toxicity are produced by both

autotrophic and mixotrophic protists, and occur globally with

different frequency and intensity (Mitra and Flynn, 2010; Fu

et al., 2012). Similar to other mixotrophs, high abundances of

HAB-forming species were associated with nutrient imbalances in

their environment [e.g., Myrionecta rubra (Herfort et al., 2012),

Pyrodinium bahamense and Ceratium furca (Soler-Figueroa and

Otero, 2015), Alexandrium ostenfeldii (Brandenburg et al., 2017),

Prorocentrum minimum (Ajani et al., 2018), Noctiluca scintillans

(Goes et al., 2020; Sarma et al., 2022), Lingoludinium polyedra

(Domingues and Lima, 2023), Alexandrium minutum (Law et al.,

2023), and Heterosigma akashiwo (Mardones et al., 2023) blooms].

Thus, the ability of using an organic nutrient source through

phagotrophy when inorganic nutrients are limiting, as observed

in K. veneficum (Huang et al., 2019; Li et al., 2022), may give a

competitive advantage to bloom over purely photosynthetic species

(Mulholland et al., 2018). Furthermore, the versatility of

mixotrophic protists allows them to thrive in both nutrient-

limited and eutrophic environments (Burkholder et al., 2008;

Telesh et al., 2021). During nutrient limitation, species like

K. veneficum (Huang et al., 2019; Li et al., 2022) can rely on

phagotrophy, acquiring organic nutrients and gaining a

competitive advantage over strict autotrophs (Mulholland et al.,

2018). However, when eutrophication occurs, mixotrophs can

rapidly capitalize on the increased availability of inorganic

nutrients while still maintaining phagotrophic capabilities

(Burkholder et al., 2008; Mitra and Flynn, 2010). This flexibility

in nutrient acquisition strategies helps explain why HAB-forming

species are associated with both nutrient-limited and nutrient-rich

conditions (Flynn and Mitra, 2009; Mitra et al., 2016).

HABs pose a significant ecological and public health concern,

primarily due to their potential to produce toxins that can accumulate

in marine organisms and disrupt aquatic ecosystems. Among HAB-

forming mixotrophs, the shift toward heterotrophic behavior was

associated with the production of toxins, which supports assimilation

of necessary nutrients through the kill/capture of prey, or as a by-
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product (Hambright et al., 2014; Blanco et al., 2015; Flood and

Burkholder, 2018; Cagle et al., 2021; Vidyarathna et al., 2024).

Variations in N and P supplies affected toxicity, despite these

variations influencing differently depending on the organism. In

nutrient replete conditions, Dinophysis norvegica produced five

times more okadaic acid [1.01 ± 0.34 compared to 0.21 ± 0.08 pg

cell-1 (Blanco et al., 2015)], while high abundances of Akashiwo

sanguinea were shown to boost its allelopathic capacity both under

nutrient enrichment and N:P ratio imbalance [~60% of inhibition

rate (Yang et al., 2021)]. Prymnesium parvum, one of the

most studied species for toxin production, was hypothesized to

have evolved toxigenesis to support heterotrophic nutrient

acquisition by reducing competition or assimilating necessary

nutrients (Hambright et al., 2014; Flood and Burkholder, 2018;

