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Sub-Antarctic islands are expected to show a high degree of endemicity due to

their remoteness. However, biogeographic affinities in the sub-Antarctic remain

poorly understood, especially in the marine realm. Sub-Antarctic islands being at

the crossroads between Antarctic and cold temperate regions, biodiversity

characterization and biogeographic analyses are a priority for monitoring and

rapidly assessing variations associated with environmental changes. One

underexplored sub-Antarctic area is Crozet, a protected archipelago located

halfway between Antarctica and South Africa. In this study, we investigated the

shallow-water Crozet macrofaunal diversity, distribution patterns and

biogeographic affinities based on the examination of fieldwork specimens via a

thorough morphological identification and a genetic characterisation. The

resulting dataset provides an important baseline for further studies and

conservation strategies, compiling the first genetic and taxonomic database for

the Crozet archipelago. In total, 100morphotypes were found, belonging to nine

different phyla, among which arthropods (32), molluscs (18) and echinoderms (17)

were the richest. Forty-seven morphotypes were identified to the species level,

among which 20 were reported in Crozet for the first time. This confirms that

Crozet is a poorly known region, even compared to other sub-Antarctic areas. A

large proportion of species (62%) had circum Southern Ocean or circum sub-

Antarctic distributions. These species were mostly shared with Kerguelen (72%),
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the Magellan Province (64%), and Prince Edward Islands (64%), confirming the

patterns found in macroalgae and specific macrofaunal groups. However, this

large-distribution statement needs to be counterbalanced by the detection

(genetic data) of more restricted distributions than expected in four study

cases (the tanaid Apseudes spectabilis, the nudibranch Doris kerguelenensis,

the polychaete Neanthes kerguelensis and the chiton Hemiarthrum setulosum).

Considering that most morphotypes had no genetic data available from other

regions, the proportion of morphotypes with restricted distribution is likely to

increase alongside future investigations. In addition, we also found a few cases of

unrecognized diversity that might lead to the descriptions of new species, some

likely to be endemic to Crozet (e.g., within the polychaete genus Harmothoe and

the bryozoan genus Antarctothoa). Altogether, this stresses the need to maintain

conservation efforts in Crozet and pursue integrative investigations in order to

highlight and protect its unusual diversity.
KEYWORDS
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Introduction

In the Southern Ocean, the sub-Antarctic region is located

between the subtropical and the Antarctic polar marine fronts,

comprising a series of remote archipelagos and small islands

(De Broyer et al., 2014). Due to the geographic remoteness of sub-

Antarctic islands, a high degree of endemicity can be expected in both

terrestrial and marine taxa (Frenot et al., 2001). Several studies from

the last decades have highlighted contrasting patterns of distribution

in various taxonomic groups, from single island endemicity to species

exhibiting broad distributions (e.g., Poulin et al., 2014; Figuerola et al.,

2017, Figuerola et al., 2018; Féral et al., 2021; Vantomme et al., 2023).

Overall, biodiversity and biogeographic affinities of the different sub-

Antarctic areas remain poorly understood, with a contrast of

knowledge existing among sub-Antarctic islands (Griffiths and

Waller, 2016; Féral et al., 2021). It is thus particularly important to

better characterize their biodiversity and biogeographical affinities to

improve our understanding of marine life dynamics, especially

considering their key location at the crossroads between high

Antarctic and cold temperate areas (Hemmings and Stephens,

2010; De Broyer et al., 2014). It is also central to conservation

considerations, given that high endemicity can mean increased

sensitivity to global change and risk of biodiversity loss (Griffiths,

2010; Park et al., 2014; Jossart et al., 2019; Féral et al., 2021). In

particular, an improved biogeographic baseline would thus detect

distribution shifts that are expected in response to current and future

environmental changes (Saucède et al., 2017; Guillaumot et al., 2018).

In response to these conservation concerns, some sub-Antarctic

islands have already been given the status of Marine Protected

Areas (Crozet MPA, Heard Island and McDonald Islands MPA,

Kerguelen MPA, Prince Edward Islands MPA; Brooks et al., 2020)
02
or have received a significant extension of their marine parks

(e.g., Macquarie Island Marine Park in 2023, parksaustralia.gov.au).

Crozet’s benthic marine biodiversity is notably underexplored.

This five-island archipelago is located in the Indian Ocean sector of

the Southern Ocean (45°48’S–46°26’S; 50°14’E–52°15’E) and is

about 2,300 km away from both Antarctica and South Africa.

Crozet originated from three main cycles of volcanism, among

which the first one initiated nine million years ago (Chevallier and

Nougier, 1981). The archipelago is strongly influenced by the

Antarctic Circumpolar Current (ACC), which is expected to

increase its connectivity with other sub-Antarctic areas (Pollard

et al., 2007; De Broyer et al., 2014). Previous terrestrial studies have

been undertaken on Crozet terrestrial biodiversity (e.g., Frenot

et al., 2001; Convey, 2007; Hullé and Vernon, 2021), however,

marine benthic ecosystems have received far less attention

(Canteras and Arnaud, 1985; Sicinski and Gillet, 2002; Griffiths

and Waller, 2016; Lelièvre et al., 2023). The waters around Crozet

are part of the National Nature Reserve of the French Southern

Territories MPA and recognized as a UNESCOWorld Heritage site

(whc.unesco.org/en/list/1603). Marine coastal areas have also

additionally received an IUCN “enhanced protection” status

(Féral et al., 2021). In this context of conservation initiatives, the

French polar institute project #1044 Proteker was implemented to

monitor nearshore marine benthic communities of the French

Southern Territories (Kerguelen, Saint-Paul & Amsterdam, and

Crozet). The main goal of this ongoing project is to establish a

baseline for monitoring biodiversity dynamics and assess the impact

of climate change on coastal marine ecosystems (Féral et al., 2016).

