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Climate transition zones are ecologically sensitive regions that respond to

changes in complex natural conditions. Analyzing the spatiotemporal evolution

trends and impact factors of landscape ecological risk is crucial for maintaining

regional ecosystem security. However, research predominantly focused on the

past analytical paradigm, which often needed more strategic predictions for

future scenarios tailored to diverse developmental requirements. This study

analyzed land use changes in the Huai River Basin during 2000, 2010, and

2020 and used the Future Land Use Simulation model to conduct a multi-

scenario simulation for 2030. Subsequently, this study assessed the landscape

ecological risk from 2000 to 2030 and analyzed the influencing mechanisms

using the ridge regression model. The results showed that: (1) The primary

transitions were concentrated between cropland and construction land. By

2030, the area of construction land was projected to continue to expand, with

the greatest increase of 2906 km2 anticipated in the natural development

scenario. (2) The overall spatial pattern of landscape ecological risk showed a

“high in the east and low in the west” distribution, with the lowest risk areas

predominating (accounting for over 43%). Over the past 20 years, the risk initially

increased and then decreased, and by 2030, the risk was expected to decline

further. (3) The risk exhibited significant positive spatial autocorrelation. By 2030,

the constraint of spatial location on risk distribution would decrease. Local spatial

clustering was mainly characterized by “Low-Low” regions (accounting for 20%).

(4) Vegetation cover consistently correlated negatively with ecological risk and

was the most influential factor, with relative contribution rates all exceeding 21%.

The findings have provided a scientific reference for the ecological and

environmental management of areas with intense human activity under

complex climatic conditions.
KEYWORDS

climatic transition zones, landscape ecological risk, multi-scenario simulation, ridge
regression, Huai river basin
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1 Introduction

The ecological environment provides crucial material support

and services for human survival and societal development.

Maintaining ecosystem security is fundamental to achieving

sustainable development (Ai et al., 2022). Escalating pressures on

ecosystems driven by global climate change and complex human

activities result in numerous ecological risks. These effects include

environmental pollution (Bank et al., 2022), soil erosion (Li and

Fang, 2016), urban heat island effects (Akbari and Kolokotsa, 2016),

and biodiversity reduction (Outhwaite et al., 2022). Preventing and

mitigating these ecological risks are common challenges faced by

countries worldwide. In response to the challenges, the United

Nations includes among its 17 Sustainable Development Goals for

2030 the objective to “protect, restore, and promote sustainable use

of terrestrial ecosystems, sustainably manage forests, combat

desertification, halt and reverse land degradation, and halt

biodiversity loss” (Goal 15) (Adhikari et al., 2023). As a

composite of natural surfaces, the landscape constitutes a

collection of regional ecosystems with pronounced spatial

heterogeneity. Its heterogeneity is closely associated with an

ecosystem’s capacity to resist disturbances, stability, and diversity

(He et al., 2020; Liu et al., 2022). The expression of heterogeneity

provides a key perspective for assessing landscape ecological risks.

Incorporating scale effects to examine the relationship between

landscape patterns and ecological evolutionary forms the basis for

evaluating the adverse impacts of internal risk sources and external

complex disturbances on ecosystem functions and structures (Qian

et al., 2022; Shi et al., 2024). Therefore, detailed assessments and

analyses of landscape ecological risks are vital for maintaining

regional ecological security.

The selection of appropriate evaluation units is fundamental for

assessing landscape ecological risks. Evaluation units are currently

divided into two main types: administrative divisions (Wang et al.,

2023d) and risk subzones (Xue et al., 2019). The administrative

divisions are primarily at the city and county levels, whereas the

average study area patch size generally constrains the risk subzones.

In comparison, the risk subzones provide a more detailed division

of units, which enhances the integrity and consistency of

ecosystems following human-induced segmentation (Qu et al.,

2022). The primary approaches for evaluation are based on risk

source-sink and landscape patterns (Dai et al., 2021; Wu et al.,

2021b). The risk source-sink method can evaluate the degree of

regional landscape ecological risks through risk source

identification, receptor analysis, exposure, and a hazard response

model. The landscape pattern method transcends the traditional

ecosystem evaluation paradigms. In this approach, risk receptors

are not limited to single elements within regional ecosystems

(Zhang et al., 2020). Risk sources extend beyond environmental

pollutants, natural disasters, and anthropogenic disturbances. This

method evaluates the ecological risk effects arising from the

deviation between the landscape mosaic and the optimal pattern

of the system (Xu et al., 2021). It provides a detailed representation

of multiple risks by integrating potential ecological losses with risk

probability. Landscape ecological risk assessments have yielded

research findings in various regions, including plateaus (Chang
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et al., 2023), mountainous areas (Cui et al., 2018), wetlands (Chen

and Ma, 2023), urban areas (Luo et al., 2018), and nature reserves

(Zhang et al., 2023).

Research on landscape ecological risk mostly focuses on the

“past” analytical approach, summarizing the spatiotemporal

patterns of past risk evolution by analyzing historical data (Hou

et al., 2020; Zeng et al., 2022). However, as the complexity of

external disturbances increases, the uncertainty of ecological risks

also intensifies. Relying entirely on past data and analytical

approaches limits the development of scientifically adaptive

management strategies and may also increase the social and

economic costs of addressing potential ecological threats.

Therefore, it is essential to formulate different development plans

tailored to various future development needs. In the construction of

multi-scenario simulations, the natural development (ND) scenario,

the cropland protection (CP) scenario, and the ecological protection

(EP) scenario provide a crucial framework for balancing social

development, agricultural production, and environmental security.

The ND scenario captures the natural evolution of landscapes

based on historical trends, providing a reference for assessing

future development outcomes without targeted interventions (Sui

et al., 2024). The CP scenario prioritizes stabilizing and

expanding cropland reserves, laying the foundation for mitigating

agricultural land loss and ensuring sustainable agricultural

production. The EP scenario reduces ecosystem degradation

caused by human activities, thereby promoting biodiversity and

improving ecological environmental quality (Zhu et al., 2022). In

conclusion, incorporating the ND, CP, and EP scenarios into past

landscape ecological risk analyses can bridge the gap between

historical understanding and forward-looking decision-making,

providing a more comprehensive perspective for sustainable

landscape management.

In the context of mechanisms influencing landscape ecological

risks, methods such as least-squares regression (Mann et al., 2021),

Pearson correlation coefficient (Tian et al., 2022b), and geographically

weighted regression are widely used (Mondal et al., 2021). However,

these traditional methods have limitations in addressing collinearity

among feature variables, particularly with high correlations between

variables. This may lead to overfitting the regression coefficients of

the driving factors (Lin et al., 2022b). To address this issue, ridge

regression has been introduced as a biased estimation regression

method to resolve multicollinearity problems. The model

incorporates a regularized 2-norm into the regression process,

sacrificing some of the unbiased information inherent in the least-

squares method to obtain regression coefficients that approximate the

actual conditions more closely (Garcia et al., 2015). Ridge regression

has achieved successful research outcomes in medicine and

economics (Lohiniva et al., 2022; Yang et al., 2022b). However, its

application in landscape ecology has yet to be fully explored.

Therefore, applying the model to analyze the mechanisms

influencing landscape ecological risk can offer new perspectives and

insights, particularly in determining the interactions andmechanisms

among complex environmental variables.

Located in the transitional zone between warm temperate and

northern subtropical regions, the Huai River Basin has substantial

differences in climate, hydrology, soil, and vegetation types between
frontiersin.org
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its northern and southern banks (Yan et al., 2011; Tian et al.,

2022a). It is an ecologically sensitive area that responds to complex

variations in natural conditions. This basin has the highest

population density among the seven major river basins in China,

with its grain output accounting for one-sixth of the national

population (Yang et al., 2022a). However, owing to specific

climatic and geographical conditions coupled with intense

anthropogenic disturbances, the rapid expansion of urban areas

and high-intensity development of land have exacerbated conflicts

with sensitive ecosystems. This has strongly impeded the

sustainable development of the basin, necessitating an assessment

of the adverse effects that disturbance sources pose for regional

ecosystem structure and function from a landscape ecological

perspective. Therefore, understanding the trends and driving

mechanisms of landscape ecological risk evolution in this region

can guide ecological and environmental management. This is

particularly important for global regions with similarly complex

climatic conditions and intense human activity.

Based on land use changes over the last 20 years, this study

considered the strategic position of the basin in grain production,

with the aim of actively responding to the United Nations’ call to

achieve Sustainable Development Goal 15 by 2030. Therefore, three

development modes in 2030 were set by the Future Land Use

Simulation (FLUS) model: the ND scenario, the CP scenario, and

the EP scenario. Subsequently, landscape ecological risk evaluation

and ridge regression statistical models were constructed separately.

