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Ecosystem services (ES) such as carbon storage (CS), soil conservation (SC),

habitat quality (HQ), and water yield (WY) play a crucial role in maintaining

ecological balance and supporting sustainable regional development. With

increasing environmental changes, understanding the spatiotemporal dynamics

of these services and their driving factors has become essential in environmental

science. This study focuses on the Nanchang metropolitan area, quantifying CS,

SC, HQ, and WY from 2000 to 2020. It explores the impacts of major factors,

including climate, topography, and social aspects, on the spatial heterogeneity of

ES. The results reveal that between 2000 and 2020, CS and HQ decreased by

0.1385×108 tons/ha and 0.0507, respectively, while SC and WY increased by

2.4754×109 tons/ha and 1.6668×1010 m3, respectively. Notable spatial

heterogeneity exists in the correlation between driving factors and changes in

ES. The spatial distribution of ESs is higher in mountainous regions compared to

central plains. Among human factors, population (POP) and gross domestic

product (GDP) predominantly influenced changes in CS and HQ, whereas

climate and POP drove changes in SC. Changes in WY were primarily affected

by climate and topography. These findings suggest a need to focus on key driving

factors to formulate targeted land policies aimed at enhancing the ES value in the

Nanchang metropolitan area.
KEYWORDS

ecosystem services, environmental change, land planning, influencing factors,
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1 Introduction

Ecosystem Services (ES) refers to the environmental conditions

and natural benefits that ecosystems provide to humans through

their structure, processes and functions to meet the needs of human

survival and development (Hasan et al., 2020; Mengist et al., 2020;

Mandle et al., 2021). In recent years, global climate change and

urban development have led to a discernible deterioration in

ecosystem conditions, a concern that has garnered widespread

attention from governments and academia alike (Valencia Torres

et al., 2021; Aryal et al., 2022). Researchers have established that

both natural and anthropogenic factors influence ES, rendering

their interrelationships complex and dynamic (De Valck et al.,

2023). Consequently, investigating the spatiotemporal dynamics of

ES and analyzing the spatial heterogeneity of multiple driving

factors can elucidate the interactions between these factors and

ES, thereby supporting efforts to maintain regional ecological

balance and promote sustainable development.

The quantification of ES functions is primarily performed using

various models to analyze their supply and demand, trade-offs, and

driving factors. Currently, prominent quantitative tools for

evaluating ES include the ARIES model (Villa et al., 2014), the

InVEST model (Dashtbozorgi et al., 2023), the SoLVES model

(Guan et al., 2023), and the TESSA model (Perosa et al., 2021)

and CICES model (Czúcz et al., 2018). The InVEST model is widely

used in the quantitative analysis of ES due to its multifunctionality

(including modules for carbon storage, soil conservation, habitat

quality, and water yield) as well as its operational flexibility and

well-developed theoretical framework. Although the current

literature provides several models for evaluating ES, discussions

predominantly focus on the application of these models, with

limited in-depth analysis of their adaptability and accuracy in

different environments. For instance, studies by Locatelli et al.

(2014) and Bernués et al. (2014) utilized the InVEST model to

analyze ecosystem services but lacked a critical discussion on the

model’s adaptability and limitations. Additionally, the research by

Na et al. (2023), which predicts future land use changes and their

impacts on ES values using the MCE-CA-Markov model, indicates

a need for further exploration of the model’s effectiveness in

predicting and quantifying ES and its applicability in various

ecological settings. Current research often considers ecosystem

services collectively when analyzing ES driving factors,

overlooking the potential heterogeneity in function among

different ES and its impact on strategy formulation. Identifying

these factors and analyzing their spatial heterogeneity are crucial for

advancing sustainable management of regional ES.

A multitude of factors influences ES, including temperature,

precipitation, biological activities, soil, and terrain (Jia et al., 2023).

Identifying the impacts of these factors on ES presents a significant

challenge (Birkhofer et al., 2015). Research on the driving factors of

ES is typically categorized into non-spatial and spatial regression

models. Non-spatial regression models, which include scenario

analysis (Landuyt et al., 2016), redundancy analysis (Nogues

et al., 2023), and least squares analysis. For example, Wu et al.

(2019) selected a redundancy analysis model to conduct a ranking

analysis of 109 cities at the urban scale, and identified that the forest
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proportion was the most important influencing factor in the supply

of ecosystem services; Sun et al. (2021) used the GeoSoS-FLUS

model to explore the impact of land use changes in intensive

agricultural areas in North China on ecosystem services under

different scenarios, and proposed a framework that combines

scenario analysis with ecosystem service quality evaluation.

However, the non-spatial model has obvious drawbacks and

ignores the potential spatial effects. In contrast, spatial regression

models mainly include geographic detectors (Wang et al., 2021),

spatial autocorrelation models (Koenig, 1999), and geographically

weighted regression (Farber and Páez, 2007), which take into

account the spatial heterogeneity of influencing factors more

comprehensively and provide more comprehensive research on

the driving factors of ESs (Liu et al., 2022). For example, Zhou Y.

et al. (2023) used the geographic detector model to identify the

driving factors behind the fluctuations in the value of ecosystem

services in the Liangzi Lake Basin, indicating that the intensity of

human activities and NDVI detection results were the most

obvious. Ren et al. (2020) used the geographically weighted

regression model to analyze the driving factors of land change in

the Loess Plateau of China, and explored the common dominant

factors associated with altitude and four major land use types

(forestland, grassland, farmland and built-up area).

However, existing research methods tend to apply a single

model, and usually lack a comprehensive analysis that combines

non-spatial models with spatial models. This limitation leads to an

incomplete understanding of the impact of driving factors. We

believe that by first using geographic detectors to identify the

influencing factors of the main ES, and then using geographically

weighted regression models to analyze the spatial heterogeneity of

these factors in different regions, we can better deal with complex

and large-scale multi-factor problems. This method can reveal the

changing characteristics and impact patterns of each factor at

different spatial scales, and provide more refined tools and

methods for understanding the spatial distribution and driving

mechanism of ES.