Since its initiation, samples collected from Crozet during the

Proteker campaigns have been invaluable for the investigation of

biogeographic patterns in selected taxa (e.g., González-Wevar et al.,
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2021; Rosenfeld et al., 2023). At the community level, using

underwater video-imagery, Lelièvre et al. (2023, 2024)

investigated the taxonomic and functional diversities of shallow

benthic communities associated with hard substrates. The authors

highlighted high taxonomic diversity and low functional richness,

evenness, and redundancy. This suggests a potential vulnerability to

current and future environmental changes, which, again, stresses

the need for further investigations based on additional biological

samples (Mason et al., 2005; Lelièvre et al., 2023).

In our study, we investigated the diversity and biogeography of

macrofauna (>1 mm) at two sites (Baie du Marin and Crique du

Sphinx) around Possession island (“Ile de la Possession”, 46°25’S; 51°

45’E), the largest island of the Crozet archipelago. Based on the

examination of specimens collected in a recent fieldwork campaign,

we combined a thorough morphological identification by

taxonomic experts with a genetic characterisation based on the

COI barcode region. The joint use of morphological and genetic

data has been demonstrated to be effective in species identification

of various taxonomic groups (e.g., Gostel and Kress, 2022; Jossart

et al., 2023). In addition, comparing recorded biogeographic

patterns (relying on morphology-based taxonomy) with genetic

data was also important in the revision and clarification of species

distributions (Christiansen et al., 2018; Jossart et al., 2019;

Vantomme et al., 2023). In Lelièvre et al. (2023), Crozet faunal

communities exhibited a high-level diversity, notably in

echinoderms. Regarding its geographic situation and oceanic

features (strong influence by the ACC), we expect benthic marine

communities of Crozet to be composed of both endemic and circum

sub-Antarctic species, with high-level faunal affinities to both

Kerguelen and Prince Edward Islands. In fact, while remoteness

can explain endemicity after rare colonisation and settlement

events, a certain homogenisation can also be expected due to the

role of the ACC in larval or even adult (kelp rafting) transport

(Moore et al., 2018; Fraser et al., 2022). By compiling the first

genetic and taxonomic database including specimen images and

occurrence records for Crozet, this study’s newly generated dataset

provides an important identification tool and baseline for further

studies and conservation purposes.
Materials and methods

Fieldwork

Specimen sampling occurred during November 2021 as part of

the Proteker 9 campaign onboard the R/VMarion Dufresne II. Two

geographically close sites (< 2 km), Baie du Marin and Crique du

Sphinx, were investigated on the east coast of Possession Island (“Ile

de la Possession”, Crozet archipelago). This investigation was part of

an impact study on benthic communities after the recent

installation of the International Monitoring System (IMS)

hydroacoustic station HA04 in the area (Lelièvre et al., 2023).

Biological samples were opportunistically collected by hand

during six dives at depths ranging from 4 to 20 m. Specimens

were then preserved in 96% ethanol for subsequent analyses.
Frontiers in Ecology and Evolution 03
Morphological identification

Each specimen was examined under a stereomicroscope (Leica

LK300 LED), assigned to a morphotype (or putative species) and a

preliminary identification was obtained using available taxonomic

resources (e.g., Féral et al., 2019; Lelièvre et al., 2023). Each

morphotype was a lso photographed us ing the same

stereomicroscope and an Olympus OMD-EM1 camera with a

60 mm macro lens. Preliminary identifications of morphotypes

were then confirmed or refined by taxonomic experts

(Supplementary Material 1). Macro photographs were sent to

taxonomists as well as voucher specimens when required in the

identification process.
Genetic characterization

The barcode region of the cytochrome c oxidase subunit I (COI;

658 base pairs) was obtained for each morphotype (one to twenty

individuals sequenced per morphotype). DNA extractions were

undertaken on a small piece of tissue, following the salting-out

protocol of Sunnucks and Hales (1996). For COI amplification, we

used a PCR mix of 12.5 µL Accustart Toughmix (QuantaBio), 10 µL

ultrapure water, 0.5 µL each primer (10 µM) and 1.5 µL DNA

extract. PCR conditions consisted of 40 cycles for the following

temperature steps: 30 s at 94°C (denaturation), 30 s at 45–49°C

(annealing, see details below) and 45 s at 72°C (elongation). These

cycles were preceded by 3 min at 94°C and followed by 3 min at

72°C. Amplifications occurred using either universal or taxon-

specific primers. Bryozoans, chordates, cnidarians, nemerteans

and sponges were amplified using the universal primer pair “F-

LCO1490 + R-HCO2198” at an annealing temperature of 45°C

(Folmer et al., 1994). Amphipods and pycnogonids were amplified

with the same primers at an annealing temperature of 49°C. Isopods

and tanaids were amplified using the primer pair “F-CrustCOIF +

R-HCO2198” at an annealing temperature of 47°C (Teske et al.,

2006). Echinoderms were amplified using the primer pair “F-

LCOech1aF1+ R-HCO2198” at an annealing temperature of 45°C

(Folmer et al., 1994; Layton et al., 2016). Annelids were amplified

using either the primer pair “F-LCO1490+ R-HCO2198” and the

primer pair “F-polyHCO + R-polyLCO” at an annealing

temperature of 47°C (Carr et al., 2011). Molluscs were amplified

using either the primer pair “F-LCO1490 + R-HCO2198”

(annealing temperature: 45°C) or the primer pair “F-COI-mol &

R-COI-mol” (annealing temperature: 49°C; Owada et al., 2013).