The objectives of this study were to: (1) analyze the land use

conversion relationships in the basin from 2000 to 2020 and

predict the land use spatial patterns in 2030 under different

development scenarios; (2) assess past and future landscape

ecological risks and analyze their spatiotemporal variation; and

(3) investigate the influencing factors and driving mechanisms of

landscape ecological risk.
2 Materials and methods

The overarching framework of this study encompassed three

key components: multi-scenario land use simulation, landscape

ecological risk assessment, and influencing factor analysis

(Figure 1). Firstly, the FLUS model was used to forecast the

spatial pattern of land use within the basin by 2030 in the ND,

CP, and EP scenarios. Secondly, a landscape ecological risk

assessment framework was established to evaluate the basin’s

ecological risks from 2000 to 2030. This integrated a spatial

autocorrelation model to analyze the temporal and spatial

dynamics. Finally, the study constructed a ridge regression

statistical model to analyze the mechanisms driving risk evolution.
2.1 Study area

Situated at the transitional zone between the warm temperate

and the northern subtropical regions, the Huai River Basin (111°55′
E–121°20′E, 30°55′N–36°20′N) encompasses the warm temperate

semi-humid area to the north and the subtropical humid area to the
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south (Figure 2). It is the third largest river in China, covering a

total area of approximately 2.7 × 105 km2 (Wang et al., 2023c). The

basin has complex and variable climatic conditions, with an annual

average temperature ranging from 7.8 to 13.5°C and an average

yearly precipitation between 400 and 800 mm (Tian et al., 2022a).

The topography within the basin has a high level of heterogeneity,

with mountainous and hilly regions predominantly distributed in

the western, southwestern, and northeastern sectors. In contrast, the

central area is primarily characterized by plains. The basin is a

substantial demographic agglomeration in China with a population

density of approximately 615 persons/km2. It is the most densely

populated of the seven major river basins in China (An et al., 2021).

This area is an important grain production hub in China, where

two-thirds of the plains are suitable for farming. Grain output from

this region constitutes one-sixth of the country’s total grain

production (Gao et al., 2019). As a crucial link between the

Yangtze River Delta and the Bohai Rim, which are two major

economic zones in China, the basin plays a vital role in the country’s

agricultural production and economic development. However,

owing to its climatic and geographical conditions coupled with

intense anthropogenic disturbances, the escalating conflict between

high-intensity land exploitation and sensitive ecosystems is

intensifying (Wang et al., 2023a). Issues, including soil erosion

and vegetation degradation, are becoming increasingly prominent

and have strongly impeded the sustainable development of

the basin.
2.2 Data sources and preprocessing

The data sources for this study encompassed land use and

driving factors data. The land use data from 2000 to 2020 were from

the Resource and Environment Science and Data Center (https://

www.resdc.cn/), a 30m resolution thematic database of China’s land

use jointly drawn by multiple departments (Zhou et al., 2021).

Based on the “GBT21010-2017 Current Land Use Classification”

(Bao et al., 2022), the land use types in the study area were

reclassified into six categories: cropland, forestland, grassland,

water, construction land, and unused land (Figure 3A). The data

on driving factors included eight categories: meteorological,

topographical, vegetation cover, soil, hydrological, transportation,

locational, and socioeconomic data. The meteorological data,

including monthly average temperature and precipitation data,

were obtained from the National Tibetan Plateau Science Data

Center (https://data.tpdc.ac.cn/). The topographical data included

elevation and slope. The elevation data was from the Geospatial

Data Cloud (http://www.gscloud.cn/), and the slope information

was extracted based on the elevation distribution. The vegetation

cover (VC) data were monthly-averaged Normalized Difference

Vegetation Index (NDVI) data from the MOD13A3 dataset,

published by the National Aeronautics and Space Administration

(https://www.earthdata.nasa.gov/). The soil data included sand, silt,

and clay derived from the Resource and Environment Science and

Data Center, the percentage reflected the content of different soil

textures (Yang et al., 2007). The water, transportation, and location

data were derived from the Open Street Map (https://
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www.openstreetmap.org/). Euclidean distances were calculated to

obtain raster data representing the proximity of each pixel to the

nearest river; primary, secondary, and tertiary roads; railways;

highways; city centers; and town centers. Socioeconomic data,

including the gross domestic product (GDP) and population

density (PD), were derived from two sources: GDP data from the

Resource and Environment Science and Data Center, and PD data

from the Worldpop (https://www.worldpop.org/). Using ArcGIS

10.2, the aforementioned data were resampled to a 1 km resolution,

with a matrix size of 882 × 621 pixels, to meet the computational

requirements of the FLUS model. Table 1 provided detailed

information on the data sources.
2.3 Research methodology

2.3.1 FLUS model
The FLUS model is a dynamic system for simulating future land

use scenarios under the influence of natural and anthropogenic

factors. It comprises an Artificial Neural Network (ANN) and

Cellular Automaton (CA) with an adaptive inertia competition
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mechanism (Liang et al., 2018; Lin et al., 2022a). The ANN

component is used to calculate the probability of suitability for

the transition of each land use type under the influence of the

driving factors. Based on these suitability probabilities, CA

integrates neighborhood weights, transition costs, and adaptive

inertia coefficients to simulate the future spatial distribution of

land use (He et al., 2023). The formula used is as follows:

TPSlk,t = p(k, t, l)�W l
k,t � Inertialt � (1 − scc→t) (1)

S(t+1) = Pab � S(t) (2)

where TPSlk,t is the aggregate probability of grid k being

converted into land use type t at time l. The term p(k, t, l)

represents the probability of suitability of this transformation.

Inertialt is defined as the adaptive inertia coefficient. 1-scc→t is the

level of difficulty in land conversion. Wl
k,t indicates the

neighborhood weight. S represents the cost of transition and P is

the probability of the transition occurring.

This study was based on the FLUS model’s capability to

effectively simulate and predict the spatial patterns of complex
FIGURE 1

Overall study framework.
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FIGURE 3

Land use distribution and area statistics of the study area, (A) the land use distribution from 2000 to 2020, and (B) the area statistics for various land
use types.
FIGURE 2

Geographical location of the study area.
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land use types over long periods, customizing different development

scenarios for the basin according to local conditions. The

simulation results could provide significant references for

predicting land distribution patterns and landscape distribution

patterns in areas of intense human activity under similar complex

global climate conditions. This study forecasted three

developmental scenarios for 2030 by establishing neighborhood

factor weights and transition cost matrixes. The ND scenario was
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based on land use change rates from 2010 to 2020 and was not

influenced by policies or environmental constraints. The CP

scenario focused on maintaining the total amount of cropland to

ensure food security. The EP scenario aimed to enhance areas of

forestland and grassland, and promote sustainable environmental

development. The land neighborhood factor weights and transfer

cost matrix parameters were presented in Table 2.

2.3.2 Landscape ecological risk
assessment model

The ecological risk index (ERI) is a crucial indicator for gauging

the potential adverse impacts on ecosystem function and structure

from internal risk sources and complex external disturbances (Qu

et al., 2022). It is formulated by integrating the landscape

disturbance index (Si), landscape vulnerability index (Fi),

landscape loss index (Ri), and area ratios of different land use

types (Cheng et al., 2023). The specific formula for calculating the

ERI is as follows:

ERIi =o
n

i=1

Ahi

Ah
Ri (3)

Ri = Si � Fi (4)

Si = aCi + bNi + cDi (5)

where Ahi refers to the area of landscape type i within assessment

unit h. Ah denotes the total area of assessment unit h. Based on prior

studies, this research posited that unused land had the highest

vulnerability, assigned a value of 6. This was followed in

descending order by vulnerability to water 5, cropland 4, forestland

3, grassland 2, and construction land 1 (Zhang et al., 2023). A

normalization method was used to derive the corresponding

vulnerability indices. Coefficients a, b, and c represent the weights

for landscape fragmentation (Ci), landscape separation (Ni), and

landscape dominance (Di), respectively, with the requirement that

a + b + c = 1. Based on the literature recommendations, the values

were proposed as a = 0.5, b = 0.3, and c = 0.2 (Wang et al., 2023d).

Selecting appropriate risk units was a fundamental step in

assessing landscape ecological risks. Considering the actual

conditions of the basin, a 15 km × 15 km grid was selected,

dividing the study area into 1319 evaluation units. The ecological
TABLE 1 A summary of the datasets used and data source information.