In addition, many current studies tend to consider the driving

factors of ES comprehensively and use unified indicators or

methods to analyze the driving factors of these services. Although

this method can provide an overall perspective, it often ignores the

functional differences between different ES and their spatial

heterogeneity. For example, Zhang et al. (2021) explored the

spatial distribution of ES in the Yellow River Basin and used

GDM to explore the impact of detecting a single driving variable

on ES distribution; Li et al. (2024) detected the overall driving

factors of ES in different terrain types in the Sichuan-Yunnan

Ecological Barrier Zone in China through the optimal geographic

detector model and conducted a holistic analysis of the driving

factors of ESs. Although this comprehensive approach can outline

the overall picture, it often fails to reveal the functional differences

between individual ES and their impact on strategy formulation.

Therefore, based on existing research, the innovation of this

study is to combine GDM and GWR models to propose a more

refined analytical framework to refine the spatial heterogeneity of

the driving factors of ES. This method can simultaneously identify

the main driving factors affecting ES and deeply analyze the spatial
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heterogeneity of these factors in different geographical regions.

Different from traditional comprehensive research methods, our

study not only considers the overall perspective, but also focuses on

the functional differences between different ES and their spatial

heterogeneity. This detailed analysis can more accurately reveal the

changing patterns of various factors at different spatial scales,

provide more comprehensive tools and methods for

understanding the spatial distribution and driving mechanism of

ES, and provide a more precise scientific basis for regional

ecological management and strategy formulation.

This study particularly focuses on the Nanchang metropolitan

area, a representative research area. The Nanchang metropolitan

area, situated in the central segment of China’s Yangtze River

Economic Belt, is Jiangxi Province’s most densely populated and

economically vibrant urban agglomeration. This region

encompasses Poyang Lake, the largest freshwater lake in China,

along with extensive forest resources, which serve as critical

ecological buffers within the Economic Belt. In 2019, the Jiangxi

Provincial Government promulgated the Nanchang metropolitan

area Development Plan (2019-2025), targeting the establishment of

an aesthetically pleasing ecological spatial arrangement by 2035 to

underscore the commitment to sustainable ecosystem development.

Despite these ambitions, the Nanchang metropolitan area remains

in a nascent stage of urbanization compared to other global urban

centers. Presently, urban growth is poorly integrated with rural

development, leading to disparate resource distribution and

heightened ecological stress. The infrastructure development lags

behind, requiring enhanced alignment with ecological sustainability

goals (Chen et al., 2023). Moreover, the rapid urbanization pace and

significant land use alterations, involving the conversion of

farmland and green spaces to commercial and residential uses,

are diminishing regional biodiversity, intensifying the urban heat

island phenomenon, and degrading living conditions. Current

studies indicate marked geographic discrepancies in ecosystem
Frontiers in Ecology and Evolution 03
service responses to various drivers (Ajaz Ahmed et al., 2017).

While global and regional analyses often identify broad patterns,

they frequently overlook critical local environmental and socio-

economic nuances (He et al., 2019), leading to a generalized

understanding that may not accurately capture the unique

ecological and developmental challenges specific to regions.

Furthermore, our review of existing literature revealed a

significant gap in research on ecosystem services within the

Nanchang metropolitan area, particularly in the context of

spatiotemporal dynamics and the heterogeneity of driving factors.

Consequently, this article aims to: (1) assess the ecosystem service

functions in the Nanchang metropolitan area using the InVEST

model; (2) investigate the spatial heterogeneity of critical drivers

affecting various ES. This study holds profound implications for

enhancing regional ecological balance and advancing sustainable

development strategies in the Nanchang metropolitan area.
2 Research area and methods

2.1 Study area

The Nanchang metropolitan area, located in the northern part of

Jiangxi Province within China’s Yangtze River Delta region,

encompasses cities including Nanchang, Jiujiang, and the Fuzhou

districts of Linchuan and Dongxiang, as well as Yichun (covering

Fengcheng, Zhangshu, Fengxin, Gao’an, Jing’an) and Shangrao

(Poyang, Yugan, Wannian) (Figure 1). The Nanchang metropolitan

area features a general topography that is high in the west and low in

the east, with relatively flat terrain dominated by plains. The primary

vegetation type is subtropical evergreen broad-leaved forest. The land

use types are mainly categorized cultivated land, green land, grass,

wetland, water, artificial surfaces, and bare land, with cultivated land

and green land comprising a significant proportion of the total land
FIGURE 1

Study area map.
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use area (Figure 2, Supplementary Table S1). This area falls within the

subtropical monsoon climate zone, experiencing an average annual

temperature of 16-23°C and receiving annual precipitation ranging

from 1368 to 1790 mm, which predominantly occurs in summer. As

of the end of 2020, the total population of the area was approximately

27.39 million, and the GDP stood at 1.592 trillion yuan. Its strategic

geographical and transportation advantages are marked by its

position at the intersection of the Yangtze River’s horizontal

urbanization axis and the Beijing-Kowloon development axis,

enhancing its pivotal role in connecting eastern and western China,

as well as linking the northern and regions.
2.2 Data source

The InVEST model is known as the Ecosystem Services

Assessment Tool, which was jointly created by Stanford University,

the World Wildlife Fund and the Nature Conservancy. The model

includes three modules for assessing freshwater, marine and

terrestrial ecosystems, including annual water production (Allen

et al., 2005), sediment delivery rate (Cavalli et al., 2013), habitat

quality (Franklin and Lindenmayer, 2009), habitat risk assessment

(Arkema et al., 2015), carbon storage and sequestration (Antle and

Diagana, 2003), etc. This study mainly utilized the Carbon Storage,

Soil Conservation, Habitat Quality, and Water Yield modules in the

InVEST model. The basic data and related supplementary data

sources for each module are shown in Table 1.
2.3 Research methods for quantifying
ecosystem services