The sequences of each of the aforementioned primer were F-

LCO1490: GGTCAACAAATCATAAAGATATTGG; R-

HCO2198 : TAAACTTCAGGGTGACCAAAAAATCA;

F -C ru s tCO IF : TCAACAAATCAYAAAGAYATTGG ;

F-LCOech1aF1: TTTTTTCTACTAAACACAAGGATATTGG;

F-polyHCO: TAMACTTCWGGGTGACCAAARAATCA;

R-polyLCO: GAYTATWTTCAACAAATCATAAAGATATTGG;

F-COI-mol: TCWACAAATCAYAAAGATATTGG; R-COI-mol:

ACYTCMGGRTGMCCAAAAAATCA. The purification step and

Sanger sequencing were carried out at the sequencing centre of
frontiersin.org
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Azenta/Genewiz Germany. Sequences were edited and checked for

stop codons in Geneious Prime 2023.2.1 (Kearse et al., 2012).

Barcodes were then aligned (Muscle algorithm), compared among

them within classes/orders (e.g., amphipods) and to the ones

available on GenBank and Barcode of Life (BOLD) databases

(Ratnasingham and Hebert, 2007). Combining morphological and

genetic data, a final identification was then determined at the most

accurate taxonomic level possible. In addition to the COI sequences

aforementioned, additional genetic barcodes from non-Crozet areas

were obtained from either scientific publications or public BOLD

records. Combining all the barcodes for each taxon, alignments

were then realized in Geneious Prime 2023.2.1. Templeton Crandall

Singh (TCS) haplotype networks were then constructed in PopART

1.7 (Leigh and Bryant, 2015) and mean pairwise genetic distances

(uncorrected p-distances) were calculated between clades in the

software MEGA X (Kumar et al., 2018). We then used a genetic

distance threshold of 2% (among clades of the haplotype network)

to consider that an initial morphotype represents more than one

putative species. This threshold is based on the most common

interspecific genetic distances observed in the groups of interest

[crustaceans: Vieira et al., 2016, molluscs: Layton et al., 2014,

polychaetes: Carr et al., 2011, sea stars: Ward et al., 2008 and

Moreau et al., 2021)]. Species delimitation methods, such as ASAP

and ABGD, were not used considering their low suitability for

datasets with limited number of sequences (Puillandre et al., 2012,

Puillandre et al., 2021) A public Barcode of Life (BOLD) project

(HAOIV: Shallow benthic communities of Crozet archipelago) was

created on the platform boldsystems.org. Macro pictures were

uploaded for each specimen as well as COI barcodes, when

successfully obtained (Table 1).
Biogeographic and
phylogeographic analyses

The biogeographic distribution of taxa identified up to the species

level was analysed based on the following bioregionalization of the

Southern Ocean: Magellan Province, South Georgia/South Sandwich

Islands, Bouvet (= Atlantic Sector of the Southern Ocean); Prince

Edward Islands (Prince Edward and Marion islands), Crozet,

Kerguelen, Heard Island (= Indian Ocean Sector of the Southern

Ocean); Macquarie/sub-Antarctic New Zealand region (= Pacific

sector of the Southern Ocean); West Antarctica; East Antarctica).

Species occurrence data were either based on: 1) occurrences

mentioned in scientific publications; 2) GBIF occurrences (Global

Biodiversity Information Facility; https://www.gbif.org); 3) additional

unpublished occurrences obtained from direct contacts with

taxonomic experts. If a contradiction arose, occurrences obtained

from direct contacts with taxonomists or dedicated publications

had precedence over GBIF records. COI barcodes were also used to

refine the species distribution of four species (e.g., the expected

presence of Hemiarthrum setulosum P. P. Carpenter, 1876 in

Antarctica was not considered as it appeared that Antarctic

specimens were highly divergent from the ones of Crozet, see

results). Four different distribution patterns were then considered:

1) restricted sub-Antarctic distribution (i.e., recorded in a single
Frontiers in Ecology and Evolution 04
sector of the sub-Antarctic); 2) broad sub-Antarctic distribution

(i.e., recorded in two sectors of the sub-Antarctic); 3) circum sub-

Antarctic (i.e., recorded in three sector of the sub-Antarctic);

4) circum Southern Ocean (recorded both in the Antarctic and in

either two or three sub-Antarctic sectors). Based on identified

species occurrence data, a similarity network was produced using

Gephi 0.10.1 (Bastian et al., 2009). In the network, nodes (circles;

n = 56) represent both geographic regions and species that are

connected by edges (lines; n = 241). The graph type was undirected,

and no edge merging strategy was used. The layout algorithm

“ForceAtlas2” (Jacomy et al., 2014) was then used to spatialize the

network. The following input settings were used: tolerance: 0.05,

approximate repulsion: checked, approximation: 1.2, scaling: 50,

stronger gravity: checked, gravity: 0.01. Considering the low

number of occurrences at Bouvet, this bioregion was not taken

into account in the similarity network analysis.
Results

Overall taxonomic diversity

In total, 1050 specimens representing 100 morphotypes were

collected in the study area (Table 1), and 173 individual genetic

barcodes were obtained from 67 distinct morphotypes, indicating a

barcoding success rate of 67%. The 100 morphotypes belonged to

nine different phyla, among which Arthropoda (32 morphotypes)

was the richest, followed by Mollusca (18), Echinodermata (17),

Annelida (8), Chordata (8), Bryozoa (6), Cnidaria (5), Porifera (4)

and Nemertea (2) (Figure 1). In Arthropoda, the diversity was split

between amphipods (19 morphotypes), isopods (8 morphotypes),

pycnogonids (3 morphotypes) and tanaids (2 morphotypes)

(Figure 1). The phylum Mollusca was composed of gastropods

(13 morphotypes), bivalves (4 morphotypes) and chitons

(1 morphotype) (Figure 1). Within the Echinodermata, asteroids

were the most speciose class (9 morphotypes), followed by

holothuroids (6 morphotypes), echinoids (1 morphotype), and

ophiuroids (1 morphotype) (Figure 1). From the 100 different

morphotypes, 47 were identified to the species level (Table 1)

among which 20 species were reported at Crozet for the first time

(Table 1): three holothuroid species (Cladodactyla crocea var.

