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Introduction: Accurate models of lake primary production are crucial for

understanding ecosystem function and predicting ecosystem responses to

global change. However, current research in lake ecosystem modeling has

emphasized environmental characteristics while less work has considered

phytoplankton stoichiometric traits. Importantly, these traits link resource

availability to primary production via organismal metabolism and thus are

critical to predicting ecosystem function.

Methods: Here, we use an existing database of phytoplankton traits and lake

ecosystem models to demonstrate that phytoplankton minimum quotas for

nitrogen and phosphorus significantly influence predictions of lake gross primary

production. Additionally, we compare how different parameterizations of

phytoplankton stoichiometry affect modeled gross primary production. Finally,

we evaluate the ability of themodels to capture observed patterns in gross primary

production and seston stoichiometry for lakes in the Northern Hemisphere.

Results and discussion: We argue that parameterization and calibration of

phytoplankton stoichiometric traits will improve lake ecosystem models and

are critical for obtaining better estimates of lake primary production.
KEYWORDS

ecological stoichiometry, phytoplankton traits, lake ecosystems, process
models, seston
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fevo.2024.1505018/full
https://www.frontiersin.org/articles/10.3389/fevo.2024.1505018/full
https://www.frontiersin.org/articles/10.3389/fevo.2024.1505018/full
https://www.frontiersin.org/articles/10.3389/fevo.2024.1505018/full
https://orcid.org/0000-0002-4893-2160
https://orcid.org/0000-0002-7779-7463
https://orcid.org/0000-0002-4429-7294
https://orcid.org/0000-0002-0699-3934
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2024.1505018&domain=pdf&date_stamp=2024-11-26
mailto:carlyrolson2@gmail.com
https://doi.org/10.3389/fevo.2024.1505018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2024.1505018
https://www.frontiersin.org/journals/ecology-and-evolution


Olson et al. 10.3389/fevo.2024.1505018
1 Introduction

Primary production is a globally important biological process

that influences all three major biogeochemical cycles - carbon (C),

nitrogen (N), and phosphorus (P). Because lakes are found at

relatively low points in the landscape and tend to have high

hydrologic residence times, their primary production significantly

regulates biogeochemical cycles (Schindler, 2009; Williamson et al.,

2009), for example, while lakes cover 2-3% of Earth’s surface they

bury more C per year than all the oceans combined (Dean and

Gorham, 1998; Mendonça et al., 2017). Specifically, lake

phytoplankton integrate materials from across the landscape via

metabolic processes such as primary productivity (Dokulil and

Qian, 2021). However, rates of lake primary productivity are

changing in response to environmental stressors and these changes

have important implications for lake food web productivity and

carbon sequestration (Heathcote et al., 2015; Mendonça et al., 2017).

Since macronutrients, such as N and P, often limit

phytoplankton growth (Elser et al., 2007; Harpole et al., 2011),

nutrient uptake and usage traits can influence rates of primary

productivity and should be included in our understanding of lake

primary productivity (Tilman, 1977; Litchman and Klausmeier,

2008; Litchman, 2022). While nutrient supply controls primary

production across broad spatial scales (Hanson, 2004; Kelly et al.,

2018; Olson and Jones, 2022), the ability of phytoplankton to take

up and convert available nutrients to growth and biomass links

nutrient supply to organismal-scale processes via supply and

demand and, thereby, to broader patterns of primary productivity

(Litchman et al., 2007). Therefore, traits that determine nutrient

uptake and resource use and efficiency connect resource availability

and growth at the organism level and primary production at the

ecosystem scale. We refer to these traits as “stoichiometric traits”.

A common way to conceptualize nutrient limitation is Liebig’s

law of the minimum, which states that growth rates of primary

producers will be limited by the single nutrient that is the least

environmentally available in relation to biological demand (von

Liebig, 1855; Sterner and Elser, 2002). A change in the limiting

element directly affects the biomass yield or rate of production

(Reynolds, 1992; Kaspari and Powers, 2016). Stoichiometric traits

describe how nutrients limit organismal metabolic processes and

have roots in nutrient limitation theory, e.g. properties such as

minimum cell quota, half saturation constants for growth and

uptake, maximum growth and uptake rates. These traits can then

be mathematically represented using functional responses. The

advantage of these mathematically defined physiological responses

is that they can be easily incorporated into ecosystem models.

Our understanding of lake primary productivity has primarily

focused on physical and chemical drivers such as nutrient loading,

climate, hydrology, light availability and lake morphology

(Vollenweider, 1968; Mooij et al., 2010; Kelly et al., 2018; Olson

and Jones, 2022; Puts et al., 2022) while less attention has been paid

to phytoplankton physiology. For example, process-based lake

ecosystem models like MyLake or PCLake+ prioritize catchment

and physical factors such as land use and lake mixing dynamics

(Saloranta and Andersen, 2007; Janssen et al., 2019). While

phytoplankton traits are commonly studied in marine ecosystem
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models (Neumann, 2000; Allen et al., 2001; Finkel et al., 2010;

Bonachela et al., 2016), few studies address trait-based models in

freshwaters [but see Zwart et al. (2015); Krishna et al. (2021);

Litchman and Thomas (2023)]. Thus, a deeper exploration of the

effect of phytoplankton stoichiometric traits in lake ecosystem

models of primary productivity is warranted.

Phytoplankton growth can be modeled with static and dynamic

stoichiometric formulations that differ in their determinants: external

nutrient supply and internal cellular quotas. The static approach is

typically represented using Monod kinetics (Huisman and Weissing,

1994) where external nutrient supply determines phytoplankton

specific growth rate. In reality, phytoplankton growth is a function

of a dynamic intracellular stoichiometry and changes with nutrient

supply concentrations (Hillebrand et al., 2013; Isanta-Navarro et al.,

2024; Klip et al., 2024). Dynamic phytoplankton stoichiometry can be

represented using the Droop formulation where internal cellular

nutrient quotas govern phytoplankton growth rate. This allows

phytoplankton to accumulate higher internal nutrient quotas under

nutrient replete conditions.

