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Introduction: Predictive models based on environmental proxy data are being

used to predict biodiversity on large and even global scales. Yet, some of the

underlying assumptions about the relationship between proxy variables and

predictions require investigations and testing the consequences of using

model alternatives, data sources, variables choices, and scales, extent, and

overlap among the predictions. Mozambican coral reefs provide a good case

study to test these assumptions given the paucity of field data, its long coastline,

and transitions from tropical to temperate environments.

Methods: Three modelling formulations and 5 specific models were made using

satellite and shipboard measurements and extensive fish and corals field data to test

their performance in predicting numbers of fish species and coral taxa from field

data. Model predictions were mapped for the 1180 ~6.25 km2 Mozambican coral

reef cells. Predictions were made and mapped 1) based on ~1000 field sites in the

Western Indian Ocean (WIO) faunal province model, 2) using environmental variable

selected in the WIO model (WIOMOD) but trained only with Mozambican field data

(<113 sites), and 3) using onlyMozambican environmental and field data and standard

variable redundancy and selection procedures.

Results and discussion: Training and testing cross validation of models indicated

modest predictive ability (R2~0.42-0.56%) and reasonable transferability.

Consequently, there was unexplained variation likely due to small-scale

environmental variability finer than the mapped cell scale. Differences between

model predictions were caused by different variable rankings and response

relationship. For example, the Mozambique-only model predicted more fish

but fewer coral taxa, a larger role of water quality and sediments, habitats, and

temperature variation, and a lesser role of human influence than the WIOMOD.

Therefore, differences between models indicate that large scale models (i.e.

provincial or global) can contribute to understanding gross patterns but miss

important local environmental and human drivers in transitional environments.

Nevertheless, 79% of the fish and 88% of coral taxa cell-level predictions of

taxonomic diversity had standardized coefficients of variations of <10%.
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1 Introduction

Developments in environmental data availability, predictive

modelling, and subsequent increases in spatial resolution provide

emerging analytical technologies to evaluate and predict

biodiversity (Araújo and New, 2007; Kuhn and Johnson, 2013;

Yeager et al., 2017). In the absence of spatially complete field data,

these tools can provide key information to make predictions for

spatial planning (Pilowsky et al., 2022). Yet, comparisons of models

are needed to consider the sources of variability among modelling

platforms, data sources and density, and choices of variables that

influence the scales and extent of the predictions. Comparing model

options and performances stimulates several questions for

understanding the consequences of model predictions. These

comparisons are necessary as models influence important

decisions, such as the location of managed and protected areas

and predictions with changes in human pressure and climate

(Wiens et al., 2009; Pressey et al., 2021). In many locations, the

ability to make models with accurate predictions is limited,

particularly in poor countries with limited data and analytic

capacity. An important question therefore is how best to address

the performance of spatial modelling predictions in these resource

limited environments.

The coast of Mozambique is classified biogeographically as

three separate geographic units associated with three ecoregions

(Figure 1; Supplementary Table S1). These are the East African

Coral Coast in the north, the Bight of Sofala/Swamp Coast in the

middle, and the Delagoa ecoregion in the south. Mapping of coral

reefs indicates a complex of island structures in northern

Mozambique where many reefs are located around island edges of

the Quirimbas Archipelago seascapes in the Cabo Delgado Province

and fringing the coast or around the islands of the Primeiras and

Segundas Archipelago in the Nampula Province (Burke et al., 2011).

Around 80% of the coral reefs are in the north and missing south of

Primeiras and Segundas Archipelago until the Delagoa region

where there are scattered reefs on islands and patch reefs along

the coastline south until the South African border. Published

biodiversity distributions of the Mozambican coastline have used

species distribution presence/absence interpolation methods to

develop coarse scale maps (Selig et al., 2014; Jenkins and Van

Houtan, 2016; Bullock et al., 2021). These inferential methods and

associated maps produce coarse species and biodiversity

distributions predictions. This makes it difficult to differentiate

patterns of biodiversity on the finer scales required for protected

areas and conservation planning at the national scale.

Mozambique provokes some key questions concerning the

modelling of biodiversity. Specifically, if empirical environment-

biodiversity proxy models are transferable to predict biodiversity

beyond the conditions for which they were originally created

(Wenger and Olden, 2012). For example, interpolations and

transferability have been the focus of niche models’ predictions

and recommendations under the influences of climate change

(Wiens et al., 2009; Kujala et al., 2013; Pinsky et al., 2020; Couce

et al., 2023). However, there are other more technical questions such

as if the density of data is sufficient to make predictions at larger

scales (Kusumoto et al., 2020; Dornelas et al., 2023). There are
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clearly tradeoffs in the resolution and accuracy of models as they

change from local to global scales and vice versa, with consequences

for conservation planning (Araújo et al., 2005; Barbosa et al., 2010;

Van Wilgenburg et al., 2024). There is also the related question of

transferability of model outputs or the performance of predictive

models when large models are used in nearby locations where data

are sparse (Boser, 2024). Differences among model predictions are

expected to be most acute in these types of transitional

environments and national border regions (Hughes et al., 2021).

Finally, do standard variable selection mechanisms and machine

learning algorithms have the capacity to predict biodiversity beyond

the training and testing of the data sources and what level of

variation or uncertainty occurs when transferred. Given the

reality of limited information and tradeoffs, these questions are

best addressed prior to the decision-making process to establish

some levels of confidence around predictions. To address these

questions in the Mozambique context, we examined three

environment-biodiversity model decisions that are commonly

made by spatial modelers and ask how confident we can be about

the spatial predictions.