Type Data
Spatial
resolution
(m)

Period

Land use data Land use 30 2000, 2010, 2020

Meteorological data
Temperature

30 2000, 2010, 2020
Precipitation

Topographic data
Elevation

30 2009
Slope

Vegetation data
Vegetation
cover

1000 2000, 2010, 2020

Soil data

Sand

1000 1995Silt

Clay

Watershed data River 1000 2020

Traffic data

Primary road

1000

2020

Secondary road

Tertiary road

Railway

Highway

Locational data
City center

2020
Town center

Socio-economic
data

Gross domestic
product

1000 2000, 2010, 2020
Population
density
TABLE 2 Land neighborhood factor weights and transfer cost matrix parameters for each scenario.

Land use types Cropland Forestland Grassland Water
Construction

land
Unused land

Cropland 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

Forestland 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Grassland 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Water 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Construction land 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 1 1

Unused land 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1

Weight of neighborhood 0.2 0.1 0.2 0.5 0.6 0.4 0.6 0.7 0.5 0.5 0.6 0.4 1.0 1.0 1.0 0.3 0.4 0.5
fr
ontiers
red: the NP scenario, blue: CP scenario, and green: the EP scenario. A value of one indicates the feasibility of the transformation, whereas a value of zero denotes non-feasibility.
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risk values for each pixel center were calculated and subsequently

assigned to the corresponding assessment units. The resulting

landscape ecological risk values were categorized into five levels

using the natural break method: the lowest risk (0< ERI ≤ 0.028),

the lower risk (0.028< ERI ≤ 0.036), the middle risk (0.036< ERI ≤

0.052), the higher risk (0.052< ERI ≤ 0.083), and the highest risk

(0.083< ERI ≤ 0.127).

2.3.3 Spatial autocorrelation model
The spatial autocorrelation model comprises Moran’s Index of

Spatial Autocorrelation Indicator (Moran’s I) and Local Indicator of

Spatial Association (LISA). Moran’s I is applied to evaluate whether

the spatial distribution of the overall ERI is dependent on

neighbouring locations (Wang et al., 2016). I > 0 indicates a

positive spatial correlation, whereas I< 0 indicates a negative

spatial correlation. The LISA is used to evaluate the clustering of

high and low values of the ERI at specific spatial locations (Li et al.,

2023). The formula used is as follows:

Moran 0s   I =
non

i=1on
j=1Wij(xi − �x)(xj − �x)

on
i=1on

j=1Wijon
i=1(xi − �x)2

(6)

Ii =
(xi − �x)½(n − 1) − �x2�

on
j=1x

2
ijon

i=1on
j=1Wij(xj − �x)

(7)

where xi and xj represent the ERI at spatial locations i and j.

x− denotes the mean value of ERI, and Wij is the spatial

weight matrix.

2.3.4 Ridge regression model
Ridge regression is a biased estimation regression model used to

analyze data with multicollinearity. It addresses multicollinearity

among selected feature variables by incorporating a regularized 2-

norm into the multivariate linear regression equation of the least-

squares method (Lin et al., 2022b). This model achieves more stable

regression results and lower root mean square error, albeit at the cost

of eliminating unbiased information. The formula used is as follows:

b(n) = (XTX + kI)−1XTY (8)

Y = b0 + b1X1 + b2X2 +… + bnXn (9)

Cn =
bnj j

b1j j + b2j j +… + bnj j (10)

where b(n) is the standardized regression coefficient for the

driving factor n. XTX denotes the coefficient matrix, with k

representing the ridge parameter and I being the identity matrix.

Y is the vector matrix for ERI, and Cn indicates the relative

contribution rate of driving factor n.

This study employed the ridge regression model to avoid the

overfitting issues that arise in ordinary linear regression due to

complex interactions among influencing factors. This study

considered the basin’s unique natural geographical location and

social development conditions. Among the natural factors,

temperature (T), precipitation (P), elevation (E), slope (S), and
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vegetation cover (VC) were selected; among the social factors,

population density (PD) and gross domestic product (GDP) were

chosen; and among the locational factors, distance from city center

(DfCC) and distance from town center (DfTC) were included,

making a total of nine driving factors. These were used to explore

the mechanisms influencing landscape ecological risk in the basin

over the past 20 years. Consistent with the risk units, the above

driving data were spatially balanced sampled at 15 km intervals,

dividing the basin into 1319 sample units. When there were high

correlations among driving factors, ordinary linear regression could

lead to overfitting of regression coefficients. It was necessary to

diagnose the collinearity of the influencing factors before

constructing the regression model.
3 Results

3.1 Land use changes and multi-
scenario prediction

3.1.1 Land use changes
The area proportion statistics for different periods in the study

area showed that cropland remained the primary land use type,

accounting for more than 68% of the total area (Figure 3B). The

second largest category was construction land, which exceeded 13%.

Unused land comprised the smallest proportion at less than 0.1%.

From 2000 to 2010, the basin experienced significant changes in

land use types. Cropland, forestland, and grassland areas decreased,

whereas construction land, water, and unused land areas increased.

From 2010 to 2020, decreasing trends were observed for cropland,

forestland, grassland, and unused land. Among these, the most

significant reduction was in cropland, which decreased by 3423

km2. In contrast, the areas of construction land and water expanded

by 3139 km2 and 549 km2, respectively. Over the last two decades,

significant changes in land use within the basin had mainly focused

on cropland and construction land areas. Cropland area

consistently decreased, with a cumulative proportion of 2.84%,

whereas construction land continuously expanded, increasing its

share by 3.30%.

To analyze the interconversion relationships between different

land use types, this study built a land use transition matrix for 2000–

2020 and the results had been presented in Figure 4. From 2000 to

2010, significant land use changes occurred mainly between cropland,

construction land, and grassland. The largest transition occurred

from cropland to construction land, reaching 9326 km2, while 1812

km2 of grassland was converted to cropland. This indicated that there

was a period of rapid urbanization and encroachment of large tracts

of grassland into cropland. From 2010 to 2020, land use transitions

occurred primarily between cropland and construction land.

Compared to the previous ten years, the area of arable land

converted to construction land had decreased to 4476 km2.

Meanwhile, some cropland had begun to convert to grassland, with

an area of 148 km2. This change suggested a deceleration in

urbanization and effective implementation of policies promoting

the restoration of cropland to grassland.
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3.1.2 Multi-scenario land use projection
Based on land use data from the basin for 2000 and 2010, this

study simulated the 2020 land use spatial pattern in the ND scenario

using the GeoSOS-FLUS software (Figure 5A). Comparing the

simulation results with the actual conditions of 2020 showed that

the Overall Accuracy (OA) was 0.92, the kappa coefficient was 0.91,

and the Figure of Merit (FOM) was 0.30%. These results had

demonstrated the high reliability of the FLUS model predictions,

indicating its capability to accurately forecast the land use spatial

patterns of the basin for the year 2030. To visually compare the

differences between the three development scenarios for 2030, this

study focused on three areas in the east, west, and south of the basin

and examined them using a 100 km × 100 km grid (Figures 5B–E).

Combining the area statistics of the three regions under different

scenarios (Supplementary Table S1), compared to the actual 2020

land distribution, construction land in all three regions was

expected to expand in the ND scenario for 2030. The most

significant expansion was in Region 1, where construction land

was projected to increase by 177 km², with patches becoming more

spatially aggregated. Construction land in Regions 2 and 3 was

expected to expand slightly, with areas increasing by more than 10

km2, respectively. In the CP scenario, cropland expansion was

observed in all three regions, with a significant increase of 305

km2 in Region 3 and 167 km2 in Region 2. Compared to the ND

scenario, the extensive cropland loss in Region 1 was mitigated, with

an 8 km2 increase in cropland area from 2020 to 2030. In the EP

scenario, forestland and grassland in all three regions experienced

varying degrees of restoration. Grassland restoration was the most

significant in Region 3, with an increase of 81 km2, while forestland

restoration was the most pronounced in Region 2, with an increase

of 11 km2. In Region 1, forestland and grassland areas were scarce,

showing minimal change.