Since choices regarding model structure and parameterization

can bias predictions (Skogen et al., 2021), modeling choices require

more careful consideration. Thus, in this paper we explore how

model structure and trait parameterization affect lake primary

productivity by integrating process-models with data. We have

three objectives:
1. Assess how phytoplankton stoichiometric traits drive

patterns of lake primary productivity across P- and N:P

supply gradients.

2. Identify phytoplankton trait parameters that dictate

patterns of lake primary productivity.

3. Evaluate the ability of our static and dynamic model

structures that differ in their representation of

phytoplankton stoichiometry to generate observed patterns

in lake primary productivity and seston stoichiometry.
We extend a rich body of research using these particular models

to understand lake ecosystem primary productivity (Klausmeier et al.,

2004b; Jäger and Diehl, 2014; Kelly et al., 2018; Olson and Jones,

2022; Oleksy et al., 2022) by evaluating how model structure and

phytoplankton stoichiometry influence lake primary productivity

across gradients of both N and P. We compare model predictions

to observational data from three lake data sets from the Northern

Hemisphere to qualitatively assess how well the models replicate

observed gross primary productivity and seston stoichiometry. We

then highlight further modeling efforts and data requirements for

confronting these models to better address the role of phytoplankton

traits in ecosystem function.
2 Methods

2.1 Methods overview

To accomplish Objective 1, we simulated gross primary

productivity (GPP) and phytoplankton stoichiometry across P- and
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N:P supply gradients with two model structures representing static

and dynamic phytoplankton stoichiometry. We parameterized these

models using stoichiometric traits representing diatoms, green-algae,

cyanobacteria, and an “emergent” group. We then conducted a

parameter sensitivity analysis with both model structures to assess

which traits most strongly influence lake GPP and phytoplankton

stoichiometry (Objective 2). Finally, we leveraged three pre-existing

data sets of lakes in the Northern Hemisphere to compare how well

the two model structures replicated observed patterns in lake GPP

and phytoplankton stoichiometry (Objective 3).
2.2 Objective 1: model simulation
experiments to assess how phytoplankton
stoichiometric traits drive patterns of lake
primary productivity

2.2.1 Trait database
To explore how phytoplankton trait parameterization

influenced model predictions of GPP and phytoplankton

stoichiometry we leveraged a previously compiled dataset of

phytoplankton stoichiometric traits (Edwards et al., 2015). Traits

of interest included nutrient half-saturation constants for N and P

(KN mg N m-3; KP mg P m-3), minimum cell quotas of N and P

relative to cell C content (N,P:C quota = QminN,P mg N,P mg C-1)

and maximum uptake rates for N and P (VmaxN,P mg N,P mg C-1).

This dataset compiles trait data on 384 phytoplankton strains, of

which 211 freshwater and 173 marine entries, derived from culture

experiments where the limiting nutrient was ammonium, nitrate, or

phosphate. The five most common taxa were diatoms (134), green-

algae (120), and cyanobacteria (47); all other taxa had less than

ten entries.

We selected only freshwater taxa of the green-algae,

cyanobacteria, and diatom groups since these are considered

major groups of freshwater phytoplankton (Dodds, 2002) and

they had the most abundant trait data in the database. Several

traits, including QminN,P and VmaxN,P, were reported as μmol N,P

cell-1 which differ from units required in our models (Table 1).

Consequently we converted them to mg N,P mg C-1 using the

median C per cell-1 for each group: green-algae = 3. 9 * 10-6 mg C
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cell-1 and cyanobacteria = 0.37 * 10-6 mg C cell-1. Data for

freshwater diatoms C cell-1 were unavailable and in its place, we

utilized the median of marine diatoms: 1.2 * 10-6 mg C cell-1. For

each group, we obtained the median trait parameters described

above. In addition, we calculated median trait values across all

groups to represent “emergent phytoplankton traits” (Table 1;

Figure 1). As the Edwards et al. (2015) data set did not include

maximum growth rates (µmax) this information was extracted from

Schwaderer et al. (2011) and median values for each group were

calculated as above.

Phytoplankton trait parameters showed considerable variation,

frequently extending across multiple orders of magnitude within

and between phytoplankton groups (Supplementary Figure S1;

Table 1). Generally, parameters for P (n = 267) were better

represented than those for N (n = 114), and green-algae (n =

230) were better represented than diatoms (n = 123 including three

marine diatoms with measured carbon cell content) or

cyanobacteria (n = 80). While parameters describing affinity and

efficiency for nutrients and maximum growth rates were well

described (KP = 92, KN = 44, QminP = 83, QminN = 26, VmaxP =

83, VmaxN = 44), there were very few measurements of cell C

content (n = 6 across all phytoplankton groups). Similarly, there

was only one observation of cell C content for green-algae. These

missing data measurements likely biased our conversions of

phytoplankton trait parameters from μmol cell-1 to mg C-1.

2.2.2 Model structure overview
The first model (static model) treats phytoplankton

stoichiometry statically. Lake morphology is defined by a mix-

depth layer (zmix) and surface area (SA) with a hydrologic inflow

and outflow (Qin=Qout) and constant volume. Algal biomass is a

function of a homogenous phytoplankton community evenly

distributed throughout the water column (A; Equation 1).

Phytoplankton are lost via sedimentation (v), mortality (lA) and

removal through hydrologic outflows (Qout).

dA
dt

= A ∗ rs,d − lA −
v

zmix
−

Qout

SA ∗ zmix

� �
(1)

Phytoplankton biomass increases through nutrient-limited

growth. Specific growth rate (rs; Equation 2) is a function of
TABLE 1 Overview of group-specific phytoplankton stoichiometric traits used to parameterize the two model structures.