The specific goal of this study was to consider the consequences

of common modeling choices when proposing key marine

nearshore biodiversity areas for the national planning of

Mozambican coral reefs. In Mozambique, the locations of high

coral reef diversity areas are largely unknown and yet they are a

major focus of biodiversity planning. To assist this process, we

created and compared several key variations of predictive models of

numbers of fish and coral taxa to better understand the

consequences of modelling choices when predicting high

biodiversity locations. This was done in the context of a larger

Western Indian Ocean (WIO) faunal province model (WIOMOD)

created from a larger environmental and field survey database of

which Mozambique data was a small contribution (McClanahan

et al., 2024a). The concern or hypothesis was that the larger

provincial model would exhibit a bias favoring predictions for the

southern equatorial coral reefs of the WIO where most of the data

were collected. Therefore, WIOMOD might poorly predict the

geographic changes in environmental conditions that exist along

this ca. 2700 km national Mozambican coastline (Rodrigues et al.,

2000). Therefore, we tested the hypotheses that large geographic

models fail to adequately represent data-poor transitional tropical

to temperate environments as potentially exemplified by our study

of Mozambique.
2 Materials and methods

2.1 Study location

Distributions of biodiversity of coral reef species in the WIO

Province is highest in the East African Coral Coast Ecoregion with

the largest peak ~10°S or the Tanzanian-Mozambique national

border (McClanahan, 2023). Patterns of biodiversity can,

however, be quite variable along shorter distances of the coast

due to local variation in environmental conditions (McClanahan

and Muthiga, 2017). Therefore, the long coastline of Mozambique
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represents an environmental transition appropriate for testing the

performance of models along an equatorial to more temperate

influenced coastline. Moreover, data collection relative to the length

of the coastline is limited allowing us to address the efficacy of using

limited data to test modelling choices at multiple scales.
2.2 Data sources and response variables

Our goal was to provide a finer spatial resolution map of

Mozambique coral reefs. A map based on environmental factors

rather than past interpolations of presence/absence species
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distribution information. Past interpolation methods have

produced coarse-scale maps that can be sensitive to the density of

data, and therefore problematic for making good predictions in

poorly sampled regions (Kusumoto et al., 2020). We therefore used

environmental information as a proxy for predicting numbers of

species for the 1180 6.25 km2 mapped reef cells in Mozambique

(Burke et al., 2011). This environment-taxa machine learning

prediction methodology was then investigated for the

consequences of some common modelling choices (see Figure 2

for the analysis flowchart). Our method used satellite and shipboard

environmental variables found to be associated with biodiversity

(Tyberghein et al., 2012; Yeager et al., 2017; McClanahan et al.,
FIGURE 1

Map of the locations of the field study sites in Mozambique differentiating fish and coral sampling sites.
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FIGURE 2

Flowchart showing the various steps of the data analysis and modeling process. Note that the Provincial models (WIOMOD-1 and 2) were developed
using the entire WIO dataset. The Mozambique models MOZMOD-1 and 2 included only Mozambique data but used the variables selected for the
WIOMOD. MOZMOD-3 used only Mozambique data and independently filtered variables.
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2024a, 2024b). Several models based on provincial and country-

level data were examined, and their predictions compared to

establish variation and confidence around the mapped cells’ 6.25

km2 biodiversity predictions.

The source of environmental and the number of fish and coral

taxa data sources are described in the supplement (Supplementary

Material, Supplementary Tables S2, S3). The key information is that

70 spatially complete environmental data layers derived from

satellite and shipboard measurements were compiled. Variables

were derived from numerous sources and included a mix of thermal

(i.e., temperature and light), water chemistry (pH, calcite, dissolved

oxygen), water quality (sediments, plankton, nutrients, and

productivity), larval connectivity, fisheries management, and

distance to humans (Maina et al., 2011; Tyberghein et al., 2012;

McClanahan et al., 2015; Maire et al., 2016; Yeager et al., 2017;

Andrello et al., 2022; Fontoura et al., 2022). Similarly, fish and coral

field census data were taken from published methods and

experienced observers (McClanahan et al., 2007; 2021;

Friedlander et al., 2012), as well as new data collected in this

study for Mozambique (Sola, E. unpublished data). The two

WIOMODs were based on ~1000 replications of both fish

(number of species in five diverse families per 500 m2) and coral

(taxa per 40 m2). The Mozambique data was based on the smaller

sample of 117 fish and 143 field sites. The WIO data and model

were used to identify high biodiversity areas and to compare this

modelling approach with past consultancy-based prioritization and

protected area activities (McClanahan et al., 2024a).

Fish and coral field data from Mozambican study sites that fell

inside the same reef cells were pooled and averaged, which reduced

the number of fish replicates from 117 to 85 and coral replicates

from 143 sites to 113 cells. In the case of the WIO provincial data,

fish field samples were reduced from 1201 field sites to 578 cells and

coral field samples from 1001 sites to 575 cells. This pooling of field

samples to grid cells is expected to reduce spatial autocorrelation

and make predictions specific to the cell and not the level of the field

sampling. The proxy for total number of species was the normalized

sum (z-scores) of the number of taxa in the fish and coral samples.

To determine if they were positively related and potentially useful as

a proxy for total numbers of species, regression analyses were

performed on the empirical data, the predictions of the provincial

model, the provincially informed Mozambique model, and the

variable filtered model described below.
2.3 Data analyses

Several scientific advances have allowed finer-scale predictions

and maps of marine biodiversity (Kuhn and Johnson, 2013;

Pilowsky et al., 2022). These include: 1) moderate resolution (i.e.,

<10 km2) but large-scale mapping of coral reefs, 2) global satellite

coverage of environmental variables and proxies (<10-km steps),

and 3) statistical machine learning algorithms. Specifically, we used

Boosted Regression Tree (BRT), which combines regression trees

and boosting of many simpler models. BRT is a machine learning

methods that uses large sets of empirical data to make predictions

with large and complex data sets. BRT can handle large amounts of
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complex and interactive predictors and response data to make

specific or non-probability predictions (Elith et al., 2008). BRT

classification and tree methods allow nonlinear relationships,

missing values in covariates, interactions between predictors, and

produce high predictive performance (Kuhn and Johnson, 2013).

BRT that uses environmental data have been shown to improve

predictions of numbers of taxa compared to traditional rarefaction

techniques (McClanahan et al., 2024b).

Five models that used the data-dependent BRT methods to

evaluate the number of coral reef taxa. Two of the models were

number of taxa predictions from the provincial or WIOMOD

(McClanahan et al., 2024a). This model included small percentage

(~10%) of field data from Mozambique. The 3 Mozambican models

used different variable selection processes, but all used only

Mozambican environmental and field species census data. For

example, Mozambique Model 1 and 2 (MOZMOD-1 and

MOZMOD-2) used the variables selected in the two WIOMOD

versions but fit the environmental data to Mozambican field data.