The area statistics for the different land use types for 2030 in the

three development scenarios were shown in Table 3. Compared to

2020, the pattern of land distribution under the three development

scenarios would be significantly different in 2030. In the ND

scenario, the trend in land use area changes remained consistent

with the period from 2010 to 2020. Cropland, forestland, grassland,
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and unused land areas were projected to decrease further, with the

largest reduction in cropland estimated at 3252 km2. Construction

land and water areas were expected to expand by 3206 km2 and 261

km2, respectively. In the CP scenario, cropland was expected to

recover significantly, with an increase of 1237 km2. The expansion

of construction land was projected to continue, albeit at a reduced

rate, with an increase of 1321 km2. Forestland, grassland, water, and

unused land showed a decreasing trend. Forestland had the most

significant reduction, estimated at 1830 km2. In the EP scenario, the

return of cropland to forestland and grassland began to bear fruit,

and the areas of forestland and grassland would increase by 432 km2

and 287 km2, respectively. The expansion of construction land was

expected to curb effectively, and the efficiency of the development of

unused land would be further improved.
3.2 Landscape ecological risk changes

3.2.1 Changes of landscape ecological
risk distribution

The spatial variation in the ecological risk across the basin

landscape was significant, with a distribution pattern that was

higher in the east and lower in the west (Figure 6A). The highest

and higher risk zones were concentrated in the northern cities of

Jining and Zaozhuang, and the eastern cities of Huai’an and

Yangzhou. Highly vulnerable unused land and water were mainly

distributed here, with low resistance to external disturbances. The

medium risk zones were concentrated in the northern city of Linyi,

the eastern city of Chuzhou, and the southern city of Lu’an.

Conversely, the lowest and lowest risk zones were distributed in

the central and western regions of the basin. This study had

statistically analyzed the risk areas for various periods

(Figure 6B), and the results showed that the overall risk in the

basin was relatively low, with the lowest risk accounting for more

than 43% of the total area. This was followed by the lower risk at

approximately 28%. The area with the highest risk had the lowest,

accounting for less than 2%. Over the past 20 years, the risk had

shown a trend of first increasing and then decreasing. From 2000 to
FIGURE 4

Chord diagram of land use type conversion from 2000 to 2020, (A) from 2000 to 2010, and (B) from 2010 to 2020.
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2010, there were significant changes in medium, higher, and

highest-risk zones. The areas increased by 3403.38 km2, 2470.32

km2, and 1383.68 km2, respectively, with the average risk value

increasing by 0.0021. From 2010 to 2020, the lowest risk zones in

the western regions saw significant recovery, with an increase of

13131.52 km2, and the average risk value decreased by 0.0007. From

2020 to 2030, landscape ecological risk would decrease to varying

degrees under different development scenarios. In the ND scenario,

the lowest and medium risk areas were expected to increase 3828.63
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km2 and 2508.12 km2, respectively, and the average risk value would

continue to decline by 0.0005. In the CP scenario, more of the

highest and higher risk zones in the north were converted to

medium risk, resulting in an increase of 4670.08 km2 in medium

risk zones. This indicated that the CP scenario could effectively

reduce ecological risks in the basin. In the EP scenario, the lowest

risk area in the center would increase by 20129.50 km2, with the

average risk value reaching 0.0289. This suggested that the

implementation of policies such as returning cropland to
FIGURE 5

Detailed localized land use maps under different states, (A) the ND for 2020, (B) the actual 2020, (C) the ND for 2030, (D) the CP for 2030, and (E)
the EP for 2030.
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forestland and grassland, enhancing the transformation efficiency

of unused land, and curbing the expansion of construction land was

beneficial for maintaining the ecological stability of the basin.

3.2.2 Spatial autocorrelation of landscape
ecological risk

To test whether spatial autocorrelation exists in the risk

distribution, this study calculated Moran’s I for each period based

on the GeoDa platform through 999 permutations (p = 0.001). The

global Moran’s I for landscape ecological risk in each period was

above 0.38 (Figure 7), which indicated a strong positive spatial

correlation in the distribution of ecological risk. The clustering of
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scatter points near the regression line suggested a significant

spatially clustered distribution of landscape ecological risk. From

2000 to 2020, Moran’s I cumulatively increased by 0.036, indicating

that spatial locations had increasingly influenced the distribution of

ecological risks in the basin. From 2020 to 2030, the Moran’s I will

decline, and the Moran’s I for the CP and EP scenarios will be

significantly lower than that of the ND scenario.

This study calculated LISA for various periods to further

ascertain the spatial clustering of landscape ecological risk

(Figure 8). Excluding non-significant units, “Low-Low” regions

dominated, accounting for about 20 percent of the total area,

mainly distributed in high-altitude areas in the western regions
FIGURE 6

Distribution map of landscape ecological risk levels from 2000 to 2030, (A) risk distribution, and (B) area statistics.
TABLE 3 Land use area statistics in the Huai River Basin in different scenarios (km2).

Scenario modes Cropland Forestland Grassland Water Construction land Unused land

2000 191270 19195 10540 12793 34985 224

2010 187040 18911 8410 13670 40740 236

2020 183617 18770 8349 14219 43879 173

NP for 2030 180365 18628 8288 14480 47085 161

CP for 2030 184854 16940 7703 14165 45200 145

EP for 2030 182662 19202 8636 13942 44437 128
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such as Zhoukou. The landscape types were mainly forestland and

grassland, with high internal connectivity, spatially clustered, and

not easily subject to change. From 2000 to 2030, the area of “Low-

Low” regions showed a trend of first decreasing and then increasing.

It was highly consistent with the spatiotemporal changes of the

lowest risk regions during this period, with changes concentrated in

adjacent not significant units. In the EP scenario, the “Low-Low”

area would reach its highest, accounting for 22.09% of the total area.

“High-High” regions accounted for about 15%, influenced by the

distribution of the highest, higher, and medium risks, primarily

clustered in the eastern and northern regions such as Linyi and

Yangzhou. The landscape types were complex and diverse,

including highly vulnerable unused land and water, which were

affected by human disturbances and had a high degree of local

fragmentation. In 2010, the area of “High-High” regions was the

largest, reaching 45100.19 km2. After 2020, the area decreased,

making it a key area for soil erosion prevention and control in

the basin.
3.3 Impact mechanisms of landscape
ecological risk

The collinearity diagnostic results of the driving factors showed

that the variance inflation factors (VIF) for E, S, PD, and GDP

exceeded 10 (Supplementary Figure S1), indicating severe

multicollinearity among the driving factors. Therefore, this study
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used the ridge regression model, sacrificing a portion of the unbiased

information to achieve regression results that were more aligned with

practical scenarios. The ridge trace plot indicated that the ridge traces

of the driving factors tended to stabilize when the ridge parameter K

was between 0.38 and 0.52 (Supplemetary Figure S2). After

examining the VIF values within this interval, it was inferred that

there was minimal collinearity among the independent variables

when the VIF was less than 5. Consequently, 0.45 was established

as the optimal K value. The VIF diagnostic results following ridge

regression indicated a significant reduction in multicollinearity

among the influencing factors. The coefficients of determination

(R2) for the three phases were 0.74, 0.67, and 0.82, respectively.

This demonstrated that the selected natural, social, and locational

factors effectively explained the evolutionary changes in landscape

ecological risk.

Over the last two decades, the standardized regression

coefficients for P, E, S, VC, DfCC, and DfTC were less than 0

(Figure 9), indicating a negative correlation. It suggested that an

increase in these factors contributed to reducing the landscape

ecological risk. In 2000 and 2010, the regression coefficients for T,

GDP, and PD were greater than 0. It indicated that during the first

decade of the study period, an increase in these factors contributed

to elevated regional ecological risk. By 2020, the regression

coefficients for GDP and PD changed and evolved into a negative

correlation. Based on the calculated standard regression coefficients,

the relative contribution rates of each driving factor were

determined (Figure 10). VC had the most substantial impact on
FIGURE 7

Global spatial autocorrelation of landscape ecological risk.
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the ecological risk of the basin, with a relative contribution rate

exceeding 21% in all three phases. This was followed by P, T, DfCC,

E, PD, DfTC, and GDP. The relative contribution of the S was the

smallest, at approximately 5%. During 2000–2010, with the rapid

development of urbanization, the relative contribution rates of

natural factors, such as P, E, S, and VC, decreased. In contrast,
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the relative contribution rates of social and locational factors

increased. From 2010 to 2020, because of the deceleration of

urbanization and the conversion of cropland back to forestland

and grassland, the relative contributions of P and VC to natural

factors improved. The relative contribution rate of social factors

decreased, whereas that of locational factors continued to increase.
FIGURE 9

Regression coefficients of driving factors.
FIGURE 8

Local spatial clustering distribution of landscape ecological risk.
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4 Discussion

4.1 Landscape ecological risk changes

The increasing demand for land resources and the escalating

complexity of external disturbances had led to changes in the regional

ecological environment. As a typical densely populated area within

the transition zone between warm temperate and northern

subtropical regions, the basin had shown greater sensitivity to these

complex disturbances (Zhu and Cai, 2023). The landscape ecological

risk had progressed through two distinct stages. ERI increased from

2000 to 2010. Construction land experienced massive, unorganized

expansion, rising by 5755 km2, amounting to a 16.44% growth. The

GDP saw an increase of approximately 2.35 × 105 million yuan. The

rapid progression of urbanization had led to a heightened conflict

between intensive land development and sensitive ecological systems.