Trait Symbol Unit Median/Emergent Diatoms Greens Cyanos Sensitivity Range

N half-saturation
constant

KN mg N m-3 50 64 36 33 5-100

P half-saturation
constant

KP mg P m-3 16.5 5 28 26 1-50

Minimum N:C quota QminN mg N mg C-1 0.09 0.155 0.025 0.01 0.01-0.5

Minimum P:C quota QminP mg P mg C-1 0.0105 0.02 0.001 0.001 0.01-0.5

Maximum N uptake rate VmaxN mg N mg C-1 2.453 4.49 0.416 0.034 0.5-5

Maximum P uptake rate VmaxP mg P mg C-1 0.4255 0.608 0.243 0.113 0.1-2

Maximum growth rate μmax day-1 0.665 0.455 0.875 0.64 0-1
Greens = green-algae, Cyanos = cyanobacteria, sensitivity range = range of values used in the sensitivity analysis.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1505018
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Olson et al. 10.3389/fevo.2024.1505018
maximum growth rate ( μmax) and is strictly limited by N or P (N , P)

following Liebig’s Law of the minimum. Nitrogen or P limitation is

determined by the nutrient-specific half-saturation constants for

growth (KN ,  KP).

rs = μmax ∗min
N

KN + N
,

P
KP + P

� �
(2)

Phytoplankton have access to bioavailable N and P in the well-

mixed water column (N , P; Equation 3). These nutrient pools

increase via external supply of nutrients supplied via hydrologic

inflows (Nin, Pin), partial remineralization of dead phytoplankton
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(lA) and nutrients are lost through uptake for phytoplankton growth

and hydrologic outflow. Remineralization and uptake parameters are

multiplied by a static minimum N or P quota (QminN, QminP).

dN
dt

=
Qin

SA ∗ zmix
∗ (Nin − N) + QminN ∗ lA ∗A − QminN ∗ rs ∗A (3a)

dP
dt

=
Qin

SA∗ zmix
∗ (Pin − P) + QminP ∗ lA ∗A − QminP ∗ rs ∗A (3b)

The second model (dynamic model) treats phytoplankton

stoichiometry dynamically (Klausmeier et al., 2004b; Hall, 2009).
FIGURE 1

Static and dynamic model simulations showing variation in lake gross primary productivity (GPP; mg C L-1 day-1) as a function of nutrient loads,
stoichiometry, and model structure. Gross primary productivity increases linearly with load N:P before plateauing once load N:P is equal to the
minimum cell N:P quota. Dashed vertical lines show the minimum cell N:P quotas for the respective algae groups. Columns show the static vs.
dynamic structure and rows show the different P-loading scenarios (Pin = 10, 50, 100, and 500 ug L-1). Greens = green algae and cyanos
= cyanobacteria.
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Phytoplankton growth follows the Droop formulation (Droop,

1968) where growth is a function of a dynamic internal cellular

quota rather than external nutrient supply as in the static model (rd ;

Equation 4).

rd = μmax ∗min 1 −
QminN

QN
, 1 −

QminP

QP

� �
  (4)

Following Leibig’s law of the minimum phytoplankton growth

is limited by either N or P where QminN and QminP are minimum cell

quotas necessary to sustain growth. Cell quotas are dynamic and

increase in response to external nutrient concentrations and

decrease in response to demand for growth (QN , QP ; Equation 5).

Where VmaxN and VmaxP are maximum nutrient uptake rates for

N and P, respectively.

dQN

dt
= VmaxN ∗

N
KN + N

� �
− rd ∗QN (5a)

dQP

dt
= VmaxP ∗

P
KP + P

� �
− rd ∗QP (5b)

Bioavailable N and P concentrations in the water column

(Equation 6) are controlled by hydrologic inflows, partial

remineralization, and phytoplankton uptake.

dN
dt

=
Qin

SA ∗ zmix
∗ (Nin − N) + A ∗ −VmaxN ∗

N
KN + N

� �� �

+ lA ∗QN (6a)

dP
dt

=  
Qin

SA ∗ zmix
∗ (Pin − P) + A ∗ −VmaxP ∗

P
KP + P

� �� �

+ lA ∗QP (6b)

A full description of state variables and parameters can be found

in Supplementary Table S1.

2.2.3 Model simulation experiments
We performed two model experiments to evaluate how static

and dynamic phytoplankton stoichiometry and differences in

phytoplankton traits influenced patterns of modeled GPP and

phytoplankton stoichiometry across gradients of N and P. First,

we ran model simulations using the emergent trait parameterization

for different P inflow concentrations (Pin) representing nutrient-

poor to nutrient-rich lakes (Pin = 10, 50, 100, and 500 μg L-1). N

inflow concentrations (Nin) were scaled to Pin using N:P ratios

ranging from 10 to 50 molar. We chose this range of N:P supply

ratios as it represents the range where phytoplankton N:P increases

linearly with supply N:P (Klausmeier et al., 2004b).

Second, we performed the same set of simulations with different

stoichiometric trait parameterizations reflecting the median trait

values for the three major groups of phytoplankton, green-algae,

cyanobacteria, and diatoms, as well as the emergent phytoplankton

group (Edwards et al., 2015; Table 1; Supplementary Figure S1). In

this second experiment, our goal was to investigate whether changes

in group-specific trait values influenced patterns of modeled GPP
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and phytoplankton stoichiometry and how this may interact with

the static and dynamic model structures.
2.3 Objective 2: sensitivity analysis to
identify key phytoplankton trait parameters

Using both model structures, we performed a parameter

sensitivity analysis to determine which stoichiometric traits had the

strongest effect on modeled GPP and phytoplankton stoichiometry.