The third Mozambican model (MOZMOD-3) used an independent

variable selection process and Mozambican field data that we refer

to as the filtered Model 3. The filtered variable process is a default

procedure for selecting variables where many potentially correlated

variables are being considered to avoid overfitting when data are

limited (Kuhn and Johnson, 2013).

Overfitting was addressed by reducing variables by two

methods: namely standard variable redundancy and selection and

the BRT selection and pruning process. For the variable selection

process, both the regional and filtered model used a correlation

cutoff of >0.70 and retained uncorrelated variables (Dormann et al.,

2013) (Supplementary Figure S1). The (caret) package version (6.0-

93) in the R statistical programming language was used for the

variable selection, classification, and regression training. This

reduced the considered variables from 70 to 36. Some variables

removed from the selection cutoff but suspected of causation were

retained to create an alternative and ensemble models when

suspected of possible causation (Araújo and New, 2007). For

example, water temperature variables such as skewness,

bimodality, and kurtosis were highly correlated but represent

different types of thermal stress. Therefore, Mozambique Model 1

included kurtosis but not skewness or bimodality whereas Model 2

included skewness and bimodality but not kurtosis (Supplementary

Table S2). Additionally, human gravity (=population density/

distance + constant)2 and travel time were correlated metrics and

therefore Mozambique Model 1 used travel time and Model 2 used

gravity. The BRT algorithm selects the importance of the variables

based on the relative importance of the variables rank. This process

further reduced the variables to 26 for Model 1 and 27 for Model 2.

The effect of variable pruning was tested and described in the

supplement (Supplementary Figure S2) as well as the BRT model

settings (Supplementary Figure S3). The variable pruning process

helps to reduce excess variables relative to the amount of data.

However, our analyses found variable pruning had a minor effect on

variable selection and model predictions.

To make fair comparisons of numbers of species between cells it

was necessary to hold some variables constant. For example, fishing

effort reduces biomass and is not uniform but an important
frontiersin.org
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predictor of number of fish species (McClanahan, 2019, 2022).

Therefore, fish biomass was held constant and above a saturation

point. Further, numbers of species may be influenced by the

sampled area, water depth, and the observer/method. Depth and

biomass response relationships were examined to determine where

peak or saturation points occurred. These were 600 kg/ha and a

depth of 10 m. Therefore, predictions for all cells were those for a

fish biomass of 600 kg/ha and 10 m depth. For the observer and

transect size effect, we chose the model’s predictions for 500 m2,

which was the size of most transects. Partial effect predictions of the

BRT allow for comparable solutions without eliminating replicates

when these variables are held constant.
2.4 Mapping biodiversity and priorities

The BRT model predictions of numbers of coral taxa, fish

species, and the two combined were mapped in all 1180 6.25 km2

Mozambican reef cells. Mapped reef cells are the averages of the

ensemble models using the normalized average z-scores of fish and

coral weighted by their R2 values.
3 Results

3.1 Model fits

Fits of the models to species survey census data indicated a

stronger fit and lower RMSE for the large-data provincial models

compared to both the informed and filtered Mozambique models

(Supplementary Table S4). For example, the two WIOMOD’s

training-testing validation R2 were between 0.55 and 0.64 with

higher fits to the fish (R2 = 0.62-0.64) than the coral data (R2 = 0.55-

0.56). The pruned and unpruned Mozambique models had similar

modest fits (R2 = 0.43).Therefore, keeping or pruning weak

variables had no clear effect on predictive strengths.

Mozambique models informed by the WIOMOD variables

selections did not clearly improve fits relative to the standard

filtered model (informed R2 = 0.51 and filtered R2 = 0.48).

Therefore, standard variable filtering using uniquely Mozambique

environmental and field data, performed as well as an informed

variable selection process despite some differences among the

variable ranks and number of variables selected. For the fish

model, the two BRT provincially-informed models (MOZMOD-1

and 2) selected 10 and 11 large effect variables whereas the filtered

Model 3 selected 17 (Figure 3). For corals, there were fewer

difference with the provincially-informed models selecting 14 and

15 large effect variables whereas the filtered Model 3 selected 12

variables. Therefore, the models’ predictive strengths remained

similar regardless of the number of variables selected.

The WIOMODs predicted fewer fish species than the

Mozambican models (41.8 versus ~45.0 species) but more coral

taxa (24.3 versus 23.4 taxa per 40 m2) than the Mozambican models.

Comparing the three Mozambican models indicated that fish

species declined somewhat from MOZMOD-1 to 3 from 46 to 45
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to 44 species per 500 m2. MOZMOD-1 predicted the lowest number

of coral taxa (22.8 taxa per 40 m2) while MOZMOD-2 and 3

predicted similar numbers (~23.6 taxa per 40 m2).
3.2 Variable strengths and selection

3.2.1 The WIO model
Fish biomass was the strongest variable predicting numbers of

fish species in WIOMOD versions 1 and 2 (Table 1; Figure 3;

Supplementary Figure S4A). The other top variables in order of

importance were median temperatures, pH, distance to people,

retention connectivity, SST kurtosis and skewness, primary

productivity, photosynthetically active radiation, and depth.

Variables were ranked similarly in the two models and the

differences resulted from the inclusion or exclusion of highly

correlated variables. Therefore, numbers of fish species was largely

influenced by the two interrelated variables of biomass and nearness

to people, temperature and its variability, ocean productivity, larval

retention connectivity, and depth.

For numbers of corals taxa, observer and depth were the two

top-ranked variables. The uncorrelated variables of currents, waves,

dissolved oxygen, photosynthetically active radiation, rate of rise in

SST, calcite, and salinity were among the medium ranked variables.

Lower ranked variables were the water quality as reflected in

chlorophyl-a and sediments concentrations, human influences,

and various connectivity metrics.