croceoides (Vaney, 1908), Echinopsolus splendidus (Gutt, 1990),

Scoliorhapis massini O’Loughlin & VandenSpiegel, 2010); two

polychaete species (Neoleprea streptochaeta (Ehlers, 1897),

Platynereis australis (Schmarda, 1861)); two bryozoan species

(Antarctothoa cf. bougainvillei (d’Orbigny, 1842), Beania

magellanica (Busk, 1852)); two gastropod species (Doris

kerguelenensis (Bergh, 1884); Fusinella jucunda (Thiele, 1912));

one chiton species (Hemiarthrum setulosum); ten amphipod

species (Acontiostoma marionis Stebbing, 1888, Atyloella cf.

magellanica (Stebbing, 1888), Haplocheira barbimana (Thomson,

1879), Iphimediella paracuticoxa Andres, 1988, Jassa cf. alonsoae

Conlan, 1990, Jassa cf. hartmannae Conlan, 1990, Jassa cf. justi

Conlan, 1990, Oradarea cf. unidentata Thurston, 1974, Pagetina

monodi (Nicholls, 1938), Podocerus capillimanus Nicholls, 1938);

and one isopod species (Cryosignum lunatum (Hale, 1937)).
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TABLE 1 List of the 100 taxa found in the studied area, ranked by alphabetical order of phyla (then by class or order).

Taxa Code BOLD Distribution

Annelida – Clitellata

Piscicolidae sp. Johnston, 1865 ANE_Q HAOIV064-24 * –

Annelida – Polychaeta

Eulalia sp. Savigny, 1822 ANE_R HAOIV065-24 * –

Harmothoe spp. Kinberg, 1856 ANE_B-X-Y-Z HAOIV029-24 * –

Neanthes kerguelensis (McIntosh, 1885) 1 - ANE_D HAOIV033-24 * Circum SUB

Neoleprea streptochaeta (Ehlers, 1897) # 2 - ANE_A HAOIV028-24 * Circum SO

Platynereis australis (Schmarda, 1861) # 3 - ANE_E HAOIV046-24 * Circum SUB

Thelepus spectabilis Ehlers, 1897 4 - ANE_O HAOIV174-24 Circum SO

Serpulidae sp. Rafinesque, 1815 UND_A HAOIV175-24 –

Arthropoda – Amphipoda

Acontiostoma marionis Stebbing, 1888 # 5 - AMP_V HAOIV176-24 Circum SO

Atyloella cf. magellanica (Stebbing, 1888) # 6 - AMP_27 HAOIV002-24 * Circum SO

Corophioidea sp. Leach, 1814 AMP_Q HAOIV024-24 * –

Haplocheira barbimana (Thomson, 1879) # 7 - AMP_G HAOIV011-24 * Circum SO

Haplocheira sp. Haswell, 1879 AMP_K HAOIV023-24 * –

Iphimediella paracuticoxa Andres, 1988 # 8 - AMP_21 HAOIV177-24 HANT+Rest.SUB

Ischyrocerus sp. Krøyer, 1838 AMP_H HAOIV178-24 –

Jassa cf. alonsoae Conlan, 1990 # 9 - AMP_ZZ HAOIV179-24 Circum SUB

Jassa cf. hartmannae Conlan, 1990 # 10 - AMP_A HAOIV004-24 * Broad SUB

Jassa cf. justi Conlan, 1990 # 11 - AMP_E HAOIV180-24 Circum SUB

Oedicerotidae sp. Lilljeborg, 1865 AMP_P HAOIV181-24 –

Oradarea cf. unidentata Thurston, 1974 # 12 - AMP_B HAOIV007-24 * Circum SO

Pagetina monodi (Nicholls, 1938) # 13 - AMP_12 HAOIV182-24 Broad SUB

Paramoera fissicauda (Dana, 1852) 14 - AMP_X HAOIV025-24 * Circum SO

Parawaldeckia kidderi (S.I. Smith, 1876) 15 - AMP_18 HAOIV001-24 * Circum SO

Podocerus capillimanus Nicholls, 1938 # 16 - AMP_I HAOIV012-24 * Circum SO

Proboloides sp. Della Valle, 1893 AMP_ZF HAOIV183-24 –

Prostebbingia sp. Schellenberg, 1926 AMP_J HAOIV013-24 * –

Tryphosella sp. Bonnier, 1893 AMP_ZC HAOIV027-24 * –

Arthropoda – Isopoda

Cassidinopsis emarginata (Guérin-Méneville, 1843) 17 - ISO_C HAOIV142-24 * Circum SUB

Cryosignum lunatum (Hale, 1937) # 18 - ISO_8 HAOIV137-24 * Circum SO

Iathrippa sp. Bovallius, 1886 ISO_G HAOIV147-24 * –

Limnoriidea sp. Brandt & Poore in Poore, 2002 ISO_I HAOIV149-24 * –

Septemserolis septemcarinata (Miers, 1875) 19 - ISO_J HAOIV185-24 Circum SO

Sphaeromatidae sp. 1 Latreille, 1825 ISO_A HAOIV184-24 –

Sphaeromatidae sp. 2 Latreille, 1825 ISO_D HAOIV145-24 * –

Spinoserolis latifrons (White, 1847) 20 - ISO_B HAOIV139-24 * Circum SO

(Continued)
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TABLE 1 Continued

Taxa Code BOLD Distribution

Arthropoda – Pycnogonida

Endeis viridis Pushkin, 1976 21 - PYC_B HAOIV166-24 * Rest. SUB

Nymphon cf. brevicaudatum Miers, 1875 22 - PYC_A HAOIV165-24 * Circum SO

Tanystylum neorhetum Marcus, 1940 23 - PYC_D HAOIV186-24 Circum SO

Arthropoda – Tanaidacea

Apseudes spectabilis Studer, 1884 24 - TAN_2 HAOIV167-24 * Circum SUB

Pancoloides litoralis (Vanhöffen, 1914) 25 - TAN_A HAOIV168-24 * Circum SO

Bryozoa – Gymnolaemata

Antarctothoa cf. bougainvillei (d’Orbigny, 1842) # 26 - BRY_F HAOIV187-24 Circum SO