Holding all other parameters constant at the emergent trait

parameterization, we ran each model across a gradient of nutrient

supply, Pin ranged from 5 to 500 μg P L-1 with Nin inflow

concentrations scaled to Pin using N:P ranging from 10 to 50

molar, and a gradient of trait values: KP = 1-50 mg P m-3, KN = 5-

100 mg Nm-3,minQP = 0.01-0.5 mg P mg C-1,minQN = 0.01-0.5 mg

Nmgmg C-1, VmaxP = 0.1-2 mg P mg C-1, VmaxN = 0.5-5 mg Nmg

C-1, μmax=0-1 day-1 (Table 1). These trait ranges were informed by

the range of trait parameter values from Edwards et al. (2015). This

resulted in a total of 37,960 simulations. We evaluated parameter

sensitivity by comparing GPP and phytoplankton stoichiometry

estimates to baseline scenarios parameterized with the emergent

phytoplankton trait values for a given P supply and N:P supply

ratio. To standardize the effect of different traits and units, we

calculated z-scores based on the difference between the simulations

with varying trait parameters and baseline simulations.
2.4 Objective 3: evaluation of the models’
ability to generate patterns in GPP and
seston stoichiometry

2.4.1 Data for generating observed patterns
of GPP

To assess the performance of our models, we qualitatively

compared model outputs of GPP and phytoplankton C:N:P

stoichiometry to observed patterns. To the best of our knowledge,

fully comprehensive datasets required to force and assess these models

do not exist publicly. Thus, we used three publicly available datasets

that jointly have the required data (described below). The first dataset

is fromCorman et al. (2023a) which was previously compiled from the

Global Lake Ecological Observatory Network, and has the required

data to force the model, including inflow stream nutrient

concentrations, and GPP for validation, but it does not have seston

C:N:P stoichiometry - a model output in the dynamic structure that is

ideal for model validation. In contrast, the NEON and Flathead data

sets (see description below) include seston stoichiometry but not

inflow stream nutrient concentrations or GPP estimates for validation.

We used Corman’s dataset to assess the two model structures’

ability to generate observed patterns of GPP. These data include lake

morphological characteristics, in situ high frequency data required to

generate GPP estimates, and inflow stream TN and TP concentration

for 16 lakes in the Northern Hemisphere (Corman et al. (2023a);

Supplementary Table S2). Gross primary production rates and inflow

stream nutrient concentrations were aggregated at a monthly
frontiersin.org
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resolution resulting in a total of 91 observations. Missing monthly

data (GPP = 12, stream N and P concentrations = 4) were imputed

using the median of the respective lake. We converted GPP estimates

from mg O2 L
-1 day-1 to mg C L-1 day-1 using a C:O2 ratio of 12:32

(Wetzel and Likens, 2000). As we were only modeling primary

production in the mixed layer, we approximated the mixed layer

water residence time by multiplying whole-lake water residence time

by the ratio of the mixed-layer:lake volume. Lake inflow was then

calculated from the mixed layer volume (product of surface area and

mixed-layer depth) and the approximated water residence time for

the mixed layer. We obtained mixed-layer depths from Oleksy

et al. (2022).

2.4.2 Data for generating observed patterns of
seston stoichiometry

We used data from seven lakes from the U.S. National

Ecological Observatory Network (NEON) comprising seston

stoichiometry and standard lake physicochemical information to

assess the two model structures’ ability to generate observed

patterns of seston stoichiometry. These data were collected

following standard NEON protocols (NEON, 2024c, NEON,

2024a, NEON, 2024b). The lakes span a range of trophic status,

size, and ecoregions within the United States (Supplementary Table

S3; Supplementary Figure S2): Lake Barco (BARC), Crampton Lake

(CRAM), Prairie Lake (PRLA), Prairie Pothole (PRPO), Little Rock

Lake (LIRO), Lake Suggs (SUGG), and Toolik Lake (TOOK). Each

lake was sampled at least once per season from January 2014 to

December 2022, however, seston stoichiometry was only sampled/

released from January 2014 to December 2019. We subset the data

to include samples taken in the middle of the lake at the water

surface. Inflow stream nutrient concentrations were unavailable for

the NEON lakes, so we estimated them using a linear relationship

between in-lake and stream inflow nutrient concentrations from the

Corman dataset (Supplementary Figure S3). To obtain the mixed

layer depth for each lake, we used surface area and in-lake dissolved

organic carbon (DOC) concentrations following Equation 7 (Pérez-

Fuentetaja et al., 1999; Kelly et al., 2018):

zmix   =   10−0:515   +   log10(DOC)   +   0:115   *   log10(2   ∗  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SA
p   +   0:991)

p
(7)

We complemented the NEON dataset with data from Flathead

Lake (Supplementary Figure S2; Supplementary Table S3) for which

most data are publicly available apart from the seston stoichiometry:

https://flbs.umt.edu/newflbs/research/flbs-public-data/. The

remaining seston elemental composition data set is published in

Dryad (https://doi.org/10.5061/dryad.hdr7sqvkw). Samples from

this large oligotrophic lake were collected at the deepest point in

the lake at 5, 50 and 90 m depth. Sampling and analytical methods

are listed in the Flathead Lake Biological Station Public Data Portal

(Flathead Monitoring Program: https://flbs.umt.edu/PublicData).

We focused on the four consecutive sampling years from June

2016 through mid September 2019 in which the program started to

collect additional suspended particulate stoichiometry data. The

summer season from 2016-2019 is available in the same repository

(Elser, 2022). The mixed-layer depth from Flathead Lake was

obtained from lake thermal data presented in Evans et al. (2024).
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In absence of robust hydrological data we assumed that the

epilimnion had a water residence time of 1 year for the NEON

lakes and Flathead Lake. We believe this is a reasonable assumption

as many of these lakes stratify and mix annually.

2.4.3 Model simulations
As data sets containing both lake GPP and seston stoichiometry

were unavailable to us, we chose to conduct two separate sets of

simulations to evaluate the ability of the models to replicate

observed patterns of GPP and seston stoichiometry (see

descriptions of Corman and NEON data above). For the Corman

data set, we assessed the ability of the models to reproduce patterns

of observed GPP by comparing the distributions of observed and

modeled GPP. For the Flathead Lake/NEON data set, we extracted

modeled seston stoichiometry and compared it to observed data

using ternary plots (see below).

We ran all simulations, including the model simulation

experiments (above), for 2,000 timesteps at a daily resolution to

obtain equilibrium values using the LSODA integration solver with

the ode() function in the R package deSolve (Soetaert et al., 2010).