3.2.2 The Mozambique models
For the number of fish species, training-testing cross validations

of three Mozambique models R2 ranged from 0.42 to 0.46. The

highest ranked variables in the provincially- informed models 1 and

2were amixofbiomass,water temperature (SSTbimodalityorkurtosis),

nearness to people (reef visitation), water quality metrics (sediments,

chlorophyll, nitrogen), calcite, larval indegree flow, depth, and waves

(Supplementary Table 4). In contrast, the filteredModel 3 picked water

quality as more important than fish biomass with the sediment and

chlorophyl-a as the top two ranked variables, followed by biomass and

nutrients as the fourth rank. Temperature, human influences, and

connectivity metrics were less important contributions to numbers of

species. Therefore, most of the variability among the threeMozambican

models is attributable to the filtered Model 3.

For corals, cross validation R2 for the three models were similar

(0.49 and 0.50) (Table 1). There were also strong similarities among

the most important variables in the three models but more

differences in the medium ranked variables (Figure 3). For

example, depth, habitat, outdegree of larval flow, and observer

were the top 4 ranked variables in all three models with minor

differences in their rank positions. Differences in the models based

on the inclusion or exclusion of variables also appeared to have

minor effects. Many variables were selected as low importance in all

three models, including larval net flow, management, larval flow

indegree, coral cover, market gravity, light attenuation, and travel

time to the site. In contrast to fish, the coral filtered Model 3’s most

important variables were not easily distinguished from the
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provincially informed models. One exception was SST skewness as

it was ranked higher in the filtered than in the other models.

Another minor difference was that the filtered model selected fewer

high importance variables than the two informed models.

Connectivity metrics were uniquely different when comparing

Mozambican numbers of fish and coral taxa. For example,

outdegree was the 2nd strongest ranked variables for the filtered
Frontiers in Ecology and Evolution 07
coral Model 3 while indegree was ranked 5th and the highest

connectivity variable for fish. Both connectivity variables were not

ranked highly in the WIO province (Supplementary Figure S4). The

other metrics of connectivity were similarly weak and showed

variable responses between the categories of fish and coral and

Mozambique and the WIOMODs. Pruning variables had little effect

on the predictions (Supplementary Figure S6).
FIGURE 3

Relative importance of evaluated variables among three Mozambique models based on BRT recursive elimination. MOZMOD-1 (A) and MOZMOD-2
(B) were informed by provincially important variables whereas MOZMOD-3 (C) independently filtered variables prior to testing for fits to data. Shown
are rankings and relative importance of BRT selected variables for (left) fish and (right) coral. Relative importance and BRT classifications shown for
high, low, and excluded variables. The low and excluded variables were removed for testing the pruned models.
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TABLE 1 Results of the BRT relative contributions (%) of selected variables for numbers of (a) fish and (b) corals taxa for the 5 evaluated models (M)
and their respective R2

fits of models using cross validation methods (see methods).

WIO WIO informed
National
Filtered

Variable importance WIOMOD-1 WIOMOD-2 MOZMOD-1 MOZMOD-2 MOZMOD-3

Fish

1. Total fish biomass, kg/ha 42.6 42.7 8.9 10.5 7.8

2. SST median, °C 10.1 NI 2.9 NI NI

3. Travel time nearest population, hrs. 7.5 NI 1.9 NI 2.2

4. Retention connectivity 5.7 6.1 1.1 1 1.2

5. SST kurtosis 4.2 NI 9.5 NI NI

6. Net primary productivity, mg C/m2/day 3 NI 1.5 NI NI

7. Depth, m 2.7 3.1 4.5 4.2 5.2

8. Travel time to market, hrs. 2.5 NI 2.4 NI NI

9. Maximum photosynthetically active radiation, Einstein’s/
m2/day 2.4 3.2 2.9 3.4 2.6

10. Median chlorophyll a, mg/m3 2.1 NI 12.5 NI 10.7

11. Salinity, PSS 1.9 1.7 2.8 2.7 2.1

12. Cumulative DHW, °C-weeks 1.6 NI 2.8 NI 3.3

13. Reef visitation value, number of tourist visits 1.5 1.2 5.5 3.6 NI

14. Mean wave energy, kW/m 1.5 1.2 6 6.9 5.3

15. SST rate of rise, °C 1.5 1.4 2.8 2.3 NI

16. Hard coral cover, % 1 1.5 3.8 3 4.1

17. Nutrients, nitrogen, tons/km2 0.9 NI 7.6 NI 6.4

18. Indegree connectivity 0.9 1.5 5 6.2 5.1

19. Ecoregion 0.7 0.9 0 0 0

20. Dissolved oxygen, ml/l 0.6 0.7 1.5 1.4 NI

21. Habitat 0.6 0.8 2.9 3.1 4.2

22. Calcite concentration, mol/m3 0.5 0.8 5.6 6.8 5

23. Management 0.5 0.5 2 1.4 1.4

24. NetFlow connectivity 0.5 0.8 1.6 1.4 NI

25. Outdegree connectivity 0.4 0.6 1.7 1.2 1.9

26. Area, m2 0 0 0.5 0.1 2.7

27. Sediment index 0 0 NI NI 15.3

28. Sediments, tons/km2 NI 1 NI 7.5 NI

29. Climate stress model NI 1.1 NI 3.9 NI

30. Current velocity, m/s NI 3.1 NI 1.7 3.2

31. Diffuse attenuation coefficient, m-1 NI 3 NI 3 2.8

32. Gravity to nearest city NI 1 NI 2.7 3.3

33. Gravity to nearest population NI 5 NI 3.2 NI

34. pH NI 6.6 NI 0.3 NI

35. SST bimodality NI 2.7 NI 15 NI

(Continued)
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TABLE 1 Continued