In recent years, the escalating urbanization in the Nanchang

metropolitan area has led to significant changes in land use,

subsequently affecting regional ES (Liu et al., 2023). For this
Frontiers in Ecology and Evolution 04
study, we identified four critical ES from 2000 to 2020, namely

carbon storage (CS), soil conservation (SC), habitat quality (HQ),

and water yield (WY). CS plays a crucial role in mitigating global

climate change, SC prevents soil erosion and maintains surface

water quality, while WY is essential for regional water resource

supply. HQ is vital for maintaining biodiversity. These services are

critical for maintaining ecological balance and promoting

sustainable development, particularly in response to the ecological

changes induced by urbanization. The selection of these services

is based on their relevance to regional environmental policies,

specific environmental characteristics, long-term ecological trend

assessments, and the support of existing scientific data. This

aims to provide local governments with scientific evidence for

ecological protection and resource management (Duan et al.,

2023; Dai et al., 2024). To quantify these ES, we employed the

InVEST model, which utilizes land use data to assess regional ES

and ascertain their spatial distribution characteristics. This model

has been extensively applied across various studies on ES (Li and

Luo, 2023; Zhou J. et al., 2023). The four formulas for quantifying

ES will be explained below.

2.3.1 Carbon storage
The InVEST model categorizes the CS module into four

primary carbon pools: the above-ground biocarbon pool,

underground biocarbon pool, soil carbon pool, and dead organic

carbon pool (Xue et al., 2023). The InVEST model categorizes the

CS module into four primary carbon pools: the above-ground

biocarbon pool, underground biocarbon pool, soil carbon pool,

and dead organic carbon pool (Gang et al., 2011):

Ct = Ca + Cb + CS + Cd (1)

In the formula, Ct is the total carbon storage (Mg/ha); Ca is the

above-ground carbon storage (Mg/ha); Cb is the underground

carbon storage (Mg/ha); CS is the soil carbon storage (Mg/ha); Cd

is the dead organic matter carbon storage (Mg/ha). The carbon
FIGURE 2

Land use in the study area from 2000 to 2020.
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density data refer to previous studies in the study area and the

model manual (Huang et al., 2023) (Supplementary Table S2).

2.3.2 Soil conservation
SC in the InVEST model is an enhancement of the classic Soil

Loss Equation (USLE) within the Sediment Delivery Ratio (SDR)

module. This module quantifies the spatial dynamics of soil erosion

on slopes and sediment transport across watersheds (Yang et al.,

2024). The calculation formula utilized is as follows (Li et al., 2023):

SC = RKLS − USLE = R� K − R� K � LS� P � C (2)

In the formula, SC represents the amount of soil conservation

(tons·(ha·yr)−1); RKLS represents the amount of potential soil

erosion (tons·(ha·yr)−1); USLE represents the amount of actual soil

erosion(tons·(ha·yr)−1); R represents the average rainfall erosiveness;

K represents the soil erodibility factor; LS represents the slope length

factor; P represents the soil and water conservation measure factor;

C is the vegetation coverage and management factor.

2.3.3 Habitat quality
The HQ module within the InVEST model is a critical

component utilized across numerous ecological assessment

models due to its high accuracy (Bastos et al., 2023). The formula

employed is detailed below (Nie et al., 2023):

Qxj = Hj 1 −
Dz
xj

Dz
xj + Kz

 !" #
(3)
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In the formula, Hj is the habitat suitability of K the land cover

type, j is the half-saturation constant, Z is the constant, and Qxj is

the HQ index, usually ranging from 0 to 1. The closer to 1, the better

the HQ. The operation of this module requires relevant data. We

referred to the model manual and relevant literature (Zhang et al.,

2020; Zhang et al., 2024). At the same time, we comprehensively

considered the actual conditions of the study area, and set the

cultivated land, artificial surface, and bare land that is subject to

greater human interference among the land types are stress factors,

and woodland, grassland, wetland, and water bodies are set as

habitat factors (Supplementary Tables S3, S4).
2.3.4 Water yield
The WY module within the InVEST model calculates the

annual water yield for each grid cell using the Budyko curve,

integrated with data on average annual precipitation specific to

the study area (Huang et al., 2024). The computational formula

applied is outlined below (Scordo et al., 2018):

Y(x) = 1 −
AET(x)
P(x)

� �
� P(x) (4)

In the formula, Y(x) represents the annual water production

of the grid unit (mm), P(x) represents the annual precipitation of

the grid unit (mm), and AET(x) represents the annual actual

evapotranspiration of the grid unit (mm).
TABLE 1 Data source of study area.

Type of data Data name Data sources Resolution

Carbon storage Land use
GlobeLand30

(http://www.globallandcover.com/)
30m

Soil conservation
DEM

GlobeLand30
(http://www.globallandcover.com/)

30m

Erosivity https://www.resdc.cn/Default.aspx

1km
Soil erodibility https://www.resdc.cn/Default.aspx

Land use
GlobeLand30

(http://www.globallandcover.com/)

Watersheds https://www.gscloud.cn/ 30m

Habitat quality Land use
GlobeLand30

(http://www.globallandcover.com/)
30m

Water yield Evapotranspiration
http://www.geodata.cn/ 1km

Precipitation

Land use
GlobeLand30

(http://www.globallandcover.com/)
30m

Root restricting layer depth
http://www.geodata.cn/ 1km

Plant available water content

Supplementary data Population
http://www.jiangxi.gov.cn/ –

GDP
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2.3.5 ES impact
2.3.5.1 Geographic detector model

The GDM is a statistical method developed by Wang Jinfeng

that is utilized to explore global spatial differentiation and identify

underlying driving factors (Wang et al., 2021). In this study, factor

detectors are employed to ascertain the explanatory power of

independent variable factors for more detailed analysis.
Frontiers in Ecology and Evolution 06
The specific formula used is outlined below (He et al., 2023):

q = 1 −
o
L

h=1

Nhs
2
h

Ns 2 (5)

In the formula, q is a value between 0 and 1 – the closer to 1,

the stronger the explanatory power; L represents the stratification
FIGURE 3

Spatial dynamic distribution of ESs from 2000 to 2020. (A–C) represents carbon storage; (D–F) represents soil conservation; (G–I) represents habitat
quality; (J–L) represents water yield.
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of variables; N represents the total number of samples of variable h

in the study area;Nh represents the number of samples of variable h;

s 2 represents the variance of the study area; s 2
h represents the

discrete variance of the variable h in the subregion.