This had resulted in increased fragmentation of the cropland

landscape in the central plains and grassland and forestland

landscapes in the northern and southwestern low mountain and

hilly areas. The ecological risk decreased from 2010 to 2020. This

period was crucial for the construction of an ecological civilization

and economic transformation in the basin. Different cities devised

development strategies tailored to specific conditions. Cities in the

eastern part of the basin, such as Huai’an and Yancheng, had

leveraged convenient water transportation to strengthen economic

interactions with surrounding regions, such as the Yangtze River

Delta and the Wanjiang City Belt (Wu et al., 2021a). In the

southwestern part, cities such as Xinyang and Fuyang had focused

on transitioning from resource-based cities to accelerating

agricultural modernization (Luo et al., 2021). While fostering

economic development, these initiatives also propelled the return of
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croplands to forest and grassland. Consequently, the natural

landscape had been restored. The uncontrolled expansion of

construction land was restrained, and the expansion rate declined

to 7.70%. This resulted in enhanced internal connectivity and stability

of the landscape within the basin. This finding was consistent with the

previous study (Wang et al., 2022), which argued that with the

development of urbanization in the Huai River Basin, landscape

fragmentation exhibited a trend of initially rising and then declining

around 2015.

Improvement of the ecological environment was closely linked to

government macro-regulation. Since the end of 2013, the Chinese

government had issued a series of regulatory policies intensifying

efforts toward aggregated development, categorized protection, and

the comprehensive management of land resources. In 2014, the

Ministry of Land and Resources of China issued the Regulations on

the Economic and Intensive Use of Land. Subsequently, the State

Council released the Overall Plan for Ecological Civilization System

Reform in 2015 and the National Land Planning Outline (2016–

2030) in 2017 (Sang et al., 2021). These policies had provided a

foundation for maintaining regional ecological stability and

promoting sustainable development of the ecological environment.

The Huai River Ecological Economic Belt Development Plan was

promulgated in 2018 (Wang et al., 2023b). This had charted a new

development model for promoting strategic management across the

entire basin and for future exploration of ecological civilization

construction in major river basins. In the landscape ecological risk

assessment projected for 2030, the CP scenario presented a lower

ecological risk than the NP scenario. This indicated that

implementing a cropland preservation strategy could foster the

stable development of the basin’s ecosystem. In the EP scenario,

forestland, grassland, and water landscapes were restored, and the
FIGURE 10

Relative contribution rates of driving factors.
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conversion efficiency of unused land was improved, further reducing

the landscape ecological risk. The Moran’s I for the CP and EP

scenarios would be significantly lower than that of the ND scenario.

The reason could be that with the implementation of different

external development plans, the basin’s ecological risks would be

increasingly influenced by human interventions such as policies,

reducing the constraint of spatial locations on internal risk.

Although there were variations in the delineation of risk intervals

among research findings, this is a relative range. The distribution of

landscape ecological risk within the river basin showed considerable

spatial heterogeneity, with a pattern of higher risk in the east and

lower risk in the west. This was because of the dominance of highly

vulnerable unused land and water in the eastern urban clusters,

including lakes such as Hongze, Weishan, and Gaoyou. These areas,

characterized by relatively flat terrain, abundant water resources, and

high PD, had a lower capacity to resist external disturbances, resulting

in heightened local ecological risks.
4.2 Impact factors of landscape
ecological risk

This study developed the ridge regression model through the

diagnosis and reduction of multicollinearity among feature variables,

coupled with optimization of the ridge parameter. The study found

that over 20 years, natural factors such as P, E, S, and VC negatively

correlated with landscape ecological risk. Among these factors, VC

had the greatest relative contribution. The VC was a combined

indicator of plant growth and photosynthetic intensity (Martinez

and Labib, 2023). A higher value of VC indicated a larger proportion

of natural landscapes, such as forestland and grassland, in the region,

positively influencing the development of ecological projects. The

P and T also exhibited relatively high contribution rates. In contrast

to the effects of other natural factors, T was positively correlated

with ecological risk. Known as the rain–heat effect, the dual impact

of decreased rainfall and increased temperature likely reduced

the spatial distribution of forestland and grassland landscapes,

resulting in a more vulnerable regional ecosystem (Kayumba et al.,

2021). The influences of E and S were relatively modest. In the

basin, high-elevation areas are primarily concentrated around Tai’an

and Zibo in the north, and Huanggang and Qing’an in the south.

These areas were predominantly occupied by low-vulnerability

grassland and forestland and were characterized by high internal

structural stability and connectivity. This could facilitate stable

ecosystem development.

DfCC and DfTC showed negative correlations with the risk.

This was attributed to the continuous advancement of urbanization,

leading to substantial population migration to cities and towns

(Yang et al., 2022a). Consequently, the increasing demand for land

resources had intensified the risk of landscape fragmentation in the

central areas of built-up urban regions. In 2020, the regression

coefficients for the GDP and PD shifted from higher positive to

lower negative correlations. This could be attributed to the

saturation of construction land in the relatively developed cities

of Yangzhou in the east and Linyi in the north, as well as in the

surrounding areas. In the central and southern parts of the basin,
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the pattern of urban construction land had evolved to become more

compact, with the expansion of patches having a more regular

shape. This suggested that the strategic expansion of construction

land driven by social development was beneficial for enhancing the

stability of regional ecology. By integrating the land use transition

matrix from 2010 to 2020, fluctuations in grassland were

predominantly reflected in the transformation between forest land

and water. The human disturbance did not reduce its quantity. In

contrast, influenced by the policy of converting cropland back to

grassland, 148 km2 of cropland was transformed into grassland,

facilitating the restoration of lower-risk areas. With the growing

demand for land resources, the development efficiency of highly

vulnerable unused land had increased, reducing its area by 62.65

km2. This contributed to the suppression of development in the

highest risk areas. When the urbanization process had developed

over time, increases in GDP and PD positively affected regional

ecosystem stability.
4.3 Recommendations for future
risk management

Considering the basin’s important role in national grain

production and in response to the United Nations’ call to achieve

the 15th Sustainable Development Goals by 2030, this study

established ND, CP, and EP development scenarios in 2030.

Upon comparing the simulated outcomes for 2020 with the actual

conditions, it was discovered that the OA coefficient was 0.92, the

kappa coefficient was 0.91, and the FOM index was 0.30%. This

signified a high level of reliability in the predictive results. It was

essential to determine how to reduce regional ecological risk while

safeguarding socio-economic development effectively. Therefore,

integrating the above three developmental outcomes, this study

had proposed the following recommendations. For the highest and

higher risk areas, there should be a focus on intensifying the use of

unused land, especially those predominantly located in the northern

cities of Jining and Zaozhuang. Developing small parcels of unused

land near water and cropland in cultivated areas was encouraged. In

these areas, unused land was advantageous for irrigation and

suitable for cultivation, enhancing land use efficiency and

generating higher economic benefits. It was important to

minimize human disturbances in highly vulnerable waters,

intensify efforts in lake management and wetland conservation,

and reduce the environmental risks associated with soil and water

erosion in eastern cities such as Yancheng and Taizhou. For

medium-risk regions, it was imperative to plan scientifically for

the cropland area. This involved adhering to reforestation and

grassland restoration policies while establishing basic cropland

protection zones. Such measures aimed to reduce the risk of

agricultural land fragmentation and ensure food production

stability. Enhancing environmental governance and establishing

ecological buffer zones were essential for areas with the lowest

risk. This approach aimed to reduce the potential degradation of

forestland and grassland and prevent land desertification. It was

important to develop the scale of construction land in the central

part of the basin and scientifically advance the urbanization process.
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4.4 Limitations and future work

The evolution of landscape ecological risk was influenced by

multiple factors, with human activities being the most directly

observable (Rao et al., 2024). As a population agglomeration area

between the warm temperate and northern subtropical regions, there

was a vital research value for evolving landscape ecological risk from

human solid activities in the basin. This study considered the impacts

of PD and GDP as social driving factors. In future research, the

complexity of social factors could be more comprehensively explored

by integrating human activity intensity index (HAI) and additional

socio-economic indicators such as nighttime lighting data (Li et al.,

2022; Han et al., 2023). Secondly, the basin spans four provinces:

Anhui, Jiangsu, Shandong, and Henan. The land development plans

of each province differ, and restrictive data on ecological redline

protection areas and basic cropland protection areas had yet to be

obtained. This might lead to some non-convertible cropland and

ecological land being modified in future simulation results. In

summary, these would all be tasks for our continued in-depth

research in the future.
5 Conclusion

This study utilized the FLUS model to conduct multi-scenario

simulations of the land use spatial pattern in 2030, constructed a

landscape ecological risk assessment system for the Huai River

Basin, analyzed the spatiotemporal characteristics of ecological risks

from 2000 to 2030, and clarified the influencing mechanisms of risk

evolution over the past 20 years through the ridge regression model.