WIO WIO informed
National
Filtered

Variable importance WIOMOD-1 WIOMOD-2 MOZMOD-1 MOZMOD-2 MOZMOD-3

Fish

36. SST skewness NI 4.8 NI 3.6 4.1

Model performance

Cross validation R2 0.64 0.62 0.46 0.42 0.43

RMSE 6.15 6.24 7.73 8.02 7.89

Corals

1. Observers 15.6 15.2 6.9 6.8 7.4

2. Depth (m) 9.2 9.4 9.9 10.5 10.4

3. Cumulative DHW, °C-weeks 6.9 NI 2.3 NI NI

4. SST kurtosis 5.6 NI 4.1 NI NI

5. Mean wave energy, kW/m 5 4.1 5.5 5.4 5.5

6. Dissolved oxygen, ml/l 4.3 2.4 4.6 4.6 NI

7. Country 4 3.6 NI NI NI

8. Salinity, PSS 4 2.3 6.1 5.9 6.0

9. Reef visitation value, number of tourist visits 3.8 3.2 2.8 3.1 3.2

10. Median chlorophyll a, mg/m3 3.8 NI 3 NI 3.6

11. Calcite concentration, mol/m3 3.7 3.9 2.8 3.3 3.2

12. Travel time to market, hrs. 3.4 NI 1.5 NI 1.4

13. SST rate of rise, °C 3.3 4 3.8 2.7 NI

14. Maximum photosynthetically active radiation, Einstein’s/
m2/day 3.1 3.7 4.5 4.2 4.6

15. Retention connectivity 2.7 2.8 1.1 1.6 NI

16. Indegree connectivity 2.4 1.8 1.7 1.9 2

17. Net primary productivity, mg C/m2/day 2.2 NI 2.8 NI NI

18. Habitat 2.2 2.2 8.1 9.0 8.4

19. SST median, °C 2.1 NI 2.4 NI NI

20. Travel time nearest population, hrs. 2 NI 1.3 NI NI

21. Hard coral cover, % 1.9 1.8 1.6 1.7 1.7

22. Ecoregion 1.9 0.3 1.2 NI 0.5

23. NetFlow connectivity 1.9 1.6 2.4 2.5 2.9

24. Outdegree connectivity 1.9 1.5 11.3 8.9 9.7

25. Fisheries management 1.6 1.6 2.2 2.3 2.3

26. Nutrients (nitrogen, tons/km2) 1.6 NI 5.9 NI 5.2

27. SST skewness NI 7.3 NI 3.5 6.8

28. Climate stress model NI 6 NI 5.7 6.1

29. Current velocity, m/s NI 4.6 NI 1.5 1.7

30. pH NI 3.6 NI 1.7 NI

(Continued)
F
rontiers in Ecology and Evolution
 09
 frontiersin.org

https://doi.org/10.3389/fevo.2024.1450383
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


McClanahan and Sola 10.3389/fevo.2024.1450383
3.3 Response relationships between the
environment and numbers of taxa

Responses to environmental variables generally aligned with

ecological theory and empirical studies (Figure 4; Supplementary

Figure S5). For example, numbers of fish species increased and

saturated with fish biomass, indegree connectivity, distance from

people and cities, and declined with SST variability and poor water

quality (Figure 4A). Numbers of coral taxa increased with depth and

thermal radiation (Global Thermal Stress) and declined with increased

salinity, declining water quality, wave energy, and rare warm

temperatures (skewness) (Figure 4B). Responses among the three

Mozambique models often followed each other closely but deviated

from the number of taxa predicted by the provincial models, although

usually by <15%.

Differences in responses between the WIOMODs and

Mozambique models included the range of the data, and the

directions and magnitude of the responses. The Mozambique data

had a smaller data range than the WIO data and therefore responses

reflected these differences in the variables’ windows. For both fish

and coral predictions, for example, temperature, light, water quality,

wave energy, and human influence variables had more restricted

data ranges compared to the WIOMODs. Responses to the rate of

rise in SST differed in the direction of the responses. As rates of rise

in SST increased, more coral taxa were predicted for Mozambique

but less for the WIO province. However, the numbers of

Mozambican coral taxa were predicted to be less tolerant of

warm-water skewness than the WIO. Finally, the WIOMOD

underestimated the numbers of fish species but overestimated the

numbers of coral taxa relative to the Mozambique models.
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3.4 Relationships between fish and coral

Scatterplots and correlations of the relationships between

numbers of fish and coral taxa indicated weak positive

relationships (Supplementary Figure S6). In fact, the relationship

was not statistically significant (p=0.11, n=104) for the empirical

data but significant for the provincial and pruned and unpruned

models (p<0.001, n=1180). The relationship was the strongest for

the provincial model (R2 = 0.31) while weakest for both the

provincially informed and filtered models (R2 = 0.05). Therefore,

numbers of fish and coral taxa appeared to be distributed mostly

independently despite some shared environmental responses. The

weak association was most notable when relying on Mozambique-

only data and standard variable selection processes.
3.5 Biodiversity maps

Mapped reef cells based on the model predictions for a constant

biomass, sampling area, and depth largely reflected the distribution

of the high importance variables. Maps predicted that reef cells

north of mid-Nampula province had the highest numbers of taxa

but with considerable variability both along and offshore from the

coast (Figure 5). The provincial map showed the least variable

patterns in having a strong onshore-offshore increase in predicted

numbers of fish and combined taxa (Figure 5A). Corals had lower

numbers of taxa in the middle of Cabo Delgado, particularly south

of Pemba City. Predicted numbers of coral taxa increased again

south of Memba Bay to Nacala City. South of this area, the

provincial model maps predicted low numbers of coral taxa until
TABLE 1 Continued

WIO WIO informed
National
Filtered

Variable importance WIOMOD-1 WIOMOD-2 MOZMOD-1 MOZMOD-2 MOZMOD-3

Corals

31. Gravity to nearest population, population/travel time, hrs2 NI 3.1 NI 2.3 2.6

32. Gravity to nearest city, population/travel time, hrs2 NI 3 NI 2.7 NI

33. Diffuse attenuation coefficient, m-1 NI 2.8 NI 1.9 1.7

34. SST bimodality NI 2 NI 3 NI

35. Sediments index NI 2 NI NI 3.2

36. Sediments, tons/km2 NI NI NI 3.5 NI

Model performance

Cross validation R2 0.55 0.56 0.50 0.49 0.50

RMSE 4.47 4.41 5.09 5.13 5.07
See Supplementary Table S2 for all variables, additional details, and sources of access. BRT selected variables include relative importance values (%) and NI indicates variables not included in the
final model (i.e., variables excluded from the corresponding models). RMSE, Root mean squared error.
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the South African border. Fish had the strongest onshore-offshore

pattern, which suggests declining species richness south from

Nacala. The provincial model predicted that diversity in the

Primeiras and Segundas Archipelago is not as high as in northern
Frontiers in Ecology and Evolution 11
Mozambique reefs and generally declines to the south along

these islands.