2.3.5.2 Geographically weighted regression

The GWRmodel is designed to account for spatial variations by

establishing localized regression relationships between independent

and dependent variables, thereby avoiding errors typically

associated with spatial disparities (Ali et al., 2024). This model

enhances the Ordinary Least Squares (OLS) method by

incorporating spatial non-stationarity to better characterize local

variations. In this study, GWR is employed to examine the spatial

heterogeneity of the impacts of driving factors on ES in the study

area. The specific formula used is detailed below (Liu et al., 2019):

yi = b0(ui, vi) +o
k

i=1
bi(ui, vi)xik + ei (6)

Among them, i represents the given observation value; yi
represents the explanatory variable; xi is the k-th independent

variable; (ui, vi) is the geographical coordinate; ei is the error term
of the b i-th sampling point, which represents the regression

coefficient. The spatial variation of this model is affected by

bandwidth, which is a positive attenuation parameter of the

functional correlation between weights and distances.
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3 Result analysis

3.1 The spatial changes of ESs

The InVEST model was utilized to analyze the spatial dynamics

of ESs in the Nanchang metropolitan area from 2000 to 2020, as

shown in Figure 3. The ES values were exported from ArcGIS 10.8 to

an Excel spreadsheet for statistical analysis and depicted in Figure 4.

In the case of CS in the Nanchang metropolitan area, the total

carbon stored in 2000 was 3.8796×108 tons/ha, decreasing slightly to

3.8643×108 tons/ha in 2010, and further to 3.7411×108 tons/ha by

2020. The region exhibited a continuous decline in total CS, with a net

decrease of 0.1385×108 tons/ha during this period, primarily occurring

in the Poyang Lake basin. Geographically, areas with lower CS density

included central Duchang County, eastern parts of Xinjian County, east

of Gongqing City, western Poyang County, western Yugan County,

and the Honggutan District in downtown Nanchang. In contrast,

higher CS densities were concentrated in the northwestern parts such

as Xiushui County andWuning County. This is attributed to the dense

forests in the northwestern part of the metropolitan area, which have

high vegetation cover and thus greater carbon storage capacity, whereas

central areas predominantly consist of water bodies and croplands

which have lower above-ground carbon density. Additionally, the

carbon density of aquatic areas has notably decreased due to

intensified water management efforts by local authorities since 2000.
FIGURE 4

Dynamic changes of ESs from 2000 to 2020.
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Regarding SC changes, spatially, regions with high soil

conservation values were less widespread, mostly clustered in the

western areas including Jing’an County, Fengxin County, Wuning

County, and Xiushui County, and around Chaizang and Lianxi

districts in the north. Temporally, SC was 6.1105×109 tons/ha in

2000, increasing to 7.0673×109 tons/ha in 2010, and reaching

8.5859×109 tons/ha in 2020, marking an overall increase of

2.4754×109 tons/ha over the period. This rise in soil conservation

was facilitated by reforestation and afforestation policies launched by

the Jiangxi provincial government in 2010, leading to an expansion in

forested areas and consequently improved soil conservation.

The spatial distribution of HQ density from 2000 to 2020 was

predominantly high around Poyang Lake in Duchang County,

Gongqing City, Xinjian County, Poyang County, Yugan County,

and the western parts of Jing’an County, Fengxin County, Wuning

County, and Xiushui County. Areas with lower HQ densities

included Nanchang’s main urban district, Fengcheng City, Gao’an

City, and Zhangshu City. The average HQ values decreased overall

from 0.4946 in 2000 to 0.4915 in 2010 and 0.4439 in 2020,

indicating a deterioration in the ecological environment of the

study area. This decline in HQ was mainly due to the increasing

urbanization in Nanchang, where urban surfaces continuously

encroached upon water bodies and forests, leading to a decrease

in HQ. Conversely, regions around Poyang Lake such as Duchang

County saw improvements in HQ due to enhanced water

management efforts by local authorities.

For WY, the density concentration from 2000 to 2020 was

mostly high in the southern and western parts of the study area,

including Linchuan District, Fengcheng City, Honggutan District,

Qingshan Lake District, Nanchang County, Fengxin County, and

Jing’an County. Areas with lower WY concentrations were mainly

around Poyang Lake, including Yugan County, Xinjian County, and

Gongqing City. The WY in 2000 was 2.5704×1010 m3, increasing to

3.5208×1010 m3 in 2010, and further to 4.2372×1010 m3 in 2020,

with a total increase of 1.6668×1010 m3 over the period. This

increase in WY was primarily observed in the northern region,

attributed to high vegetation cover and government policies
Frontiers in Ecology and Evolution 08
encouraging reforestation, which led to reduced runoff and soil

erosion, thus improving soil permeability and reducing

evaporation losses.
3.2 Analysis of ES influencing factors

3.2.1 Determination of key ES influencing factors
Drawing on prior research and the specific conditions of the

study area (Wang et al., 2021; Li et al., 2023), we identified the

following preliminary socio-economic and climatic environmental

factors impacting ES: annual average temperature (TEP), potential

evapotranspiration (EC), annual average rainfall (PRE), digital

elevation (DEM), slope (SLO), population (POP), and economy

(GDP). All independent variables were standardized using SPSS

software and subsequently analyzed in ArcGIS10.8 to assess their

influence on ES through geographic detectors and Ordinary Least

Squares (OLS) regression (Table 2; Supplementary Material)

(Sánchez-Martı ́n et al., 2020). Overall, ES is predominantly

influenced by climatic factors. Among these, TEP and EC are the

main climate-related drivers affecting CS, with both demonstrating

a positive correlation with CS. SC is primarily influenced by TEP,

EC, and PRE, where TEP shows a negative correlation with SC,

while EC and PRE are positively correlated. HQ is affected by TEP,

EC, and PRE, with HQ negatively correlated with TEP and

positively with EC and PRE. WY is mainly driven by TEP, EC,

and PRE, with positive correlations between TEP, PRE and WY,

and a negative correlation with EC.