All analyses and simulations were conducted using the R statistical

software (version 4.3.3) (R Core Team, 2024), and model and

simulation code are available on Github (https://github.com/

diatomdaniel/getting_droopy_with_it_woodstoich24) and Zenodo

(DOI: 10.5281/zenodo.13886190).

2.4.4 Variability in seston stoichiometry
We visualized variation in observed and modeled seston

stoichiometry using a ternary plot diagram. Ternary plots are

powerful visualization tools for stoichiometric data as they allow

for 3-dimensional systems to be represented in 2-dimensional space

along three axes.We plotted relative seston composition ratios by first

Redfield-normalizing the molar C, N and P following Smith et al.

(2017) for both the modeled and observed data. We then plotted

those relative proportions in Ternary Plots using the software

SigmaPlot (version 15.0, Graffiti LLC, Palo Alto, CA, USA). To aid

interpretation of the data, we included the established Redfield ratio

of 106C:16N:1P and Sterner ratio of 166C:20N:1P as reference ratios

(Redfield, 1958; Sterner et al., 2008). We followed the interpretation

as described in Smith et al. (2017). The composition of each average

offield data per lake or model output varied between 0-100% with the

sum of the three elements adding up to 100%. When a value falls

below the 20% line for one of the three macro-elements, it can be

interpreted as that element being depleted with the corners creating

room for co-depletion of two elements.
3 Results

3.1 Objective 1: model simulation
experiments of phytoplankton nutrient
utilization and stoichiometric traits

3.1.1 Gross primary productivity
P inflow concentration limits the maximum rate of GPP

(Figure 1). Across a gradient of N:P supply ratio, the rate at
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which GPP saturates is highest with the highest P inflow

concentrat ion. Addit ional ly , P inflow interacts with

phytoplankton traits; for example, phytoplankton groups

parameterized with higher growth rates, such as cyanobacteria

and green-algae, reach higher GPP at the same P inflow

(Figure 1). At low P-supply, green-algae had a higher maximum

GPP than cyanobacteria in the static model but not in the dynamic

model. This result stems from the combination of low half-

saturation constant for P and high maximum growth rate for

green algae (Table 1). In contrast, growth is not related to half-

saturation constants but is determined by QminN and QminP in the

dynamic model. The N:P supply ratio at which this maximum GPP

is reached is independent of P inflow and coincides with the

parameterization of phytoplankton QminN: QminP (Figure 1).

Differences in GPP between the static and dynamic model

structures were minimal (Figure 1).

3.1.2 Phytoplankton stoichiometry
In the dynamic model structure, phytoplankton C:N and C:P

demonstrate a threshold-type response to N:P inflow with the shift

occurring at the QminN: QminP for that particular phytoplankton

group (Figures 2A, B). Physiologically, this threshold is driven by a

shift in limitation where phytoplankton carbon:nutrient

stoichiometry increases to compensate for shifts in nutrient

limitation. This result is consistent with classic chemostat studies
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(Rhee, 1978; Goldman, 1986). Phytoplankton N:P linearly increases

with inflow N:P with all P inflow concentrations and across all

phytoplankton groups (Figure 2C) which is consistent with theory

demonstrating the effect of low dilution rate on phytoplankton

quota (Klausmeier et al., 2004b).
3.2 Objective 2: sensitivity analysis to
identify key phytoplankton trait parameters

3.2.1 Gross primary productivity
Gross primary production was most sensitive to QminN and

QminP in both model structures (Figure 3A). Gross primary

production increased with lower values of QminN and QminP as

lower minimum cell quotas result in more efficient nutrient use.

Any change in QminN had a larger effect on GPP at low N:P supply

compared to high N:P supply (Figure 3A). Reciprocally, GPP

increased at low QminP across the entire N:P supply gradient,

however, this effect reached a threshold at a QminP of 0.1 mg P

mg C-1 (Figure 3A). Gross primary production was minimally

sensitive to KN and KP in the static model and insensitive to half

saturation constants in the dynamic model (Figure 3). In the static

model, increasing KP decreased GPP, particularly at high N:P

supply while lower values of KN increased GPP at low N:P

supply. In both models, higher maximum growth rates increased
FIGURE 2

'Dynamic model simulations highlighting variation in seston (A) C:N, (B) C:P, and (C) N:P (molar) as a function of nutrient loads and N:P
stoichiometry (molar). Dashed vertical lines show the minimum cell N:P quotas for the respective algae groups. Rows show different P-loading
scenarios (Pin = 10, 50, 100, and 500 µg L-1. Greens = green-algae and cyanos = cyanobacteria.
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GPP. In the dynamic model, GPP was insensitive to maximum

uptake rates (Figure 3A).

3.2.2 Phytoplankton intracellular nutrient content
As with GPP, phytoplankton intracellular nutrient contents in

the dynamic model, QN and QP, were most sensitive to QminN and

QminP and this sensitivity was contingent on N:P supply

(Figures 3B, C). Intracellular N increased with increasing QminN

and QminP particularly at low and high N:P supply, respectively.

Intracellular P also increased with increasing QminN and QminP,

however, with respect to QminP, this increase was insensitive to N:

P supply.

Both intracellular nutrient contents were insensitive to KN, KP,

and VmaxP, but both were sensitive to μmax as cell N and P quotas

decreased with increasing growth rates (Figures 3B, C). This change

in cell nutrient quota under high growth rates represents a greater

allocation of internal nutrient supplies to biomass accumulation.