Antarctothoa sp. Moyano, 1987 BRY_B HAOIV188-24 –

Beania magellanica (Busk, 1852) # 27 - BRY_E HAOIV189-24 Broad SUB

Chaperiopsis sp. Uttley, 1949 BRY_D HAOIV190-24 –

Fenestrulina sp. 1 Jullien, 1888 BRY_1 HAOIV104-24* –

Fenestrulina sp. 2 Jullien, 1888 BRY_C HAOIV191-24 –

Chordata – Actinopterygii

Gobionotothen marionensis (Günther, 1880) 28 - VER_B HAOIV173-24 * Broad SUB

Harpagifer sp. Richardson, 1844 VER_A HAOIV192-24 –

Chordata – Ascidiacea

Ascidiacea sp. 1 Blainville, 1824 TUN_B HAOIV193-24 –

Ascidiacea sp. 2 Blainville, 1824 TUN_D HAOIV194-24 –

Polyclinidae sp. 1 Milne Edwards, 1841 TUN_A HAOIV195-24 –

Polyclinidae sp. 2 Milne Edwards, 1841 TUN_C HAOIV196-24 –

Polyclinidae sp. 3 Milne Edwards, 1841 TUN_E HAOIV171-24 * –

Sycozoa sp. Lesson, 1832 TUN_F HAOIV197-24 –

Cnidaria

Actiniaria sp. 1 Hertwig, 1882 CNI_B HAOIV198-24 –

Actiniaria sp. 2 Hertwig, 1882 CNI_E HAOIV115-24 * –

Alcyoniidae sp. Lamouroux, 1812 CNI_C HAOIV112-24 * –

Staurocladia sp. Hartlaub, 1917 CNI_A HAOIV111-24 * –

Tubulariidae sp. Goldfuss, 1818 CNI_D HAOIV113-24 * –

Echinodermata – Asteroidea

Anasterias rupicola (Verrill, 1876) 29 - AST_K HAOIV098-24 * Broad SUB

Asteriidae sp. Gray, 1840 AST_H HAOIV090-24 * –

Diplasterias meridionalis (Perrier, 1875) 30 - AST_G HAOIV088-24 * Broad SUB

Glabraster antarctica (E. A. Smith, 1876) 31 - AST_C HAOIV199-24 Circum SO

Henricia obesa (Sladen, 1889) 32 - AST_D HAOIV084-24 * Circum SO

Henricia cf. spinulifera (E. A. Smith, 1876) 33 - AST_1 HAOIV078-24 * Rest. SUB

Leptychaster kerguelenensis E. A. Smith, 1876 34 - AST_J HAOIV095-24 * Broad SUB

Pteraster affinis Smith, 1876 35 - AST_F HAOIV087-24 * Circum SO

(Continued)
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TABLE 1 Continued

Taxa Code BOLD Distribution

Echinodermata – Asteroidea

Smilasterias triremis (Sladen, 1889) 36 - AST_A HAOIV081-24 * Circum SO

Echinodermata – Echinoidea

Pseudechinus sp. Mortensen, 1903 ECH_A HAOIV117-24 * –

Echinodermata – Holothuroidea

Cladodactyla crocea var. croceoides (Vaney, 1908) # 37 - HOL_A HAOIV129-24 * Broad SUB

Cucumariidae sp. Ludwig, 1894 HOL_C HAOIV134-24 * –

Echinopsolus splendidus (Gutt, 1990) 38 - HOL_B HAOIV130-24 * HANT+Rest.SUB

Pentactella laevigata Verrill, 1876 39 - HOL_E HAOIV135-24 * Rest. SUB

Pentactella sp. Verrill, 1876 HOL_F HAOIV136-24 * –

Scoliorhapis massini O’Loughlin & VandenSpiegel,
2010 #

40 - UND_23 HAOIV172-24 * Broad SUB

Echinodermata – Ophiuroidea

Ophiosabine vivipara (Ljungman, 1871) 41 - OPH_A HAOIV158-24 * Broad SUB

Mollusca – Bivalvia

Bivalvia sp. Linnaeus, 1758 BIV_D HAOIV200-24 –

Gaimardia sp. A. Gould, 1852 BIV_B HAOIV201-24 –

Imparidentia sp. Bieler, P. M. Mikkelsen & Giribet, 2014 BIV_A HAOIV202-24 –

Lissarca sp. E. A. Smith, 1877 BIV_E HAOIV103-24 * –

Mollusca – Gastropoda

Aeolidiidae sp. Gray, 1827 NUD_A HAOIV153-24 * –

Chlanidota sp. E. von Martens, 1878 GAS_C HAOIV120-24 * –

Doris kerguelenensis (Bergh, 1884) # 42 - NUD_B HAOIV154-24 * Broad SUB

Eatoniella sp. Dall, 1876 GAS_I HAOIV124-24 * –

Falsimohnia sp. A. W. B. Powell, 1951 GAS_L HAOIV128-24 * –

Fusinella jucunda (Thiele, 1912) # 43 - GAS_12 HAOIV118-24 * Rest. SUB

Laevilacunaria pumilio (E. A. Smith, 1877) 44 - GAS_G HAOIV122-24 * Rest. SUB

Margarella sp. Thiele, 1893 GAS_D HAOIV203-24 –

Marseniopsis sp. Bergh, 1886 GAS_J HAOIV126-24 * –

Nacella delesserti (R. A. Philippi, 1849) 45 - GAS_A HAOIV204-24 Rest. SUB

Nudibranchia sp. Cuvier, 1817 NUD_C HAOIV155-24 * –

Pellilitorina setosa (E. A. Smith, 1875) 46 - GAS_H HAOIV123-24 * Circum SO

Xanthodaphne sp. A. W. B. Powell, 1942 GAS_M HAOIV205-24 –

Mollusca – Polyplacophora

Hemiarthrum setulosum P. P. Carpenter, 1876 # 47 - CHI_A HAOIV108-24 * Circum SUB