The following conclusions were obtained:
Fron
1. Cropland was the predominant land-use type (accounting

for over 68%), and the primary transitions were

concentrated between cropland and construction land. By

2030, the area of construction land projected to continue to

expand, with the greatest increase of 2906 km2 anticipated

in the ND scenario. In the CP scenario, the area of cropland

would recover by 1237 km2. In the EP scenario, forestland

and grassland would recover, and the efficiency of

developing unused land would be the highest.

2. The overall spatial pattern of landscape ecological risk

showed a “high in the east and low in the west”

distribution, with the lowest risk areas predominating

(accounting for over 43%). From 2000 to 2010, the

average risk increased by 0.0021; from 2010 to 2020, the

average risk decreased by 0.0007. By 2030, the risk is

expected to decline further, with the risk hierarchy being

the EP scenario< the CP scenario< the ND scenario.

3. The risk exhibited significant positive spatial autocorrelation,

with Moran’s I above 0.38. By 2030, the limitation of risk

distribution by spatial location would decrease due to the

increased impact of external development plans. Local spatial

clustering was mainly characterized by “Low-Low” regions,

accounting for 20% of the basin.
tiers in Ecology and Evolution 15
4. Over the past 20 years, VC, P, E, S, DfCC, and DfTC had

shown negative correlations with the risk, while T had a

positive correlation. Notably, in 2020, GDP and PD turned

to a negative correlation, indicating that not all human

activities adversely affect regional ecological risk. Moreover,

VC had been the main influencing factor, with relative

contributions in all three periods exceeding 21%.
In summary, this study avoided the limitation of related

research that focused on past periods by using multi-scenario

simulations and expanded the exploration of the influencing

mechanisms of landscape ecological risk. Furthermore, this study

integrated different development scenarios to propose feasible

suggestions for reasonably reducing landscape ecological risk in

the basin and promoting sustainable development in the future.

This study could provide scientific references for environmental

management in areas with similar complex climatic conditions and

intense human activities globally.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

CL: Conceptualization, Methodology, Writing – original draft.

FQ: Conceptualization, Methodology, Writing – review & editing.

ZL: Investigation, Writing – review & editing. ZP: Data curation,

Investigation, Writing – review & editing. DG: Software,

Visualization, Writing – original draft. ZH: Software, Supervision,

Writing – original draft.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by the High-Resolution Satellite Project of

the State Administration of Science, Technology, and Industry for

National Defense of the PRC (80Y50G19-9001-22/23), the National

Science and Technology Platform Construction Project

(2005DKA32300), and the Major Research Projects of the

Ministry of Education (16JJD770019).
Acknowledgments

We sincerely thank the National Earth System Science Data

Sharing Infrastructure, National Science and Technology

Infrastructure of China-Data Center of Lower Yellow River

Regions for providing data support.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1471164
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Li et al. 10.3389/fevo.2024.1471164
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Ecology and Evolution 16
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fevo.2024.1471164/

full#supplementary-material
References
Adhikari, B., Urbach, D., Chettri, N., Sharma, E., Breu, T., Geschke, J., et al. (2023). A
multi-methods approach for assessing how conserving biodiversity interacts with other
sustainable development goals in Nepal. Sustain. Dev. 31, 3239–3253. doi: 10.1002/
sd.2582

Ai, J., Yu, K., Zeng, Z., Yang, L., Liu, Y., and Liu, J. (2022). Assessing the dynamic
landscape ecological risk and its driving forces in an island city based on optimal spatial
scales: Haitan Island, China. Ecol. Indic. 137, 108771. doi: 10.1016/
j.ecolind.2022.108771

Akbari, H., and Kolokotsa, D. (2016). Three decades of urban heat islands and
mitigation technologies research. Energy Build. 133, 834–842. doi: 10.1016/
j.enbuild.2016.09.067

An, M., Fan, L., Huang, J., Yang, W., Wu, H., Wang, X., et al. (2021). The gap of water
supply-demand and its driving factors: From water footprint view in Huaihe River
Basin. PloS One 16, e0247604. doi: 10.1371/journal.pone.0247604

Bank, M. S., Swarzenski, P. W., and Tolosa, I. (2022). Seafood safety and
environmental pollution in a changing environment. Environ. pollut. 306, 119475.
doi: 10.1016/j.envpol.2022.119475

Bao, T., Wang, R., Song, L., Liu, X., Zhong, S., Liu, J., et al. (2022). Spatio-temporal
multi-scale analysis of landscape ecological risk in Minjiang River Basin based on
adaptive cycle. Remote Sens. 14, 5540. doi: 10.3390/rs14215540

Chang, S., Dai, Z. Z., Wang, X., Zhu, Z. Y., and Feng, Y. Z. (2023). Landscape pattern
identification and ecological risk assessment employing land use dynamics on the Loess
Plateau. Agronomy-Basel 13, 2247. doi: 10.3390/agronomy13092247

Chen, L., and Ma, Y. (2023). Ecological risk identification and ecological security
pattern construction of productive wetland landscape. Water Resour. Manage. 37,
4709–4731. doi: 10.1007/s11269-023-03574-1

Cheng, X., Zhang, Y., Yang, G., Nie, W., Wang, Y., Wang, J., et al. (2023). Landscape
ecological risk assessment and influencing factor analysis of basins in suburban areas of
large cities - A case study of the Fuchunjiang River Basin, China. Front. Ecol. Evol. 11.
doi: 10.3389/fevo.2023.1184273

Cui, L., Zhao, Y., Liu, J., Han, L., Ao, Y., and Yin, S. (2018). Landscape ecological risk
assessment in Qinling Mountain. Geol. J. 53, 342–351. doi: 10.1002/gj.3115

Dai, L., Liu, Y., and Luo, X. (2021). Integrating the MCR and DOI models to
construct an ecological security network for the urban agglomeration around Poyang
Lake, China. Sci. Total Environ. 754, 141868. doi: 10.1016/j.scitotenv.2020.141868

Gao, C., Li, X., Sun, Y., Zhou, T., Luo, G., and Chen, C. (2019). Water requirement of
summer maize at different growth stages and the spatiotemporal characteristics of
agricultural drought in the Huaihe River Basin, China. Theor. Appl. Climatol. 136,
1289–1302. doi: 10.1007/s00704-018-2558-6

Garcia, C. B., Garcia, J., Lopez Martin, M. M., and Salmeron, R. (2015). Collinearity:
revisiting the variance inflation factor in ridge regression. J. Appl. Stat. 42, 648–661.
doi: 10.1080/02664763.2014.980789

Han, W., Su, X., Lu, H., Li, T., Jin, T., Zhang, M., et al. (2023). Impacts of human
activity intensity on ecosystem services for conservation in the Lhasa River Basin.
Ecosyst. Health Sustainability 9, 0088. doi: 10.34133/ehs.0088

He, Y., Ma, J., Zhang, C., and Yang, H. (2023). Spatio-temporal evolution and
prediction of carbon storage in Guilin based on FLUS and InVEST models. Remote
Sens. 15, 1445. doi: 10.3390/rs15051445

He, S., Yu, S., Li, G., and Zhang, J. (2020). Exploring the influence of urban form on
land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336
Chinese cities. Land Use Policy 95, 104576. doi: 10.1016/j.landusepol.2020.104576

Hou, M., Ge, J., Gao, J., Meng, B., Li, Y., Yin, J., et al. (2020). Ecological risk
assessment and impact factor analysis of alpine wetland ecosystem based on LUCC and
boosted regression tree on the zoige plateau, China. Remote Sens. 12, 368. doi: 10.3390/
rs12030368
Kayumba, P. M., Chen, Y., Mind'je, R., Mindje, M., Li, X., Maniraho, A. P., et al. (2021).
Geospatial land surface-based thermal scenarios for wetland ecological risk assessment
and its landscape dynamics simulation in Bayanbulak Wetland, Northwestern China.
Landscape Ecol. 36, 1699–1723. doi: 10.1007/s10980-021-01240-8