The provincially informed model using Mozambique data

predicted a weaker on- to offshore gradient and fewer numbers of
FIGURE 4

Response relationships between selected environmental variables and (A) numbers of fish and (B) coral taxa for the top 15 variables. BRT response
plots compare two provincial models (WIODMOD-1 and 2) with the three Mozambican models. Mozambique models MOZMOD-1 and MOZMOD-2
variables selections were informed by the provincial models (WIOMODs) whereas MOZMOD-3 used a standard variable filtering procedure. Some
highly correlated variables in MOZMOD-1 and MOZMOD-2 are missing because they were separated in models to distinguish their effects. Variables
ordered from most to least importance based on the average relative influence in each model. See Supplementary Figure S5 for all 33 and 31
response relationships (for fish and corals, respectively).
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FIGURE 5

Maps showing the 1180 cellular predictions for (A) the average of the two provincial models for Mozambique (WIO
(B) two provincially informed variables but calibrated using Mozambique data (MOZMOD-1 and 2), and (C) filtered
species, coral taxa, and their normalized sums.
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fish species in the far north or adjacent the Tanzania border

(Figure 5B). Numbers of fish species also declined in the southern

Quirimbas islands reefs and south of Pemba. Numbers of coral taxa

were similar to the provincial model predictions for northern Cabo

Delgado, but the provincial model predicted lower numbers of taxa

for the southern Cabo Delgado and northern Nampula provinces

and therefore, lower overall taxonomic diversity near the

boundaries of these two national provinces.

The Mozambican filtered Model 3 predicted higher numbers of

fish species in the far north compared to the provincial model but
Frontiers in Ecology and Evolution 13
not the provincially informed models 1 and 2 (Figure 5C). Filtered

Model 3 also predicted high numbers of fish species but not coral

taxa for the most southern Primeiras and Segundas Archipelago,

which contrasts with the provincially informed models.
3.6 Between-model variability

Variation among models as reflected in the coefficient of

variation (COV) was generally small (Figure 6). For example,
FIGURE 6

Map of the coefficient of variation (COV) in the predictions for each reef cell based on the 5 models per coral and fish taxa.
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78.6% of the fish and 87.6% of the 1180 coral cells had COV of <10%.

Twenty percent of the fish and 8.7% of coral cells fell within the 10 to

20%COV interval. Only 1.1%of thefish and 3.6%of the coral cells had

COV between 20 and 30%. The lowest between-model variation was

observed in northern and southern Mozambique while most of the

model variation was on the border between Cabo Delgado and

Nampula. Nampula province had more variation in the numbers of

fish species than coral taxa predictions. Variation in the fish models

extended to the Primeiras and Segundas Archipelago while between-

model coral variation was highest on the border between the Cabo

Delgado and Nampula provinces.
4 Discussion

The ability to model biodiversity has improved significantly

following several scientific and technical advances (Pilowsky et al.,

2022). Progress has been primarily dependent on the wide coverage of

ocean surface data and associated environmental metrics and proxies.

Nevertheless, the lowavailability offield data collected beneath-the-sea

surface is often a major limitation to the use of these tools. This can

produce errors associated with low sampling intensity and the

possibility of unknowns, biases, overfitting, and other problems

arising from preferred ecological theories and variable choices, low

samples sizes, andweakfield sampling designs. Arguably, this could be

the case for Mozambique. However, the study here suggests these

problems were not large and smaller than the natural variance. The

filtered Model 3 (MOZMOD-3), using only Mozambique data and

filtering of variables, produced similar results to the provincial and

provincially informed models. Moreover, where the filtered Model 3

did produce local differences, these were insightful into potential

environmental influences on diversity. It reminds modelers that

large scale models based on many variables are useful and

transferable but can miss identifying potentially important local

environmental influences and high diversity locations.

Mozambique provided a good test location to study training

and testing or transferability influences (Wenger and Olden, 2012).

The combination of limited data, a long coastline, three ecoregions,

and a tropical to temperate environmental gradient should have

revealed some of the limitations of various model transferences. The

partial effect methods allowed us to keep variables constant, which

made it possible to account for sources of variability that can trouble

comparisons and predictions. This included differences between

observers, sampled area, fish biomass, and depth (Supplementary

Table S3). Making fair comparisons is more likely when using

constant and partial effects options allowed by BRT. Nevertheless,

ground-truthing will provide a further test of model efficacy.

Several of the findings provide insights into the consequences of

modelling choices. First, all models had reasonable fits to data

considering the scale and complexity of the studied reef environments

relative to the field sampling intensity. All models leave some variance

unexplainedwhether due to unmeasured variables or natural and small-

scale variability. Having more data reduced the variance and improved

thefits, as reflected in the largeWIOMOD.Higherfitswouldbeexpected

given the large number of environmental variables used to make tree-

based machine learning predictions (Kuhn and Johnson, 2013).
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However, the selected variables did not predict local patterns better

than thenationalfilteredmodelwhenfit to local data.Additionally, large

losses of predictive ability were not evident when pruning weaker

variables. Also, no clear differences were observed in the number of

important variables selected in the informed and uninformed models.

Allmodels shared several variables but differences in their rankingswere

insightful into the influences of local versus provincial patterns.

The shared variables among all three model decisions varied

between the taxonomic groups. However, the selected fish species’

variables were often a mixture of biomass, depth, waves, heat and its

variability, distance to human populations, ocean productivity,

specific connectivity metrics, and water quality metrics. For

numbers of coral taxa, the depth, and thermal heat and

temperature variability metrics were important and followed by a

number moderate physico-chemical metrics including currents,

waves, calcite, various water quality variables including dissolved

oxygen, and salinity metrics. Human influences and connectivity

metrics were among the weakest variables for both coral and fish.