Nemertea – Hoplonemertea

Antarctonemertes sp. Friedrich, 1955 UND_C HAOIV206-24 –

Monostilifera sp. Brinkmann, 1917 NEM_U HAOIV150-24 * –

(Continued)
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Biogeographic and
phylogeographic patterns

Out of the 47 taxa identified to the species level, 35 were

successfully barcoded in our study. Previous reference databases

with COI sequence data were available for only 14 species (Miya

et al., 2016; Moreau et al., 2021; Sands et al., 2021). The four

following phylogeographic patterns were observed (Figure 2): (1) a

circum Southern Ocean distribution such as in the sea stars

Pteraster affinis Smith, 1876 and Smilasterias triremis (Sladen,

1889), and the pycnogonid Nymphon brevicaudatum Miers, 1875;

(2) a circum sub-Antarctic distribution such as in the amphipod

Parawaldeckia kidderi (S.I. Smith, 1876) and the brittle star
Frontiers in Ecology and Evolution 08
Ophiosabine vivipara (Ljungman, 1871); (3) a broad sub-

Antarctic distribution such as for the fish species Gobionotothen

marionensis (Günther, 1880), and the sea stars Anasterias rupicola

(Verrill, 1876) and Diplasterias meridionalis (Perrier, 1875); and

(4) a restricted sub-Antarctic distribution such as in Henricia cf.

spinulifera (E. A. Smith, 1876).

Based on COI data, some unrecognized species diversity was

found in six taxa (genetic distance among clades > 2%, cf. Materials

and Methods; Figure 3; Supplementary Material 2). In the chiton

Hemiarthrum setulosum P. P. Carpenter, 1876, specimens showed

an important genetic distance from sequences known from the

Antarctic Peninsula (11.19%). Analysed specimens of the

nudibranch Doris kerguelenensis are found within a clade with
TABLE 1 Continued

Taxa Code BOLD Distribution

Porifera

Hemigellius sp. Burton, 1932 POR_C HAOIV162-24 * –

Chalinidae sp. Gray, 1867 POR_A HAOIV207-24 –

Myxillidae sp. Dendy, 1922 POR_B HAOIV208-24 –

Rossella sp. Carter, 1872 POR_D HAOIV209-24 –
# after the taxon name indicates a species reported for the first time in Crozet by the current study. BOLD: Public accession number of one specimen from each species, * indicates that a genetic
barcode is available. Distribution: Circum SO (circum Southern Ocean, presence in both Antarctica and the sub-Antarctic), Circum SUB (circum sub-Antarctic, presence in three sub-Antarctic
sectors), Broad SUB (broad sub-Antarctic, presence in two sub-Antarctic sectors), Rest. SUB (restricted sub-Antarctic, presence in a single sub-Antarctic sector), HANT + Rest. SUB (presence in
the high Antarctic and in a single sub-Antarctic sector). Numbers prior to code of taxa identified to the species levels correspond to the unique numbers reported in Figure 4.
FIGURE 1

Overall taxonomic diversity for the 100 morphotypes found in the current Crozet investigation. Centre chart depicts phyla, top-left chart depicts
arthropod orders (AMP, Amphipoda; ISO, Isopoda; TAN, Tanaidacea; PAN, Pantopoda), top-right chart depicts echinoderm classes (AST, Asteroidea;
ECHI, Echinoidea; HOL, Holothuroidea; OPH, Ophiuroidea) and bottom chart depicts mollusc classes (BIV, Bivalvia; GAS, Gastropoda; POL,
Polyplacophora). Numbers in each slice indicate the number of morphotypes for the specific group.
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specimens from South Georgia (genetic distance of 2.82% with the

closest related clade; Figure 3). In the tanaid Apseudes spectabilis

Studer, 1884, the single Crozet specimen showed a p-distance of

2.32% with a specimen from Kerguelen. For the polychaete

Neanthes kerguelensis (McIntosh, 1885), Crozet specimens

clustered with specimens from South Georgia and Kerguelen and

are well-differentiated from two distinct Antarctic groups (3.93% et

4.82%, respectively; Figure 3). In addition, potential species

complexes were found in the polychaete Harmothoe Kinberg,

1856 and the pycnogonid Nymphon brev i caudatum

(Supplementary Material 2). Finally, while the level of genetic

divergence was lower than the defined threshold (1.65%), the

Crozet specimens of the sea star Leptychaster kerguelenensis

interestingly clustered into a clade sharing no haplotype with

other sub-Antarctic and Antarctic specimens.

After updating distribution information for four species based

on available genetic barcodes (cf. results above), we found that

nearly half of the 47 morphotypes identified to the species level were

reported to have a circum Southern Ocean distribution (47%), 15%

to have a circum sub-Antarctic distribution, 21% to have a broad

sub-Antarctic distribution, and 13% to have a distribution restricted

to one sector of the Southern Ocean (Table 1; Supplementary

Material 3). Two species (the holothurian Echinopsolus splendidus

(Gutt, 1990) and the amphipod Iphimediella paracuticoxa Andres,

1988) also showed a peculiar distribution across the polar front,

being present in the high Antarctic and a single sub-Antarctic sector

(4%). As highlighted in the similarity network (Figure 4), 34 of these
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47 taxa were also found to occur in Kerguelen, 30 in the Magellan