Li, Z., and Fang, H. (2016). Impacts of climate change on water erosion: A review.
Earth Sci. Rev. 163, 94–117. doi: 10.1016/j.earscirev.2016.10.004

Li, X., Fang, B., Yin, M., Jin, T., and Xu, X. (2022). Multi-dimensional urbanization
coordinated evolution process and ecological risk response in the Yangtze River Delta.
Land 11, 723. doi: 10.3390/land11050723

Li, W., Lin, Q., Hao, J., Wu, X., Zhou, Z., Lou, P., et al. (2023). Landscape ecological
risk assessment and analysis of influencing factors in Selenga River Basin. Remote Sens.
15, 4262. doi: 10.3390/rs15174262

Liang, X., Liu, X., Li, X., Chen, Y., Tian, H., and Yao, Y. (2018). Delineating multi-
scenario urban growth boundaries with a CA-based FLUS model and morphological
method. Landscape Urban Plann. 177, 47–63. doi: 10.1016/j.landurbplan.2018.04.016

Lin, J., He, P., Yang, L., He, X., Lu, S., and Liu, D. (2022a). Predicting future urban
waterlogging-prone areas by coupling the maximum entropy and FLUS model. Sustain.
Cities Soc 80, 103812. doi: 10.1016/j.scs.2022.103812

Lin, N., Jiang, R., Liu, Q., Yang, H., Liu, H., and Yang, Q. (2022b). Quantifying the
spatiotemporal variation of evapotranspiration of different land cover types and the
contribution of its associated factors in the Xiliao River Plain. Remote Sens. 14, 252.
doi: 10.3390/rs14020252

Liu, J., Xu, Q., Yi, J., and Huang, X. (2022). Analysis of the heterogeneity of urban
expansion landscape patterns and driving factors based on a combined Multi-Order
Adjacency Index and Geodetector model. Ecol. Indic. 136, 108655. doi: 10.1016/
j.ecolind.2022.108655

Lohiniva, A. L., Toura, S., Arifulla, D., Ollgren, J., and Lyytikainen, O. (2022).
Exploring behavioural factors influencing COVID-19-specific infection prevention and
control measures in Finland: a mixed-methods study, December 2020 to March 2021.
Eurosurveillance 27, 7–15. doi: 10.2807/1560-7917.Es.2022.27.40.2100915

Luo, H., Li, L., Lei, Y., Wu, S., Yan, D., Fu, X., et al. (2021). Decoupling analysis
between economic growth and resources environment in Central Plains Urban
Agglomeration. Sci. Total Environ. 752, 142284. doi: 10.1016/j.scitotenv.
2020.142284

Luo, F., Liu, Y., Peng, J., and Wu, J. (2018). Assessing urban landscape ecological risk
through an adaptive cycle framework. Landscape Urban Plann. 180, 125–134.
doi: 10.1016/j.landurbplan.2018.08.014

Mann, D., Anees, M. M., Rankavat, S., and Joshi, P. K. (2021). Spatio-temporal
variations in landscape ecological risk related to road network in the Central Himalaya.
Hum. Ecol. Risk Assess. 27, 289–306. doi: 10.1080/10807039.2019.1710693

Martinez, A., and Labib, S. M. (2023). Demystifying normalized difference vegetation
index (NDVI) for greenness exposure assessments and policy interventions in urban
greening. Environ. Res. 220, 115155. doi: 10.1016/j.envres.2022.115155

Mondal, B., Sharma, P., Kundu, D., and Bansal, S. (2021). ). Spatio-temporal
assessment of landscape ecological risk and associated drivers: A case study of Delhi.
Environ. Urbanization Asia 12, S85–S106. doi: 10.1177/09754253211007830

Outhwaite, C. L., McCann, P., and Newbold, T. (2022). Agriculture and climate
change are reshaping insect biodiversity worldwide. Nature 605, 97–102. doi: 10.1038/
s41586-022-04644-x

Qian, Y., Dong, Z., Yan, Y., and Tang, L. (2022). Ecological risk assessment models
for simulating impacts of land use and landscape pattern on ecosystem services. Sci.
Total Environ. 833, 155218. doi: 10.1016/j.scitotenv.2022.155218

Qu, Z., Zhao, Y., Luo, M., Han, L., Yang, S., and Zhang, L. (2022). The effect of the
human footprint and climate change on landscape ecological risks: A case study of the
Loess Plateau, China. Land 11, 217. doi: 10.3390/land11020217
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fevo.2024.1471164/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2024.1471164/full#supplementary-material
https://doi.org/10.1002/sd.2582
https://doi.org/10.1002/sd.2582
https://doi.org/10.1016/j.ecolind.2022.108771
https://doi.org/10.1016/j.ecolind.2022.108771
https://doi.org/10.1016/j.enbuild.2016.09.067
https://doi.org/10.1016/j.enbuild.2016.09.067
https://doi.org/10.1371/journal.pone.0247604
https://doi.org/10.1016/j.envpol.2022.119475
https://doi.org/10.3390/rs14215540
https://doi.org/10.3390/agronomy13092247
https://doi.org/10.1007/s11269-023-03574-1
https://doi.org/10.3389/fevo.2023.1184273
https://doi.org/10.1002/gj.3115
https://doi.org/10.1016/j.scitotenv.2020.141868
https://doi.org/10.1007/s00704-018-2558-6
https://doi.org/10.1080/02664763.2014.980789
https://doi.org/10.34133/ehs.0088
https://doi.org/10.3390/rs15051445
https://doi.org/10.1016/j.landusepol.2020.104576
https://doi.org/10.3390/rs12030368
https://doi.org/10.3390/rs12030368
https://doi.org/10.1007/s10980-021-01240-8
https://doi.org/10.1016/j.earscirev.2016.10.004
https://doi.org/10.3390/land11050723
https://doi.org/10.3390/rs15174262
https://doi.org/10.1016/j.landurbplan.2018.04.016
https://doi.org/10.1016/j.scs.2022.103812
https://doi.org/10.3390/rs14020252
https://doi.org/10.1016/j.ecolind.2022.108655
https://doi.org/10.1016/j.ecolind.2022.108655
https://doi.org/10.2807/1560-7917.Es.2022.27.40.2100915
https://doi.org/10.1016/j.scitotenv.2020.142284
https://doi.org/10.1016/j.scitotenv.2020.142284
https://doi.org/10.1016/j.landurbplan.2018.08.014
https://doi.org/10.1080/10807039.2019.1710693
https://doi.org/10.1016/j.envres.2022.115155
https://doi.org/10.1177/09754253211007830
https://doi.org/10.1038/s41586-022-04644-x
https://doi.org/10.1038/s41586-022-04644-x
https://doi.org/10.1016/j.scitotenv.2022.155218
https://doi.org/10.3390/land11020217
https://doi.org/10.3389/fevo.2024.1471164
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Li et al. 10.3389/fevo.2024.1471164
Rao, J., Ouyang, X., Pan, P., Huang, C., Li, J., and Ye, Q. (2024). Ecological risk
assessment of forest landscapes in Lushan National Nature Reserve in Jiangxi Province,
China. Forests 15, 484. doi: 10.3390/f15030484

Sang, S., Wu, T., Wang, S., Yang, Y., Liu, Y., Li, M., et al. (2021). Ecological safety
assessment and analysis of regional spatiotemporal differences based on Earth
Observation Satellite Data in support of SDGs: The case of the Huaihe River Basin.
Remote Sens. 13, 3942. doi: 10.3390/rs13193942

Shi, Y., Gao, H., Tan, S., Qin, H., Tian, Z., Meng, J., et al. (2024). Pattern change and
ecological risk analysis of Shilin World Geopark landscape. Front. Ecol. Evol. 12,
1341969. doi: 10.3389/fevo.2024.1341969

Sui, L., Yan, Z., Li, K., Wang, C., Shi, Y., and Du, Y. (2024). Prediction of ecological
security network in Northeast China based on landscape ecological risk. Ecol. Indic.
160, 111783. doi: 10.1016/j.ecolind.2024.111783

Tian, Y., Wen, Z., Zhang, X., Cheng, M., and Xu, M. (2022b). Exploring a
multisource-data framework for assessing ecological environment conditions in the
Yellow River Basin, China. Sci. Total Environ. 848, 157730. doi: 10.1016/
j.scitotenv.2022.157730

Tian, H., Zhang, J., Zhu, L., Qin, J., Liu, M., Shi, J., et al. (2022a). Revealing the scale- and
location-specific relationship between soil organic carbon and environmental factors in
China's north-south transition zone. Geoderma 409, 115600. doi: 10.1016/
j.geoderma.2021.115600