Despite sharing several predictive variables, numbers of fish and

coral taxa were not well correlated in Mozambique relative to the

WIO. Therefore, the total number of taxa or the sum of these two

groups was likely to be a weak proxy for the total number of species

in a cell. The qualitative literature has speculated about the patterns

of biodiversity in Mozambique and some of the large-scale patterns,

such as the influence of sediments and temperature variation, are

supported by this study (Rodrigues et al., 2000).

Mozambique is likely to challenge any modelling methods as the

coastline extends from dense tropical reefs in the north to sparse

marginal reefs andmore temperate conditions in the south. Therefore,

the three model options allowed testing the consequences of tradeoff

between local and limited versus more extensive regional data and

knowledge. The provincial model was created to identify areas of high

biodiversity with the potential for conservation prioritization and for

triggering Key Biodiversity Areas, of which 19 were identified in

Mozambique (McClanahan et al., 2024a). Our model experiments

allowed us to test the consequences of building national models based

on local data versus relying on variables and results from larger

models. These two decisions are the expected options when, for

example, national planning or policy requires a national assessment.

Findings showed that a limited number of distributed field sites

(~100) made reliable predictions at the national level with little

evidence for overfitting from the pruning analyses. It suggests that

local diversity patterns arise from both global (i.e., temperature

variation, light, and waves) and local factors (i.e., sediment and

nutrients). Our approach contributed to a perennial debate in

geography of the value of global theories versus local scale

empiricism. We find that larger models produced reasonable

predictions, but they can miss important local variables that drive

local diversity and important small-scale patterns.
4.1 Unique features of Mozambique

4.1.1 The thermal environment
Comparisons between models made it possible to distinguish

the environmental conditions that influence Mozambique. The first
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indication of some important differences between Mozambique and

the WIO region was the higher number of fish and lower number of

coral taxa predicted by the Mozambican versus the provincial

models. Secondly, we see factors such as temperature variation

(bimodality and kurtosis) and connectivity were more important in

Mozambique than in the WIO. Thereafter, key distinguishing

variables included some connectivity metrics, habitats, nutrients,

sediments, weak human effects, and temperature variation, possibly

most influenced by temperature bimodality. The bimodality and

kurtosis metrics were likely to reflect the latitudinal gradient but

correlated with other temperature variable metrics associated with

latitude. Unexpectedly, bimodality was the most important variable

for numbers of fish species but ranked lowly for corals.

Consequently, seasonality would appear to be more influential for

numbers of fish than coral taxa.

The correlated variables of SST bimodality, SST skewness and

kurtosis indicated that numbers of taxa declined as these metrics

deviated from normal distributions. High negative kurtosis and high

positive bimodality are proxies of chronic temperature stress, and

positive skewness is a measure of the frequency of reoccurring hot

water or acute stress. These metrics combined indicated that numbers

of both corals and fish taxa declined as chronic and acute stress

increased towards the southern Mozambican border. Typically, acute

warmwater stresses are common in tropical locations during episodic

ocean conditions, such warm El Nino Southern (ENSO) and

Southwest Indian Ocean Oscillations (SWIO) but also episodic

cyclones (Bruggemann et al., 2012). However, the northern

Mozambique (10-12°S) reefs appeared to be buffered from these

acute stresses as warm skewness was shown to increase from the

Tanzanian border south to Pemba and Nacala (McClanahan and

Muthiga, 2017). In contrast to the WIOMOD findings, numbers of

both coral and fish taxa increased with the rate of SST rise, although

with a moderate effect. This supports the observation that conditions

for high biodiversity will improve with climate change in transitional

compared to equatorial regions (Chaudhary et al., 2021).

4.1.2 Connectivity
Connectivity metrics were more important inMozambique than in

the WIO. Greater isolation or the peripheral location of these reefs

might be the cause. Madagascar has a large area of reefs and those in

Tanzania and the East African Coral Coast Ecoregion to the north have

the highest diversity (McClanahan et al., 2024a). A high diversity

corridor of WIO reefs exists between northern Mozambique, east to

Comoros, Mayotte, and the northwestern Islands of Madagascar

(Obura, 2012; McClanahan et al., 2024a). The predicted numbers of

taxa in the WIO models were more influenced by larval retention

rather than in- and outdegree connectivity metrics found for fish and

corals in Mozambique. In Mozambique, indegree connectivity was

most important for numbers offish but outdegree for coral taxa. Better

understanding these intriguing differences will require more research.

Regardless, the weak correlation between numbers of coral and fish

taxa in Mozambique could be partially explained by their different

connectivity patterns.
I n
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the northernMozambique Channel, gyres are created when the South

Equatorial current bifurcates and produces mesoscale eddies that

travel south along the Mozambique coast, known as the Mozambique

Current (Lutjeharms et al., 2012; Halo et al., 2014; Gamoyo et al.,

2019). Genetic connections between Madagascar and Mozambique

were observed in a coral relatedness study (van der Ven et al., 2021).

Moreover, connectivity relationships appear to be divided between

northern reefs and mid-channel reefs. For species with short larval

durations (<15 days), the transition in connectivity occurs near the

border of the Cabo Delgado and Nampula provinces (Crochelet et al.,

2016; Gamoyo et al., 2019; O’Donnell et al., 2017). Halo et al. (2014)

predicted ~4 eddy cycles per year, which suggests regular connectivity

within these divisions depending on the larval duration of the specific

taxa. Nevertheless, the consequences of this gyre system appear to

differ between coral and fish connectivity patterns.

An increase in numbers of fish species associated with indegree

connectivity suggests that species travel east to west and north to

south, which would fit with the overall current movement patterns

and connectivity of northern Mozambique (Crochelet et al., 2016;

Gamoyo et al., 2019). However, the outdegree importance for corals

suggests a different connection system or possibly unstudied hidden

variables correlated with the outdegree connectivity metric. For

example, one viable hypothesis is outdegree connectivity correlates

with remnant or climate change refuges of high numbers of coral

species in the deep-water Pemba and Nacala bay channels

(McClanahan et al., 2011; Obura, 2012; Halo et al., 2014;

McClanahan and Muthiga, 2017). These locations are likely

associated with the anticlockwise gyre systems that pull cool

water offshore, creating some weak upwelling. In other words, the

causes of the high numbers of species could be attributed to these

taxa’s adjacency to deep, cool, and stable water. Therefore, thermal

refuge created by gyres would lead to the increase in taxa rather

than larval outdegree dynamics. Future research will need to

consider these and other possibilities for understanding these

unique deep-water high diversity refuges.