Province, 30 in Prince Edward (Marion) Islands, 25 in Macquarie/

sub-Antarctic New Zealand region, 22 in South Georgia/South

Sandwich Islands, 23 in West Antarctica, 16 in Heard Island, and

13 in East Antarctica. The faunal similarity with Kerguelen was

notably marked in most echinoderms (10/13), molluscs (4/6),

arthropods (14/21) and in all annelids (4/4) (Supplementary

Material 3). This faunal similarity pattern was also observed when

comparing with Prince Edwards Islands and the Magellan province

(Figure 4; Supplementary Material 3). The similarity of Crozet with

Macquarie and sub-Antarctic New Zealand was associated to

different shared taxa: it was very high in amphipods (11/12) and

in arthropods in general (16/21), but far less marked in

echinoderms (5/13) and molluscs (1/6) (Supplementary Material 3).
Discussion

High levels of overlooked diversity

The current study has highlighted the presence of one hundred

macrofaunal species in the shallow waters of Crozet. Among these 100

species, we reported 20 species for the first time in Crozet. In addition,

17 taxa identified to the family level (2), genus level (5) or species level

(10) were already inventoried by Lelièvre et al. (2023), based on

imagery transects of the same area. This included two annelids:

Serpulidae Rafinesque, 1815 and Thelepus spectabilis Ehlers, 1897;
FIGURE 2

Haplotype networks illustrating the most common biogeographic and phylogeographic patterns. Sizes of imbricated circles close to each network
denote the number of specimens exhibiting the haplotype (outer circle: 10 specimens, inner circle: 1 specimen). All the Crozet sequences are from
the current study. Non-Crozet sequences are from Miya et al., 2016 (Gobionotothen marionensis), Moreau et al., 2021 (Henricia cf. spinulifera,
Smilasterias triremis) and Sands et al., 2021 (Ophiosabine vivipara).
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the isopod Spinoserolis latifrons (White, 1847); six sea stars:Anasterias

rupicola, Diplasterias meridionalis, Glabraster antarctica (E. A. Smith,

1876), Henricia sp. Gray, 1840, Leptychaster kerguelenensis E. A.

Smith, 1876 and Smilasterias triremis; the sea urchin Pseudechinus

sp. Mortensen, 1903, two holothuroids: Echinopsolus splendidus (Gutt,

1990) and Pentactella sp. Verrill, 1876; the brittle star Ophiosabine

vivipara; the bivalve Gaimardia sp. Gould, 1852; the nudibranch

Aeolidiidae sp. Gray, 1827; the gastropods Margarella sp. Thiele,

1893 and Nacella delesserti; and the sponge Hemigellius sp. Burton,

1932. The 100 taxa belonged to nine different phyla, with 75%

belonging to either arthropods (32 species), molluscs (18),

echinoderms (17) or annelids (8; Figure 1). At lower taxonomic

levels, amphipods and gastropods were particularly represented

(31% of the species; Figure 1). The high-level species richness found

in echinoderms is similar to the value previously reported by Lelièvre

et al. (2023) (17 versus 14 species). However, our results contrast with

the former study regarding the diversity of amphipods (19 versus 0)

and gastropods (13 versus 3 species). Such contrast among sampling

and imagery, are related to the higher detection of smaller specimens

in physical inventory, which is not surprising and already highlighted

in other studies (e.g., Hanafi-Portier et al., 2021).

Interestingly, several taxa found during our investigation might

be species that are new to science. First, some specimens could not

be assigned to known species by taxonomic experts based on

morphology. This was notably the case in amphipods

(Prostebbingia sp. Schellenberg, 1926), bryozoans (Antarctothoa
Frontiers in Ecology and Evolution 10
sp. Moyano, 1987, Fenestrulina sp. Jullien, 1888) and echinoids

(Pseudechinus sp). Second, the genetic analysis revealed an

unexpected diversity in some taxa. This included species that

exhibited more restricted distribution than initially expected (see

details below) as well as taxa for which we found more putative

species than formerly inventoried in Crozet. For instance, three

species of the polychaete genus Harmothoe were previously

reported around Crozet (Harmothoe crosetensis (McIntosh, 1885),

Harmothoe magellanica (McIntosh, 1885), and Harmothoe spinosa

Kinberg, 1856). However, our genetic analyses indicated that none

of the studied specimens belong to either Harmothoe crosetensis or

Harmothoe magellanica (based on specimens from Cowart et al.,

2022) alongside a pattern of species complex (Supplementary

Material 2). The exact number of species within this complex

remains to be determined, but it is likely that more species than

initially expected occur in Crozet. Altogether, our results have

significant taxonomic implications for our knowledge of the

diversity of various taxa, and definitively call for additional

investigations, which are out of the scope of the current study.
Biogeography of Crozet

Among the 47 taxa identified to species level, we found that

nearly half of the species (47%) were reported to have a circum

Southern Ocean distribution. The rest had a circum sub-Antarctic
FIGURE 3

Haplotype networks illustrating three cases of unrecognized species diversity. Sizes of imbricated circles close to each network denote the number
of specimens exhibiting the haplotype (outer circle: 10 specimens, inner circle: 1 specimen). All the Crozet sequences are from the current study.
Non-Crozet sequences are from Maroni et al., 2022 (Doris kerguelenensis), Leiva et al. (2022) (Neanthes kerguelensis), Irisarri et al. (2014) and
Jossart et al. (2023) (Hemiarthrum setulosum).
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(15%), broad sub-Antarctic (21%), restricted sub-Antarctic (13%)