Interestingly, only QN was sensitive to VmaxN, and increased with

increasing VmaxN at high N:P supply.
3.3 Objective 3: evaluation of models’
ability to generate patterns

3.3.1 Gross primary production
The static model better captured the distribution of observed

GPP compared to the dynamic model particularly when

parameterized using green-algae (static: R2 = 0.41, p-value<
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0.001) and cyanobacteria traits (static: R2 = 0.41, p-value< 0.001;

Figure 4). However, the static model tended to over-predict GPP at

the high end of the range of observed GPP and under-predict GPP

at the low end (Figure 4). All other model structures and

parameterizations were poor predictors of modeled GPP

(Figure 4). The emergent (static: R2 = 0.30, p-value< 0.001;

dynamic: R2 = 0.25, p-value< 0.001), diatom (static: R2 = 0.76, p-

value< 0.001; dynamic: R2 = 0.25, p-value< 0.001), green-algae

(dynamic: R2 = 0.30, p-value< 0.001), and cyanobacteria

(dynamic: R2 = 0.30, p-value< 0.001) parameterizations all

underpredicted GPP for most of the observations. In many cases

modeled rates of GPP approached zero suggesting a severe

mismatch between nutrient supply and demand. However, both

models and all phytoplankton trait parameterizations were able to

capture the bimodal distribution of observed GPP (Figure 4),

suggesting that the models can capture qualitative patterns in lake

productivity across nutrient supply gradients.

3.3.2 Seston stoichiometry
The dynamic model was unable to capture observed patterns of

seston C:N:P stoichiometry across a diverse range of lake types, but

did produce some biologically reasonable seston estimates

(Figure 5). Modeled seston stoichiometry varied within

phytoplankton groups as well as lakes, resulting in a wide range

of phytoplankton C:N:P ratios. Several taxa mostly grouped

together: green algae, cyanobacteria, diatoms, and the emergent

algae produced clusters of similar estimates of seston C:N:P ratios.

Although model estimates generally diverged from the Redfield and
FIGURE 3

Parameter sensitivity analysis for (A) gross primary production (GPP; mg C L-1 day-1), (B) cell N quota (mg N mg-1 C), and (C) cell P quota (mg P mg-1

C). The Y-axis shows the standardized z-scores of the difference between the simulation using different trait parameter values and the baseline
simulation using the emergent trait values. Positive values denote increases in the response variable relative to the baseline simulation and vice versa.
Each of the dots is a single model simulation. Shaded lines connect simulations with the same P supply (Pin mg L-1) and load N:P. Parameter units:
KN and KP = mg m-3, QminN and QminP = mg N, P mg-1 C, VmaxN and VmaxP = mg N, P mg-1 C, umax = days-1.
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Sterner ratios, the model produced biologically reasonable estimates

for 7 of the 32 parameterizations. Modeled diatoms were C-depleted

and green-algae were N-depleted. Modeled emergent seston ratios

were split in that five were balanced and 3 were C-depleted. Finally,

modeled cyanobacteria were both N and P co-depleted (5) and C

and P co-depleted (3).

The observed Flathead Lake and NEON lake seston values were

centered on the ternary diagram and cluster close to the Redfield

ratio (Figure 5). The deepest lakes, Flathead and Toolik Lake, had P-

depleted seston compositions (i.e., they are below the 20% PP line;

Smith et al., 2017), while the remaining six lakes had a well-

balanced seston stoichiometric composition (i.e., being above 20%

of PP, PN, and PC).
4 Discussion

We used a combination of model simulations, parameter

sensitivity analysis, and model-data comparison to assess the role

of phytoplankton stoichiometric traits in lake ecosystem models.

Our objectives were to (1) assess how phytoplankton nutrient

utilization and stoichiometric traits drive patterns of lake primary

productivity across P- and N:P supply gradients, (2) identify key

phytoplankton trait parameters that dictate patterns of lake primary

productivity, and (3) evaluate the ability of model structures that

differ in their representation of phytoplankton stoichiometry to
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generate observed patterns in lake primary productivity and seston

stoichiometry. With regards to Objectives 1 and 2, model

simulations and sensitivity analysis revealed that phytoplankton

stoichiometric traits, specifically QminN and QminP, significantly

influence patterns of GPP by setting demand for N and P that

interact with nutrient supply (Figures 1–3). With regards to

Objective 3, our models qualitatively captured patterns of GPP,

but were unable to capture patterns in observed seston

stoichiometry (Figures 4, 5). We find that stoichiometric traits are

important drivers of GPP and seston nutrient stoichiometry and

interact strongly with supply N:P across gradients of P availability.

Specifically, phytoplankton traits that describe nutrient use

efficiency, i.e. QminN and QminP, determine model performance.

Going forward lake ecologists would benefit from the collection and

generation of data that will effectively parameterize lake ecosystem

models to improve predictive capacity and generate reliable

estimates of ecosystem processes under global change.
4.1 Objectives 1 + 2: phytoplankton traits
drive GPP and seston stoichiometry

The maximum rate of GPP that can be attained was primarily

controlled by P loading, a finding that is consistent with the P-

paradigm in lakes that the long-term production of biomass is

ultimately limited by P (Schindler et al., 2008; Higgins et al., 2018).
FIGURE 4

Density distributions of the observed gross primary production (white; GPP mg C L-1 day-1 for 16 lakes from the Northern Hemisphere (Corman et
al., 2023a) compared to modeled GPP (gray) for the static and dynamic model strucutres and the four algae group parameterizations. Inset text
shows summary statistics describing the linear relationship between observed and modeled log-transformed GPP. Greens = green-algae and cyanos
= cyanobacteria.
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Similarly, our models provide theoretical support for the role of N:P

stoichiometry and N availability in distinguishing between capacity

and rate limitation of biomass production in lentic systems. Although

the biomass carrying capacity of a lake is ultimately set by P, the

effects from limitation by light, CO2 or N as well as species-specific

differences in resource affinity and requirements may prevent this

maximum from being obtained (Reynolds, 1992). In addition to P-

related parameters, maximum growth rate parameter resulted in

contrasting patterns of GPP across algal groups (Figure 1).

Ultimately, differences in growth rate are a result of different

resource acquisition and competition strategies that are associated

with phytoplankton size, cellular composition, and trait expression

(Litchman et al., 2007; Brandenburg et al., 2018; Klip et al., 2024). For

example, high growth rates are often associated with low cell N:P

ratios (Hillebrand et al., 2013) as demand for P increases according to

the growth rate hypothesis that relates P content to organismal rRNA

content and ultimately growth (Sterner and Elser, 2002).