Cagle et al., 2021). The unbalanced dissolved N:P conditions that

favored toxigenesis in P. parvum were suboptimal for growth and

bloom formation (e.g., N:P = 100:1), while conditions that lead to

higher growth rates were less favorable for toxigenesis (Hambright

et al., 2014; Lundgren et al., 2016). The toxic capacity of these protists

may also have serious consequences for grazers: when K. veneficum

fed on prey with high N:P ratio (Lin et al., 2017) or Cochlodinium

polykrikoides (Mulholland et al., 2009) were offered as prey to

Crassostrea virginica oyster larvae and Cyprinodon variegates fish

larvae, the mortality of both animals increased substantially, reaching

even 100% in the case of the fish. Moreover, large amounts of carbon-

rich exopolymer particles produced by Lepidodinium chlorophorum

could be toxic for other members of the food web as bivalves

(Roux et al., 2022). Such responses to shifts in nutrient limitation

are especially important given that climate change and eutrophication

are currently driving an increase in HABs (Glibert, 2020). As

environmental conditions become more favorable for HAB-

forming mixotrophs (Wells et al., 2020), it is important to better

understand the mechanisms relating nutrient availability to

mixotrophic metabolism and toxin production.
Conclusions

Future research priorities

The existing literature clearly highlights the interplay between

mixotrophy and ecological stoichiometry and its significant impacts

on both cellular and ecosystem scale processes. However, this

mixotroph-stoichiometry link is still an understudied field, with

many open scientific questions. Here, we identify several key gaps

that require further research to progress our understanding of nutrient

cycling within planktonic systems. First, few studies relating

mixotrophy and stoichiometry have focused on differences among

species functional types. Mixotrophs are often classified as constitutive

or non-constitutive, depending on their ability to synthesize their own

chloroplasts (Mitra et al., 2016). Yet, while many protozoa supplement

their diet through photosynthesis by harboring symbiotic algae or

temporarily acquiring chloroplasts from their prey (Stoecker et al.,

2009), from the papers identified in our literature review, only six

specifically addressed acquired phototrophy via kleptoplasty or

symbiosis (Stabell et al., 2002; Flynn and Hansen, 2013; Takagi et al.,
frontiersin.org

https://doi.org/10.3389/fevo.2024.1505037
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Schenone et al. 10.3389/fevo.2024.1505037
2019; Maselli et al., 2020; Wukovits et al., 2021; Mitra, 2024). Given the

lack of knowledge on stoichiometric regulation in these organisms and

the potential impacts of hosting symbionts or foreign chloroplasts on

cell function, further work is necessary to understand the degree of

homeostasis and the role of external nutrient ratios in driving internal

composition and metabolism in non-constitutive mixotrophs.

Additional research should also explore how cellular elemental

ratios may shift in response to climate change-induced global warming.

In addition to a predicted increase in mixotrophy due to greater

nutrient limitation, mixotrophs are hypothesized to increase their

proportion of phagotrophic nutrition relative to photosynthesis at

higher temperatures, as respiration becomes necessary to maintain

metabolism (Allen et al., 2005; López-Urrutia et al., 2006; Wilken et al.,

2013). Yet, while studies show that warming produces the expected

impacts on metabolism, leading to increased growth and ingestion

rates and lower primary productivity:bacterivory ratios, the results

indicate little variation in stoichiometry (Lin et al., 2018; González-

Olalla et al., 2019; Liu et al., 2021; Calbet and Saiz, 2022), which

disagrees with both the growth rate hypothesis (Elser et al., 2003a;

Flynn et al., 2010) and translation compensation hypotheses (Cotner

et al., 2006; Toseland et al., 2013). Future studies are required to

understand the cellular mechanisms resulting in this observed stability

and to explain why these results differ from established hypotheses in

the field of ecological stoichiometry. Moreover, the available laboratory

studies were conducted under nutrient-replete conditions. Therefore,

further research is needed to address the interactions between

temperature and resource limitation and/or imbalance on mixotroph

stoichiometry and homeostasis. Such work can provide insight into

how mixotroph dynamics will change in the coming decades in

response to anthropogenic stressors, and with significant potential

implications for global carbon export and biogeochemistry.
Final remarks

In this review, we analyzed over 130 scientific articles to explore the

relationship between elemental stoichiometry and mixotrophic

protists, spanning from organismal to community scales. By

examining experimental studies on different mixotrophic species, we

illustrated how nutrient imbalances directly influence mixotrophic

metabolism and internal homeostasis. The findings help to explain

these protists’ ability to alternate between feeding strategies in response

to nutrient manipulation, especially by increasing feeding rates on

nutrient-rich prey. Moreover, the analyzedmesocosm experiments and

field studies revealed a competitive advantage for mixotrophy under

nutrient-limited conditions. Modeling studies provided further insight

into the intricate food web interactions driven by mixotrophs,

supported by common field measurements such as the sestonic

ratios. Despite these diverse examples, the studies linking elemental

stoichiometry with mixotrophy through quantitative variables

represented less than 10% of the reviewed articles. Given the

fundamental role of nutrient dynamics in mixotrophs’ ecological

functioning, we emphasize the need to expand the application of the

ecological stoichiometry framework to deepen our understanding of

planktonic food webs and biogeochemical cycles in aquatic systems.
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