Wang, H., Feng, R., Li, X., Yang, Y., and Pan, Y. (2023a). Land use change and its
impact on ecological risk in the Huaihe River Eco-economic Belt. Land 12, 1247.
doi: 10.3390/land12061247

Wang, H., Zhang, M., Wang, C., Wang, K., Zhou, Y., and Sun, W. (2023b). A novel
method for quantifying human disturbances: A case study of Huaihe River Basin,
China. Front. Public Health 10, 1120576. doi: 10.3389/fpubh.2022.1120576

Wang, L., Han, X., Zhang, Y., Zhang, Q., Wan, X., Liang, T., et al. (2023c). Impacts of
land uses on spatio-temporal variations of seasonal water quality in a regulated river
basin, Huai River, China. Sci. Total Environ. 857, 159584. doi: 10.1016/
j.scitotenv.2022.159584

Wang, Y., Yang, Z., Yu, M., Lin, R., Zhu, L., and Bai, F. (2023d). Integrating
ecosystem health and services for assessing ecological risk and its response to typical
land-use patterns in the eco-fragile region, North China. Environ. Manage. 71, 867–
884. doi: 10.1007/s00267-022-01742-4

Wang, H., Zhang, M., Wang, C., Wang, K., Wang, C., Li, Y., et al. (2022). Spatial and
temporal changes of landscape patterns and their effects on ecosystem services in the
huaihe river basin, China. Land 11, 513. doi: 10.3390/land11040513

Wang, H., Zhang, J., Zhu, F., and Zhang, W. (2016). Analysis of spatial pattern of
aerosol optical depth and affecting factors using spatial autocorrelation and spatial
autoregressive model. Environ. Earth Sci. 75, 822. doi: 10.1007/s12665-016-5656-8

Wu, J., Zhu, Q., Qiao, N., Wang, Z., Sha, W., Luo, K., et al. (2021b). Ecological risk
assessment of coal mine area based on "source-sink" landscape theory e A case study
Frontiers in Ecology and Evolution 17
of Pingshuo mining area. J. Cleaner Prod. 295, 126371. doi: 10.1016/
j.jclepro.2021.126371

Wu, F., Zhuang, Z., Liu, H.-L., and Shiau, Y.-C. (2021a). Evaluation of water
resources carrying capacity using principal component analysis: An empirical study
in Huai'an, Jiangsu, China. Water 13, 2587. doi: 10.3390/w13182587

Xu, W., Wang, J., Zhang, M., and Li, S. (2021). Construction of landscape ecological
network based on landscape ecological risk assessment in a large-scale opencast coal
mine area. J. Cleaner Prod. 286, 125523. doi: 10.1016/j.jclepro.2020.125523

Xue, L., Zhu, B., Wu, Y., Wei, G., Liao, S., Yang, C., et al. (2019). Dynamic projection
of ecological risk in the Manas River basin based on terrain gradients. Sci. Total
Environ. 653, 283–293. doi: 10.1016/j.scitotenv.2018.10.382

Yan, Z., Xia, J., and Gottschalk, L. (2011). Mapping runoff based on hydro-stochastic
approach for the Huaihe River Basin, China. J. Geog. Sci. 21, 441–457. doi: 10.1007/
s11442-011-0856-3

Yang, Y., Mohammat, A., Feng, J., Zhou, R., and Fang, J. (2007). Storage, patterns and
environmental controls of soil organic carbon in China. Biogeochemistry 84, 131–141.
doi: 10.1007/s10533-007-9109-z

Yang, Z., Tang, J., Yu, M., Zhang, Y., Abbas, A., Wang, S., et al. (2022b). Sustainable
cotton production through Increased competitiveness: analysis of comparative
advantage and influencing factors of cotton production in Xinjiang, China.
Agronomy-Basel 12, 2239. doi: 10.3390/agronomy12102239

Yang, L., Zhao, G., Tian, P., Mu, X., Tian, X., Feng, J., et al. (2022a). Runoff changes in
the major river basins of China and their responses to potential driving forces. J.
Hydrol. 607, 127536. doi: 10.1016/j.jhydrol.2022.127536

Zeng, C., He, J., He, Q., Mao, Y., and Yu, B. (2022). Assessment of land use pattern
and landscape ecological risk in the chengdu-chongqing economic circle, southwestern
China. Land 11, 659. doi: 10.3390/land11050659

Zhang, W., Chang, W. J., Zhu, Z. C., and Hui, Z. (2020). Landscape ecological risk
assessment of Chinese coastal cities based on land use change. Appl. Geogr. 117, 102174.
doi: 10.1016/j.apgeog.2020.102174

Zhang, N., Yuan, R., Jarvie, S., and Zhang, Q. (2023). Landscape ecological risk of
China's nature reserves declined over the past 30 years. Ecol. Indic. 156, 111155.
doi: 10.1016/j.ecolind.2023.111155

Zhou, L., Dang, X., Mu, H., Wang, B., and Wang, S. (2021). Cities are going uphill:
Slope gradient analysis of urban expansion and its driving factors in China. Sci. total
Environ. 775, 145836–145836. doi: 10.1016/j.scitotenv.2021.145836

Zhu, Q., and Cai, Y. (2023). Integrating ecological risk, ecosystem health, and
ecosystem services for assessing regional ecological security and its driving factors:
Insights from a large river basin in China. Ecol. Indic. 155, 110954. doi: 10.1016/
j.ecolind.2023.110954

Zhu, K., He, J., Zhang, L., Song, D., Wu, L., Liu, Y., et al. (2022). Impact of future
development scenario selection on landscape ecological risk in the chengdu-chongqing
economic zone. Land 11, 964. doi: 10.3390/land11070964
frontiersin.org

https://doi.org/10.3390/f15030484
https://doi.org/10.3390/rs13193942
https://doi.org/10.3389/fevo.2024.1341969
https://doi.org/10.1016/j.ecolind.2024.111783
https://doi.org/10.1016/j.scitotenv.2022.157730
https://doi.org/10.1016/j.scitotenv.2022.157730
https://doi.org/10.1016/j.geoderma.2021.115600
https://doi.org/10.1016/j.geoderma.2021.115600
https://doi.org/10.3390/land12061247
https://doi.org/10.3389/fpubh.2022.1120576
https://doi.org/10.1016/j.scitotenv.2022.159584
https://doi.org/10.1016/j.scitotenv.2022.159584
https://doi.org/10.1007/s00267-022-01742-4
https://doi.org/10.3390/land11040513
https://doi.org/10.1007/s12665-016-5656-8
https://doi.org/10.1016/j.jclepro.2021.126371
https://doi.org/10.1016/j.jclepro.2021.126371
https://doi.org/10.3390/w13182587
https://doi.org/10.1016/j.jclepro.2020.125523
https://doi.org/10.1016/j.scitotenv.2018.10.382
https://doi.org/10.1007/s11442-011-0856-3
https://doi.org/10.1007/s11442-011-0856-3
https://doi.org/10.1007/s10533-007-9109-z
https://doi.org/10.3390/agronomy12102239
https://doi.org/10.1016/j.jhydrol.2022.127536
https://doi.org/10.3390/land11050659
https://doi.org/10.1016/j.apgeog.2020.102174
https://doi.org/10.1016/j.ecolind.2023.111155
https://doi.org/10.1016/j.scitotenv.2021.145836
https://doi.org/10.1016/j.ecolind.2023.110954
https://doi.org/10.1016/j.ecolind.2023.110954
https://doi.org/10.3390/land11070964
https://doi.org/10.3389/fevo.2024.1471164
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

	Multi-scenario assessment of landscape ecological risk in the transitional zone between the warm temperate zone and the northern subtropical zone
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Data sources and preprocessing
	2.3 Research methodology
	2.3.1 FLUS model
	2.3.2 Landscape ecological risk assessment model
	2.3.3 Spatial autocorrelation model
	2.3.4 Ridge regression model


	3 Results
	3.1 Land use changes and multi-scenario prediction
	3.1.1 Land use changes
	3.1.2 Multi-scenario land use projection

	3.2 Landscape ecological risk changes
	3.2.1 Changes of landscape ecological risk distribution
	3.2.2 Spatial autocorrelation of landscape ecological risk

	3.3 Impact mechanisms of landscape ecological risk

	4 Discussion
	4.1 Landscape ecological risk changes
	4.2 Impact factors of landscape ecological risk
	4.3 Recommendations for future risk management
	4.4 Limitations and future work

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