AICc and R² values are critical indicators of model accuracy; a

lower AICc and a higher R² denote greater precision. In our

analysis, we compared these metrics between the OLS model and

the GWR model (Table 3). The results revealed that the GWR

model exhibited a smaller AICc and a higher R² compared to the

OLS model, suggesting that GWR provides superior accuracy. This

enhanced precision allows GWR to more effectively capture the

spatial heterogeneity of the driving factors affecting ES.

3.2.2 Analysis of spatial heterogeneity of different
ES driving factors

The critical driving factor data for ecosystem services ES were

standardized and integrated into the GWR module of ArcGIS10.8.
TABLE 3 Accuracy comparison results of OLS and GWR.

ES AICc R² Adjusted R²

CS OLS 81.71051 0.752361 0.761383

GWR 71.157788 0.964741 0.953069

SC OLS 298.613296 0.68902 0.685817

GWR 268.613292 0.989029 0.985821

HQ OLS -106.683981 0.658087 0.645863

GWR -126.666 0.958102 0.94587

WY OLS 134.134797 0.799877 0.799842

GWR 114.133969 0.999897 0.999872
TABLE 2 Key drivers of different ES in 2020 based on GDM and ordinary
least squares.

Type
Climatic factors

Terrain
factors

Social
factors

TEP EC PRE DEM SLO POP GDP

CS
△
(+*)

△
(+*)

△
(+*)

SC △ (-*) △ (-*)
△
(+*)

△
(+*)

△ +* C(-*) C(+*)

HQ △(-*) △(+*) △(+*) △(-*) △(-*)

WY C(-*) △(-*) △(+*) △-* △(+*)
Note: C and △ represent the evaluation results of the geographic detector: △ represents
q>0.5, indicating that this indicator has a significant impact; C means q<0.5, indicating a
relatively small impact on the indicator. The symbols in parentheses indicate the impact of the
driving factors on different ESs assessed by ordinary least squares: “+” indicates a positive
impact and “-” indicates a negative impact. Indicators without brackets indicate redundancy
in explanatory variables with large variance inflation factors (VIF) >7.5. * indicates statistical
significance (p<0.01), and blank spaces indicate failure to pass the significance test.
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The resulting datasets were visualized using the natural breakpoint

method to optimize the classification of spatial data. Based on this

regression analysis and the visualization outcomes, we conducted a

detailed examination of the spatial heterogeneity of the various

driving factors influencing ES in the study area. This approach

allows for a nuanced understanding of how different factors impact

ES across different geographic regions.

3.2.2.1 Carbon storage

Figure 5 illustrates that TEP generally exerts a positive influence

on CS within the ecosystem services framework. The beneficial

effects are predominantly observed in Pengze, Poyang, Wannian,

and Dongxiang in the eastern region of the study area, as well as

Ruichang and Chaisang Districts in the central region, and extend

to Gongqingcheng, Xinjian, Anyi, Gao’an, Zhangshu, and

Fengcheng. It appears that rising temperatures in these locales

correlate with increased carbon sequestration. Conversely, TEP’s

negative impact on ES is more dispersed, particularly noticeable in

Qingshan Lake District and Honggutan District in central

Nanchang, where rapid urbanization and a pronounced urban

heat island effect are evident. Dense construction and high levels

of human activity reduce land exposure and harm vegetation,

thereby restricting vegetation cover and the natural development

of soil, ultimately diminishing CS.

The influence of EC on CS is also significant. Positively, it

impacts areas such as Pengze in the north, Wannian in the east, and

Jing’an in the west of the study area. Negative impacts are

concentrated around Poyang Lake, affecting Duchang, Yugan,
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Gongqingcheng, Xinjian, southern Lushan, and Jinxian. In these

lake-proximate areas, higher EC correlates with enhanced river

fluidity, which in turn influences carbon storage. Additionally,

aquatic biological activities also play a role in affecting CS.

DEM predominantly fosters a positive effect on CS, suggesting

that increased elevation correlates with higher CS in most parts,

including Fengcheng and Zhangshu in the south, Dongxiang and

Wannian in the east, and Xiushui and Wuning in the west and

central regions of the study area. Higher elevations, which are

typically characterized by concentrated mountainous and hilly areas

with extensive woodlands and grasslands, facilitate increased CS.

POP impact on CS is primarily negative, especially in

Nanchang’s main urban area and extending to Gongqingcheng,

Gao’an, and Yugan. Rising population levels have accelerated

urbanization, leading to extensive conversion of arable land for

construction purposes. This alteration in land use reduces plant

coverage and subsequently, CS.

3.2.2.2 Soil conservation

From the analysis presented in Figure 6, it is evident that the

positive impacts of Temperature Elevation on SC within the ES

framework are predominantly localized in Fengcheng City,

Duchang County, Wannian County, and Ruichang City.

Conversely, the adverse effects are primarily observed in high-

altitude, forested regions such as Xiushui County, Fengxin

County, and Gao’an City. This differential impact is attributable

to the moderating influence of forest land on temperature

fluctuations and its facilitative role in soil retention, thereby
FIGURE 5

Spatial distribution of geographically weighted regression coefficients of CS in the study area in 2020. (A) TEP represents air temperature; (B) EC
represents potential evapotranspiration, (C) DEM represents digital elevation; (D) POP represents population.
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mediating a trade-off between thermal regulation and soil

conservation in these areas.

