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Editorial on the Research Topic

The adaptation, plasticity and extinction of forest plants to climate change:
mechanisms behind the morphological, physiological, phenological and
ecological traits
Climate change is one of the greatest threats to humankind’s current and future survival.

Forests are one of the most essential solutions to addressing the effects of climate change by

absorbing huge amounts of carbon dioxide (Pugh et al., 2019; Jiang et al., 2020; Wang et al.,

2020). Furthermore, forest loss and degradation are both a cause and an effect of our changing

climate (Sasaki and Putz, 2009; Griscom et al., 2017). The expected future climate with

increasing drought episodes, seasonally warm temperatures, and severe storms, poses a

challenge for forest management since it will affect the growth, mortality, species

composition, and distribution of future forests (Figure 1; Huang et al., 2017; Shi et al., 2020).

However, how the growth of different species responds differently to long-term drought and

high temperatures has been poorly understood. Climate-growth relationships are an important

tool for investigating tree growth responses under changing climate and thus provide a scientific

basis for future forest management (Huang et al., 2022; Leifsson et al., 2024).

The papers collected in this Research Topic cover some important topics associated

with climate change, including phenology, morphology, tree-ring growth, and wood

anatomical traits of trees’ response to long-term climate change in Australia’s cool

temperate rainforest, Amazon flooding forest, and Canada’s temperate forest, and also

includes drought and heavy metal control experiments, as well as an article investigating

the mathematical intricacies of bamboo internode elongation.
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Australian cold temperate moist forests are known to have the

highest aboveground biomass carbon stocks of all forest types (Keith

et al., 2009). However, little is known about the effects of Australia’s

cool temperate rainforest climate on long-term phenology. Vogado

et al. provided 20 years of defoliation data from cool-temperature

Nothofagus rainforests in New South Wales, Australia. They found

that defoliation at the community level was mainly affected by

Nothofagus moorei, driven by temperature and wind speed, and

Ceratopetalum apetalum, driven by temperature, rainfall, and solar

radiation. In addition, the average dates of community defoliation

were increased by advanced solar radiation. All species presented

seasonality in phenological behaviors, but seasonality peaked in

different months and is influenced by different climate variables.

The Amazon floodplain forest is one of the largest flood-pulsed

environments in the world (Junk et al., 2011), whose phenology and

diameter increment are mainly triggered by flood pulses. de Sá et al.

found that the tree growth and xylem anatomical characteristics of

Hydrochorea corymbosa in várzea flooded forest in Central Amazon

responded diversely to flooding and non-flooding periods. High

flood levels during the end of the flood negatively affected vessel

diameter in June and positively influenced parenchyma quantity in

September and October. During the non-flooded period in

December, the annual tree growth negatively correlated with the

vapor pressure deficit. The vessel diameter was negatively affected

by the September maximum temperature. The authors suggest that

intensification of the hydrological regime and the severe droughts

during the non-flooded periods can be a risk for H. corymbosa in

the Central Amazonian floodplains.
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Different tree species growing under the same conditions showed

different plasticity and adaptation to climate change (Huang et al., 2017).

Populations of a species descending from different origins may also

exhibit different climatic adaptations. Zhou et al. observed that Acer

saccharum seedlings originating from inland areas showed higher

plasticity of bud burst than those from coastal areas at the beginning

of leaf development in Quebec, Canada. Trees experiencing a wider

climatic fluctuation may exhibit higher plasticity.

In addition to field experiments, control experiments are a method

to study the effects of climate on trees by precisely controlling a single

factor or multiple factors to examine the impacts of factor changes on

tree growth. Xiao et al. set a pot experiment to investigate the effects

of droughts and re-watering on the dynamics of non-structural

carbohydrates (NSCs) in the different organs of two-year-old Pinus

yunnanensis seedlings. Under drought, when the carbohydrates

produced by photosynthesis could not satisfy the energy required

for respiration, plants began to consume stored NSC. “Carbon

starvation” occurs when stored NSCs cannot meet the energy

required for cellular metabolism (McDowell et al., 2008, 2011).

The author found that during the early stage of drought, the

drought resistance of P. yunnanensis seedlings was enhanced by

increasing soluble sugar concentration; in the later stages of

drought, stored starch in organs, stems, and coarse roots were

consumed. Growth under moderate drought was promoted after re-

watering, suggesting that moderate drought stress can enhance

drought tolerance and compensatory growth. Different drought

treatments may lead to discrepancies in results. Zhao et al. found

a diminishing relationship between trait patterns versus soil water
FIGURE 1

The tree species trial in Lovrup Forest in Denmark (NST Vadehavet) after the storm on December 3, 1999. The trial provides an example of the effect
of storms on individual tree species and their potential to withstand increasing and more powerful storms. This picture was obtained from Huang
et al. (2018; Foto: Feb. 2000, B. Bilde Jørgensen).
frontiersin.org

https://doi.org/10.3389/fevo.2024.1358676
https://doi.org/10.3389/fevo.2024.1358676
https://doi.org/10.3389/fevo.2024.1292132
https://doi.org/10.3389/fevo.2023.1320745
https://doi.org/10.3389/fevo.2024.1343258
https://doi.org/10.3389/fevo.2024.1407882
https://doi.org/10.3389/fevo.2024.1488465
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Huang et al. 10.3389/fevo.2024.1488465
content (SWC) from N-fixing non-legumes, N-fixing legumes to

non-N-fixing plants. Whereas, several other studies have shown

that drought intensification is more detrimental to non-N-fixing

plants compared to N-fixing plants (Hofer et al., 2016, 2017).

Climate change may increase runoff and accelerate leaching,

thereby increasing heavy metal concentrations in soils. Alotaibi

found that the increasing concentration of Pb and Cd delayed the

Calligonum comosum seeds’ germination rate and speed. The

authors suggest that the enhanced redox proteins and proteins

involved in ATP synthesis may be a possible mechanism for seed

tolerance to heavy metals.

Bamboo is one of the fastest-growing plants on earth, which can

grow almost a meter in a single day and grow to its full height of 2 m to

above 30 m within a few months (Shi et al., 2017), and sequester large

amounts of atmospheric carbon to mitigate climate change. However,

the relationship between internode length and serial number changes

with culm height growth is not well understood. Tan et al. investigated

the mathematical intricacies of the internode elongation pattern of

Phyllostachys edulis, Phyllostachys iridescens, and Pseudosasa

amabilis involved in the rapid culm growth.

In conclusion, the papers published in this Research Topic expand

the current understanding of the adaptation and plasticity of different

species growing in diverse continents with diverse climate conditions to

climate change, as well as the mechanisms behind the morphological,

physiological, phenological, and ecological traits.
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