The N:P supply ratio at which maximum GPP is attained was

dictated by QminN and QminP (Figure 1). These traits determine the

efficiency at which N and P are converted to biomass (or carbon).

Consequently, phytoplankton stoichiometric traits directly link

nutrient availability to biomass production in our models and

provide a critical link between nutrient availability and C-cycling

across broad nutrient inputs. For example, cyanobacteria and
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green-algae had the lowest QminN and QminP in our dataset

(Table 1), indicating they required the least N and P to fix the

same amount of C and thus, were able to build the most biomass at

a higher N:P supply. Similarly, the ratio of minimum quotas for N

and P dictate the supply N:P at which limitation shifts from N to P,

highlighting how phytoplankton cellular composition (in terms of

N and P) determines nutrient limitation (Figure 1). Conceptually,

the ratio of QminN to QminP is equivalent to nutrient use efficiency

(Vitousek, 1982), optimal N:P ratio (Klausmeier et al., 2004a),

threshold elemental ratios (Frost et al., 2006), and consumption

vectors of resource ratio theory (Tilman, 1985). Other studies have

demonstrated that cellular quotas of P are important in models of

lake primary production (Olson and Jones, 2022; Kelly et al., 2018).

Thus, we provide further support for the importance of supply N:P

and phytoplankton stoichiometry in shaping patterns of primary

production and C-cycling across freshwater landscapes.
4.2 Objective 3: deviations between
observations and theory

Both our models failed to adequately capture the relationships

between nutrient supply and GPP in 16 lakes across the Northern

Hemisphere (Corman et al., 2023b), resulting in underestimates of
FIGURE 5

Summary ternary plot of the mean relative seston stoichiometry for modeled and observed data. The plot shows the average relative percentages of
the molar Redfield-normalized seston stoichiometry of the seston sampling per particulate carbon (PC), particulate nitrogen (PN) and particulate
phosphorus (PP) in the seven NEON lakes complemented with the larger Flathead lake during the summer. The lake abbreviations represent the
following lakes: FLAT is Flathead Lake, BARC is Lake Barco, CRAM is Crampton Lake, LIRO is Little Rock Lake, PRLA is Prairie Lake, PRPO is Prairie
Pothole, SUGG is Lake Suggs and TOOK is Toolik Lake. We added the relative Redfield and Sterner ratios (black star and cross respectively) as
literature reference ratios. Model outputs for each algae group are represented with smaller symbols (lake) in color (phytoplankton groups). The
composition of each model output or average of field data per lake varied between 0-100% with the sum of the three elements adding up to 100%.
When a value gets below the 20% line for one of the three macro-elements, it can be interpreted as that element being nutrient-limited with the
corners creating room for co-limitation of two elements, following Smith et al. (2017).
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GPP. In contrast, Corman et al. (2023b) found strong support for

nutrient loads as a driver of lake GPP. The incongruence between

models and reality arises from the high N:P of the supply in our

models. Aggregation of streamflow on a monthly basis resulted in

low median P concentrations compared to N (N: median = 764 μg

L-1, ± 1sd = 2,822; P: median = 19 μg L-1, ± 1sd = 54) and high

supply N:P across all lakes (median = 91 by moles, ± 1sd = 173). As

maximum obtainable GPP in our models is set by P supply

(Figure 1), P-limitation is inevitable under conditions of low P-

supply, and our models result in areas of near-zero GPP. Potential

reasons for the failure of our models to capture observed rates of

GPP is the lack of reliable nutrient loads and inability to account for

internal cycling of P. Other models have circumvented this problem

by (1) adjusting nutrient inputs to minimize differences between

modeled and observed quantities (Kelly et al., 2018), (2) explicitly

modeling internal P recycling (Olson and Jones, 2022), or (3)

utilizing data assimilation techniques to determine parameter

values that maximize model performance (Oleksy et al., 2022;

Edwards et al., 2013).

The static and dynamic models differed in their ability to

capture patterns of GPP (Figure 4). Surprisingly, the static model

parameterized with cyanobacteria and green-algae performed the

best but still captured less than 50% of the variation between

observed and modeled GPP. The performance of the static model

arises from the relatively high QminN: QminP ratios of the green-algae

and cyanobacteria (55 and 22 by moles respectively) compared to

the diatom and the emergent parameterization. This stoichiometric

trait, QminN: QminP, interacts with the high affinity for P (KP) to

allow phytoplankton demand to match the high supply N:P of the

inflow. Moreover, algal growth in the static model is independent of

minimum quotas as nutrient uptake is translated into growth

following Michaelis-Menten uptake kinetics (Equation 2). In

contrast, the minimum cell quotas in the dynamic model require

algae to meet “maintenance costs” before growth is permitted

(Equations 4, 5), representing less efficient conversion of nutrients

to biomass at low nutrient concentrations.
4.3 Caveats and future directions

Growth in our models is determined by a single limiting

resource (either N or P) following Liebig’s Law of the Minimum

(von Liebig, 1855), resulting in strict N- or P-limitation. In reality,

nutrient limitation of phytoplankton is complex and subject to

considerable spatiotemporal variation. For example, large-scale

surveys, meta-analyses of experiments and field studies have

found that freshwater phytoplankton are frequently characterized

by co-limitation of N and P (Elser et al., 2007; Paerl et al., 2016;

McCullough et al., 2024), and high rates of primary production can

be observed under strong stoichiometric imbalances in eutrophic

systems (Kelly et al., 2018), but see Sterner et al. (2007), and Elser

et al. (2022) for large, oligotrophic lakes. Similarly nutrient supplies

are often interactive, and the effects of increasing N or P depends on

context and supply rate of the other element (Harpole et al., 2011;

Frost et al., 2023). Our models did not include other factors that
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affect primary production in freshwater lakes, such as temperature,

mixotrophy, zooplankton grazing or limitation by trace elements

(Kimmel and Groeger, 1984; Hammer and Pitchford, 2005). Since

light plays a crucial role in phytoplankton ecology (Richardson

et al., 2017), assessment of the interaction between stoichiometric

and light utilization traits on GPP and phytoplankton stoichiometry

is necessary. We hypothesize that light limitation would reduce

both GPP and phytoplankton C:nutrient ratios because

phytoplankton will grow less under light limitation and will

therefore accumulate nitrogen and phosphorus, but this will

depend on nutrient supply (Tilman, 1977; Liu et al., 2017; Isanta-

Navarro et al., 2024). Future work could also address how different

representations of nutrient limitation influence model outputs and

interact with trait parameterization.