The influence of EC on SC is largely detrimental, with

significant manifestations in the vicinities of Poyang Lake,

encompassing Duchang County, Poyang County, Gongqing City,

Xinjian County, Yugan County, Jinxian County, and Nanchang

County. The intensification of EC near Poyang Lake promotes soil

moisture evaporation, exacerbating soil moisture depletion and

escalating the risk of soil erosion, thereby undermining SC.

PRE exerts primarily negative effects on SC around Poyang

Lake, specifically in Poyang County, Duchang County, and

Nanchang County, where riverine environments contribute to

high ambient humidity and substantial rainfall. Excessive

precipitation heightens soil erosion risk, detrimental to soil

conservation efforts. Conversely, positive impacts are notable in

the western regions within Xiushui County, Fengxin County,
Frontiers in Ecology and Evolution 10
Jing’an County, and Zhangshu City, where dense forestation aids

in soil erosion prevention and enhances SC.

DEM analyses reveal that higher DEM correlates with negative

SC impacts in Xiushui County, Wuning County, Fengxin County,

Gao’an County, and Linchuan District due to enhanced surface

runoff capabilities that increase soil erosion during rainfall. In

contrast, lower DEM areas like central Nanchang, Jinxian County,

and Yugan County, characterized by flatter terrains and slower

runoff, exhibit reduced erosive forces and thus better soil retention.

Finally, POP analysis indicates that increased population

density generally correlates with reduced SC, particularly in

rapidly urbanizing areas such as Zhangshu City, Yugan County,

and central Nanchang, where urban expansion and increased

impervious surfaces adversely affect arable land development. In

contrast, areas like Xiushui County, Jing’an County, Ruichang

County, and Wuning County demonstrate positive SC outcomes
FIGURE 6

Spatial distribution of SC geographically weighted regression coefficients in the study area in 2020. In the figure (A) TEP represents temperature;
(B) EC represents potential evapotranspiration; (C) PRE represents average annual precipitation; (D) DEM represents digital elevation; (E) POP
represents population.
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despite population growth, likely due to effective forest conservation

practices that offset potential degradation.

3.2.2.3 Habitat quality

As illustrated in Figure 7, TEP predominantly exert a positive

influence on HQ within ES, particularly in the central and eastern

regions of the study area, including Duchang and Gongqingcheng

near the upper reaches of Poyang Lake. This enhancement is likely

attributable to the improvement in the EC, which facilitates the

hydrological cycle of water bodies and wetlands around Poyang

Lake, thereby ameliorating the aquatic environment and
Frontiers in Ecology and Evolution 11
augmenting photosynthetic activity of proximate flora,

subsequently elevating HQ. Conversely, the adverse effects of EC

on HQ are principally observed in the Qingshan Lake District and

Honggutan District of central Nanchang, areas characterized by

predominantly artificial surfaces and rapid urban development.

These regions exhibit low vegetative cover, high population

density, and pronounced urban heat island effects, which escalate

local temperatures and detrimentally impact the ecological

environment, thereby diminishing HQ.

Furthermore, EC generally promotes HQ improvements across

the study area, notably in Xiushui, Wuning, Gongqingcheng, and
FIGURE 7

Spatial distribution of HQ geographically weighted regression coefficients in the study area in 2020. In the figure (A) TEP represents temperature;
(B) EC represents potential evapotranspiration; (C) PRE represents average annual precipitation; (D) SLO represents slope; (E) GDP represents the
level of regional economic development.
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Lushan in the north, as well as in Yugan and Duchang near Poyang

Lake. However, detrimental impacts are concentrated in the urban

core of Nanchang, where intense urbanization prevails. Here, dense

infrastructural development reduces soil water permeability and

mitigates evaporation, while the urban heat island phenomenon

intensifies local temperatures, enhancing evaporation and creating a

conflict between EC and local HQ enhancement.

PRE primarily negatively affects HQ enhancement in the study

area, especially in the western regions including Xiushui and Jing’an,

and in the central areas around Poyang Lake Basin such as Duchang,

Gongqingcheng, and Xinjian. The dominant land uses in these

regions—woodlands, grasslands, wetlands, and aquatic

environments—benefit from increased PRE, which supports

vegetative growth and thereby promotes HQ.

SLO impacts on HQ are largely negative, concentrated in

western locales such as Xiushui, Ruichang, De’an, Jing’an, and

Gao’an, and in southern areas including Dongxiang, Linchuan

District, and Fengcheng. The beneficial impacts, however, are

focused around the Poyang Lake Basin in Duchang, Xinjian,

Poyang, and Wannian. As slope increases, the positive influence

on HQ typically diminishes from west to east, potentially due to

encroachment by artificial surfaces which alter the original

vegetation cover and reduce SLO’s beneficial contribution to HQ.

GDP predominantly exerts a negative influence on HQ

improvements in the study area, especially in Anyi, central

Nanchang, and surrounding areas of the Poyang Lake Basin.

Rapid urbanization in these areas leads to dense population

concentrations and expanded artificial land use, resulting in

decreased vegetative cover and HQ degradation. Conversely,
Frontiers in Ecology and Evolution 12
positive GDP impacts on HQ are noted in the western areas of

Xiushui, Wuning, and Jing’an. These regions, primarily forested

and possessing substantial plant cover, demonstrate that economic

growth has not significantly harmed local forest ecosystems.

3.2.2.4 Water yield

Figure 8 delineates the predominantly negative correlation

between TEP and WY across various regions surrounding the

Poyang Lake Basin, including Duchang County, Gongqing City,

and Yugan County. This negative association is largely attributed to

the enhancement of evaporation rates induced by increased TEP,

which consequently diminishes WY. Conversely, a positive

correlation is observed in western regions such as Xiushui County,

where extensive forest lands and high vegetation coverage prevail.

Here, the elevation in TEP augments plant photosynthesis, fostering

plant growth and beneficially impacting WY.

The interaction between EC and WY is primarily adverse, as

improvements in EC tend to reduce the watershed’s capacity to

produce WY, detrimentally affecting the vegetative water retention.