distributions or a peculiar distribution across the polar front (4%,

see results). These 47 species were mostly found in three other

bioregions: Kerguelen (72%), the Magellan Province (64%), and

Prince Edward Islands (64%), and notably associated with high-

level sharing of echinoderms (9 to 10 species shared). Such

biogeographic affinity of Crozet with other sub-Antarctic areas

has been highlighted from historical and recent studies (e.g.,

Hedgepth, 1969; Griffiths et al., 2009). More specifically, the high

affinity with Kerguelen was recently highlighted for marine

macroalgae (Féral et al., 2021) while not found for deeper water

polychaetes (Sicinski and Gillet, 2002). The high-level similarity

with Prince Edward Islands was already found in sea stars at both

species and genus levels (Moreau et al., 2017). Interestingly, some

species are also reported a few latitudinal degrees above the

subtropical front, and therefore outside the Southern Ocean

(Supplementary Material 3). For example, several species occur in

Tristan da Cunha archipelago (37°S; e.g., the pycnogonid

Tanysty lum neorhetum Marcus , 1940; the amphipod

Parawaldeckia kidderi) or around Australia and New Zealand

(e.g., the polychaete Platynereis australis, the amphipod Jassa cf.
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justi) (Conlan, 1990; Hutchings and Reid, 1991). Some other species

are also expected to occur in both hemispheres such as the sea star

Pteraster affinis (confirmed by genetic data) or the tanaid Apseudes

spectabilis (Larsen and Shimomura, 2006; Jossart et al., 2021).

Overall, the investigated species therefore include a high

proportion of widely distributed species, for which the known

biogeographic distribution was confirmed by our genetic results

for eight species in the current study (the sea stars A. rupicola, D.

meridionalis, P. affinis and S. triremis, the pycnogonid N.

brevicaudatum, the amphipod P. kidderi, the brittle star O.

vivipara, and the fish G. marionensis). In contrast, it is very likely

that more species with restricted distribution will be found as

additional specimens and genetic data are obtained. This situation

is illustrated in the present study by four study cases. The tanaid

Apseudes spectabilis, the nudibranch Doris kerguelenensis, the

polychaete Neanthes kerguelensis, and the chiton Hemiarthrum

setulosum showed restricted distributions. The tanaid A.

spectabilis, while expected to have a circum sub-Antarctic

distribution (Schmidt and Brandt, 2001), also showed a

significant genetic divergence (2.5%) between specimens from

Crozet and those from Kerguelen. The nudibranch D.
FIGURE 4

Similarity network produced with Gephi 0.10.1. Bioregions (except Crozet in orange) are represented by pale-yellow circles (CRO, Crozet; EANT, East
Antarctica; HEA, Heard Island; KER, Kerguelen; MAG, Magellan Province; MAQ-NZ, Macquarie/sub-Antarctic New Zealand region; PED-MAR, Prince
Edward (Marion) Islands; SG-SG, South Georgia/South Sandwich Islands; WANT, West Antarctica). The size of each circle is proportional to the total
number of species shared by this bioregion with Crozet (indicated under the bioregion acronym). The smaller coloured circles indicate the 47 taxa
identified up to the species level: their colours denoting their phyla (black: Chordata; blue: Mollusca; green: Arthropoda; purple: Bryozoa; red:
Annelida; yellow: Echinodermata), their sizes denoting the number of bioregions where the species is found; their unique numbers indicating the
species referenced in Table 1 (e.g., “45” refers to the gastropod Nacella delesserti (R. A. Philippi, 1849) that occurs in two bioregions).
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kerguelenensis was shown to be composed of 60 putative species

exhibiting contrasting distribution ranges (Maroni et al., 2022;

Maroni and Wilson, 2022). The Crozet specimen belonged to a

clade that might be distributed in two sub-Antarctic sectors

(Atlantic and Indian oceans; Figure 3). The Crozet specimen of

polychaete N. kerguelensis belongs to a sub-Antarctic clade and our

results are in line with Leiva et al. (2022), highlighting an important

divergence from an Antarctic clade (Figure 3). Finally, the chiton H.

setulosum, the single species of the genus Hemiarthrum, was

expected to have a circum Southern Ocean distribution (type

locality: Kerguelen). Present genetic results indicate a high genetic

distance between the specimens from Crozet and those from

Antarctica (11.19%; Irisarri et al., 2014; Jossart et al., 2023;

Figure 3). From now, it would be relevant to further explore

whether this species is largely distributed in the sub-Antarctic,

notably in the Macquarie-New Zealand region where another

Hemiarthrum species was previously recognized (H.

hamiltonorum Iredale & Hull, 1932; Sirenko, 2006).
Conclusions and perspectives

Our study shows the importance of integrative inventories to fill

the gap of diversity knowledge existing in remote ecosystems that are

facing important environmental changes. We found one hundred

taxa, amongst which 20 were reported for the first time in the Crozet

archipelago. This emphasizes the fact that shallow coastal waters

around Crozet are an under-investigated area, even compared to

most other sub-Antarctic areas. Regarding biogeographic patterns, a

greater proportion of broadly distributed species was found but this

statement needs to be counterbalanced by the detection (based on

genetic data) of more restricted distributions than expected for

several species. It is likely that future sampling will increase the

proportion of species with restricted distribution. We also found a

few cases of unrecognized diversity that might lead to the future

descriptions of new species, some likely to have a restricted

distribution or even be endemic to Crozet. Combined with the high

diversity observed, this stresses the need to protect the biologically

unusual Crozet archipelago. Additional sampling and barcoding

efforts are necessary to better unravel marine faunal diversity and

affinities with other sub-Antarctic islands and the overall Southern

Ocean in the future. While this was not possible in the current study

(due to the limited data available), bathymetry should notably be

taken into account in such further investigations. In fact, for several

taxonomic groups, species initially reported to occur over broad

depth ranges has been showed to rather be distinct species with more

restricted depth ranges (Barnes and Kuklinski, 2010; Neal et al., 2018;

Moreau et al., 2019). Finally, another perspective includes the sharing

of our data for conservation purposes. While the publicly available

data will benefit to large scale projects related to conservation (genetic

or occurrence data), they will also be directly shared with nature

reserve managers of the French Southern Territories. In addition, the

creation of a field guide of the most common species investigated is

an ongoing work that would help in the monitoring of this area in

the future.
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