Our models do not account for phytoplankton trait flexibility in

response to nutrient limitation at the individual or the community

level which adds a phenotypic or genotypic level of variation to

model parameterization (Edwards et al., 2011; Andersen et al., 2020;

Blows and Hoffmann, 2005). Minimum nutrient cellular quotas can

be contingent on environmental context and growth phase (Rhee

and Gotham, 1981; Daines et al., 2014; Jiang and Nakano, 2022).

For example, elevated temperatures lead to lower cellular demand

for P-rich ribosomal DNA via more efficient enzymatic kinetics

resulting in lower cellular P quota and increased C:P and N:P ratios

(Moreno and Martiny (2018) and reference therein). Additionally,

seasonal and diurnal variation in seston elemental composition can

reflect variation of minimum nutrient cellular quotas in natural

communities (Kreeger et al., 1997; Garcia et al., 2022).

Stoichiometric traits are also flexible due to trade-offs. For

example, phytoplankton cells enlarge or form spines to avoid

predation altering surface area:volume ratios and nutrient uptake

efficiency and growth rate (Litchman et al., 2007; Edwards et al.,

2011). Additionally, growth rate itself is associated with elemental

stoichiometry due to a tripartite relation among higher P content

with higher growth rate due to the need for more P-rich ribosomal

RNA to support elevated protein synthesis rates, as described by the

generally supported growth rate hypothesis (Elser et al., 2000; Flynn

et al., 2010; Isanta-Navarro et al., 2022, Isanta-Navarro et al., 2024;

Klip et al., 2024). Finally, the difference between acclimation and

adaptation in driving variation in these traits is not trivial (Moreno

and Martiny, 2018). In summary, it is important to use

environmental gradients, flexible trait values, growth rate

gradients and for as far as possible ecological-evolutionary

physiological shifts. In contrast, we used static minimum quota of

N and P to represent phytoplankton demand for N and P. Allowing

this trait to vary with phenotypic, genotypic, or community

composition change may allow for more realistic representation

of phytoplankton stoichiometric traits and would embed ecological-

evolutionary feedback into model structure. This variation in trait

parameterization will likely improve model performance but it

would be computationally complex and require challenging

data collection.

Other work should focus on improving representations of

external nutrient loading and representation of internal P recycling

in lake ecosystem models. The parameterization of phytoplankton
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traits is often merely calibrated so that model predictions match

observations and effectively serves to capture any variation in P

cycling the model does not represent. Ultimately, these approaches

lead to ecologically irrelevant parameter values for traits (Franks,

2009; Port et al., 2015; Golosov et al., 2021). There are three ways

one can deal with this over-parameterization and equifinality of

traits: (1) improve estimates of nutrient inputs into the system via

better data collection or modeling approaches, (2) adjust model

structure so that internal P cycling of lakes is more realistic, for

example, by including processes such as internal P loading or lake

turnover events, and (3) a combination of 1 and 2 that balances

model simplicity and realism.

These improvements will require targeted data collection and

compilation of existing data sets that allow models to be forced,

calibrated and validated. How do we do these things? First, we need

more deta i led tra i t information to provide rea l i s t ic

parameterizations. For example, while parameters describing

nutrient utilization and stoichiometry were well described

(Supplementary Figure S1), there were very few measurements of

cellular C content to help convert trait measurements into units

consistent with our model. Second, we need to develop methods to

relate observations of phytoplankton community composition to

lab-derived trait data to improve trait parameterization. Many of

these traits, including phytoplankton stoichiometry itself, are not

observable in the field (Sieburth et al., 1978; Finkel et al., 2010).

Additionally, model calibration exercises often result in parameter

estimates that are not ecologically realistic. Thus, data sets that

include phytoplankton community composition are extremely

valuable. Unfortunately, these are rare, and even more rare are

data sets that also have nutrient loading, GPP, and seston

stoichiometry. Finally, lakes exhibit considerable vertical and

spatial heterogeneity of their phytoplankton stoichiometry (Bucci

et al., 2012). Thus, field data across space, both within and between

lakes, and across depths would facilitate more informative

parameter distributions. A wider geographic spread would also be

desirable: due to data availability, our current study only contains

lakes from North America, which matches the majority of global

scientific publications on phytoplankton from 2012 to 2022

(Adhiambo et al., 2023). This sampling bias can increase

modeling uncertainty around the globe (Kwiatkowski et al., 2017).
5 Conclusion

Our approach tested how phytoplankton traits shape patterns of

lake productivity across nutrient supply gradients. We found that

models were highly sensitive to the parameterization of

phytoplankton minimum cell quotas for N and P, a finding that

provides a critical link between nutrient-limited organismal growth

and ecosystem-scale primary production. However, our models

failed to predict observed patterns of lake primary production or

phytoplankton C:N:P stoichiometry as we were unable to

parameterize our models with informative trait values and reliable

nutrient and hydrological inflows. This finding highlights how the
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mismatch between supply and demand impacts our ability to

predict changes in ecosystem function to environmental change.

We suggest that future research should focus on appropriate data

collection and compilation for parameterizing, calibrating, and

validating these models with special attention paid to

phytoplankton traits. In conjunction with these data collections,

data assimilation techniques should be employed to allow for

distribution-informed parameterization. These efforts will move

us closer to better capturing the ecological and evolutionary

feedbacks that we expect to observe with ongoing global change.
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