In contrast, PRE exerts a positive influence on WY by enhancing its

production capacity and facilitating the expansion of plant

coverage. The effects of EC and PRE on WY are primarily

observed around Poyang Lake, affecting regions such as Yugan

County, Duchang County, Xinjian County, and Gongqing City. The

variability in the impacts of EC and PRE across different locales can

be attributed to regional distinctions in soil composition and other

environmental conditions.

Furthermore, a positive correlation between SLO and WY is

identified in western counties such as Jing’an, Wuning, and Xiushui.
FIGURE 8

Spatial distribution of geographically weighted regression coefficients of WY in the study area in 2020. In the figure (A) TEP represents air
temperature; (B) EC represents evapotranspiration; (C) SLO represents slope.
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These areas, characterized by higher terrain and steeper slopes, are

predominantly forested. The substantial plant coverage in these regions

mitigates runoff velocity and enhances rainwater infiltration, which

supports the maintenance and improvement of WY.
4 Discussion

4.1 Land cover impact on ES

This study analyzed the spatiotemporal evolution of different ES

in the Nanchang metropolitan area from 2000 to 2020 and explored

the spatial heterogeneity in the influence of climatic, topographic, and

social factors. Findings indicate a divergent trend in ES; CS and HQ

have exhibited a decline, whereas SC and WY have increased. These

trends are significantly shaped by regional variances in natural and

social environments, with a notable dependency on land use

typologies and principal influencing factors (Hossain et al., 2016).

In the western territories of Xiushui, Wuning, Fengxin, and

Jing’an counties, predominately forested areas with extensive

vegetation coverage are associated with higher levels of CS, SC, HQ,

and WY. These conditions contribute to the stabilization of total

primary productivity and ecological equilibrium, enhancing habitats

for fauna and flora and positively impacting ES (Hasan et al., 2020).

Conversely, in regions proximate to Poyang Lake such as

Duchang County, Yugan County, and Gongqing City, the

prevalent wetlands and aquatic bodies are observed to adversely

affect the sustainability of CS and WY. This observation aligns with

recent findings (Deng et al., 2023). While wetlands and water bodies

have a negligible impact on SC, they facilitate HQ improvement due

to their fluid dynamics and high moisture content, which accelerate

EC consumption yet support the viability of adjacent

biological communities.

In the urban cores of Nanchang City and the Xunyang and

Lianxi districts of Jiujiang City, where artificial surfaces

predominate, all indices of ecosystem services are markedly lower.

This decline is closely linked to the accelerated urbanization,

including GDP growth and population density increases, which

collectively exert profound negative impacts on ES. Moreover, the

expansion of artificial landscapes has led to the destruction of local

forests and agricultural lands (Kibria et al., 2022), which are crucial

for sustaining and enhancing ecosystem services.

Finally, regional differences in policies and management

practices related to environmental protection, land use planning,

and ecological compensation can also influence the spatial

heterogeneity of ES. Effective policy support can mitigate or

reverse the negative impacts of human activities, whereas the

absence or inadequacy of such policies can exacerbate these

negative effects.
4.2 Impact of policies

This study elucidates that ESs are shaped by both natural and

anthropogenic factors, necessitating targeted interventions by local

authorities to enhance ES outcomes. In urban and peri-urban areas
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such as Nanchang City, Duchang County, Yugan County, and

Gongqing City, population growth should be strategically

managed to mitigate its impacts. These areas, characterized by

fragmented forests and low vegetation cover due to the expansion

of farmland and artificial surfaces, require policies aimed at

minimizing forest-to-agriculture and urban land conversion.

In contrast, the forest-rich western regions including Xiushui,

Wuning, Fengxin, and Jing’an Counties, should prioritize forest

conservation and enhancement initiatives. These could involve

reforestation, forest management, and the natural conversion of

underperforming forests to bolster land use efficiency and thereby

improve CS and SC (Zhou et al., 2020).

For HQ development, areas around Poyang Lake—Duchang,

Gongqing, Poyang, Yugan, and Xinjian Counties—exhibit higher

HQ and are considered sensitive zones. Protection efforts here

should focus on conserving wetlands and aquatic systems,

managing water quality, and safeguarding local biodiversity,

including the flora and fauna dependent on the lake and its

wetlands. This entails regulating floodwaters from the “Five

Rivers” and the Yangtze River, enhancing biodiversity protection,

and strengthening wetland conservation and restoration practices.

Conversely, in metropolitan regions like Nanchang City,

Fengcheng City, Gao’an City, and Zhangshu City where HQ is

lower, strategies should be implemented to curb the sprawl of

artificial surfaces, decrease forest encroachment, and increase

vegetative cover to create a more balanced ecological environment

conducive to simultaneous economic growth (Wang et al., 2023).

WY is influenced directly by climatic and topographic factors,

with areas like Jing’an, Fengxin, Wuning, and Xiushui Counties

demonstrating superior WY due to their high forest vegetation

coverage and effective hydrological maintenance by the existing

plant life. Enhancing forest protection in these regions will

positively impact WY.

Moreover, future urban ecosystem management should

emphasize the equilibrium between human activities and

vegetative restoration. Implementing region-specific measures can

foster the sustainable development of ES (Zhu et al., 2021),

including the broader ecological context (Kang et al., 2023).
4.3 Research contributions and
potential improvements

The contribution of this study is to refine the analysis of spatial

heterogeneity of ES drivers. Although GDM and GWRmodels have

been used to identify ES drivers and analyze spatial heterogeneity in

existing studies, there are relatively few studies that use the two

together. This study uses this combined approach to not only help

identify the main drivers, but also reveal the changing patterns of

these factors in different geographical regions. Through this refined

spatial analysis method, the study can more accurately reveal the

differences in the effects of different drivers at different spatial scales,

providing a new perspective for understanding the spatial

distribution and driving mechanism of ES.

In addition, the study expands the research framework of regional

ecological management. Through an in-depth analysis of the
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Nanchang metropolitan area, the study not only fills the gap in the

current literature on the refinement of spatial heterogeneity analysis in

specific regions, but also provides valuable experience for ecological

management and sustainable development policies in other similar

regions. The targeted policy recommendations proposed in the study,

based on a refined understanding of the specific conditions of different

regions, will help to more effectively protect ecosystem services while

promoting local economic development. This differentiated and refined

policy recommendation represents a novel, scientific evidence-based

management approach.

However, this study also has the following shortcomings. First, the

study only focused on four ecosystem services, CS, SC, HQ and WY,

and did not fully explore other types of ES. Future research should

cover more types of ES to comprehensively evaluate ecosystem

functions. Second, the driving factors in this study may change over

time, and future research should consider the impact of more dynamic

and comprehensive natural and social factors on ES. In addition, the

interactions between driving factors and their combined impact on ES

were not deeply analyzed in this study, which also provides potential

improvement directions for future research.
5 Conclusions

In this investigation, we delineated the spatiotemporal

distribution characteristics of ES changes within the Nanchang

metropolitan area over the period 2000 to 2020. Employing

geographic detectors and GWR models, we assessed the spatial

heterogeneity of influential factors encompassing climatic,

topographic, and sociodemographic dimensions. Our findings

furnish a scientific foundation for formulating strategies to

enhance ES in this region.

The analysis reveals that concurrent with urbanization and land

use transformations, ES exhibited notable changes. Specifically, SC

and WY demonstrated upward trends, increasing by approximately

2.4754 x 109 tons/ha and 1.6668 x 1010 cubic meters, respectively.

Conversely, CS and HQ declined, with CS decreasing by 0.1385 x

108 tons/ha and HQ by an average of 0.0507 points. Notably, ES

densities were higher in mountainous regions and lower in the

central plains, reflecting the impact of varying natural and social

conditions which contribute to spatial heterogeneity.

Our spatial analysis underscored that the GWR model, as

opposed to OLS, more effectively accommodates the spatial

heterogeneity of data, thereby providing superior explanatory

power. The regression outcomes suggest a robust correlation

between the identified drivers and ES changes, with notable

spatial variations in the correlation strength and characteristics.

Human factors such as POP and GDP predominantly influenced

the variations in CS and HQ, respectively, while climatic and

topographic conditions mainly steered the changes in SC and WY.

This study not only highlights the utility of spatial modeling

techniques in discerning the dominant influences on different ES

but also elucidates the spatial heterogeneity of these influences. Such

insights are invaluable for the sustainable management of ES in

other urban settings. Our findings advocate for an integrated
Frontiers in Ecology and Evolution 14
approach to urban ecosystem management that balances natural

processes and protective measures with strategic human

interventions and vegetation restoration efforts.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

TZ: Conceptualization, Methodology, Writing – original draft,

Writing – review & editing. YH: Project administration, Writing –

original draft, Writing – review & editing. SG: Formal analysis,

Writing – original draft, Writing – review & editing. MZ:

Validation, Writing – original draft, Writing – review & editing.

TL: Conceptualization, Investigation, Writing – original draft,

Writing – review & editing. HH: Supervision, Writing – original

draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by the Heilongjiang Provincial Art and Science

Planning Project (2023B112) and the Heilongjiang Provincial

Natural Science Foundation Project (LH2021E006).
Conflict of interest

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fevo.2024.1470912/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fevo.2024.1470912/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fevo.2024.1470912/full#supplementary-material
https://doi.org/10.3389/fevo.2024.1470912
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Zhang et al. 10.3389/fevo.2024.1470912
References
Ajaz Ahmed, M. A., Abd-Elrahman, A., Escobedo, F. J., Cropper, W. P., Martin, T.
A., and Timilsina, N. (2017). Spatially-explicit modeling of multi-scale drivers of
aboveground forest biomass and water yield in watersheds of the Southeastern United
States. Journal of Environmental Management 199, 158–171. doi: 10.1016/
j.jenvman.2017.05.013

Ali, S., Ran, J., Luan, Y., Khorrami, B., Xiao, Y., and Tangdamrongsub, N. (2024). The
GWR model-based regional downscaling of GRACE/GRACE-FO derived groundwater
storage to investigate local-scale variations in the North China plain. Sci. Total Environ.
908, 168239. doi: 10.1016/j.scitotenv.2023.168239

Allen, R. G., Pruitt, W. O., Raes, D., Smith, M., and Pereira, L. S. (2005). Estimating
evaporation from bare soil and the crop coefficient for the initial period using common
soils information. J. Irrig. Drain. Eng. 131, 14–23. doi: 10.1061/(ASCE)0733-9437
(2005)131:1(14

Antle, J. M., and Diagana, B. (2003). Creating incentives for the adoption of sustainable
agricultural practices in developing countries: the role of soil carbon sequestration. Am. J.
Agric. Econ. 85, 1178–1184. doi: 10.1111/j.0092-5853.2003.00526.x

Arkema, K. K., Verutes, G. M., Wood, S. A., Clarke-Samuels, C., Rosado, S., Canto,
M., et al. (2015). Embedding ecosystem services in coastal planning leads to better
outcomes for people and nature. Proc. Natl. Acad. Sci. United States America 112,
7390–7395. doi: 10.1073/pnas.1406483112

Aryal, K., Maraseni, T., and Apan, A. (2022). How much do we know about trade-
offs in ecosystem services? A systematic review of empirical research observations. Sci.
Total Environ. 806, 151229. doi: 10.1016/j.scitotenv.2021.151229

Bastos, M. I., Roebeling, P. C., Alves, F. L., Villasante, S., and Magalhães Filho, L.
(2023). High risk water pollution hazards affecting Aveiro coastal lagoon (Portugal) – A
habitat risk assessment using InVEST. Ecol. Inf. 76, 102144. doi: 10.1016/
j.ecoinf.2023.102144
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