4.1.3 Water quality and human influences
Water quality effects on numbers of taxa was generally greater in

Mozambique than the WIO. The latitudinal gradient should produce

these patterns often associated with increased nutrients and

sediments that are typical of cooler and more variable oceanic

waters found in temperate latitudes. Yet, high sediment

concentrations are observed in reefs south of Pemba and

particularly south of Nacala Channel. Shallow reefs and associated

species are missing along a long stretch of central Mozambique and

high sediments and low water quality are the likely causes. Variability

in numbers of taxa with habitats may also reflect differences in

exposure to water quality and temperature variability.

Human influences on numbers of taxa appeared weaker in

Mozambique than the WIO province. Coastal populations are more

sparsely and evenly distributed (~40 people/km2) than elsewhere in

the province. This combined with important environmental

temperature and water quality effects may explain these patterns.
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In many countries of the WIO province, fish biomass has declined

greatly, and this has reduced the numbers of species (McClanahan,

2022). Most Mozambican reefs are also overfished but not to the

same extent as many reefs in Kenya, Tanzania, Reunion, and

Comoros (McClanahan et al., 2023). Additionally, the existing

fisheries management classifications were probably ranked low

because there was little difference between protected, managed,

and unmanaged reefs (McClanahan et al., 2015; Gill et al., 2017).

This is potentially an attribute of the biomass of fish, which is more

evenly distributed across management systems. However, most

Mozambican reefs have low to moderate fish biomass regardless

of management. A model estimating the recovery times of

Mozambican reefs predicted it would take ~5 and 15 years of no

fishing to recover biomass to optimal yield and the higher

conservation levels (McClanahan et al., 2016).

It is likely that the influences of the above environmental

variables led to the underprediction of numbers of fish and

overprediction of corals when comparing the provincial and

national models. The implication is that conditions are better for

fish and worse for coral taxa in Mozambique than the WIO. This

finding should provoke speculations but the complexity or number

of variables in the model imply several different environmental

forces. Perhaps this is an attribute of comparing a model developed

largely for equatorial reefs versus a transitional coastline

environment. Our findings suggest that the transition from

tropical to temperate systems provokes a decoupling of important

coral-fish species associations among these two tropical taxa.

Therefore, fish are likely to adapt better than corals to transitional

subtropical environments. This would be expected given that corals

rely more on light and clear water than fish to survive.
4.2 Comparing models

Differences between models were less influenced by their

predictive ability than the rankings of the medium to high

strength variables. Shifts in rankings will affect numbers of taxa

predictions for specific cells and therefore influence maps of

biodiversity distributions. Overall, the between-model variation

map was the best reflection of the variability in rankings

(Figure 6). Most locations exhibited modest variation between

models. However, patterns of variation indicated less confidence

in predictions for nearshore reefs located between the Cabo

Delgado and Nampula provinces. There was also less between-

model confidence for numbers of fish than corals particularly in

Nampula province and the southern Primeiras and Segunda

Archipelago. However, limited and uneven sampling combined

with a lack of field data and ground truthing in southern

Nampula could have influenced the variability in the model’s

predictions. From the perspective of improving modelling,

sampling in southern Nampula province is a high priority. One

prediction is that fish would have relatively more species than corals

after accounting for any fishing or reduced biomass effects.

Tests of model performance indicated good predictive ability.

Yet, when making predictions for many cells on large scales,

overfitting and missing important local conditions are concerns,
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especially for predictions below the cell’s ~6.25 km2 scale.

Moreover, the model cannot account for local unmodelled

variables, such as damaging fishing methods or point-source

effluents. Nevertheless, consideration of 70 relevant environmental

variables, variable selection, validation, and comparative model

methods represents a considerable advance in marine spatial

modelling predictions for Mozambique. Challenges remain to test

predictions and account for human and other local factors not

currently available at large scales. Moreover, it is important to

choose model variables that are amenable to management and

human concerns. Nevertheless, all predictive models had good skill.

Similar modelling methods to predict coral cover and fish stocks and

yields have made good large-scale predictions (McClanahan and

Azali, 2021; McClanahan et al., 2023, 2024b).
4.3 Proxy for total numbers of species

Estimating the total numbers of species using the sum of the fish

and coral was expected to produce a good proxy for total numbers

of species. However, our analysis found numbers of taxa of fish and

coral were not highly related (R2~0.05). The modest fit in the

provincial model (R2 = 0.31) likely arose from a variable selection

process weakly influenced by the Mozambican data. Consequently,

the sum of the two taxa should be seen as having limited ability to

predict the total numbers of species. As suggested above, the

environmental conditions in Mozambique cause these two taxa to

respond differently to environmental conditions. Interestingly, the

ecoregion was also not selected in our model suggesting that this

faunal delineation was not influencing numbers of coral and fish

taxa apart from the most influential environmental variables used in

the model. Therefore, Mozambican ecoregions likely represent

different environments and qualitative aspects of the fauna and

not the numbers of our studied taxa. It remains to be discovered if

there is a good environmental proxy for total number of taxa for

transitional locations like Mozambique.
4.4 Conclusions

Several technical advancements were represented in our

modelling approach and outcomes. Nevertheless, the availability

of field data and collaboration among experienced observers using

similar methods was critical to making the predictive model. The

ability to control for many factors is a key strength of the predictive

modelling approach. Between-model tests indicated reasonable

predictive ability (i.e., R2 >40%) with few exceptions. Yet, when

making predictions for many cells on large scales, overfitting and

missing important local conditions is a possibility, especially for

biodiversity distributions below the 6.25 km2 scale of this study.

Moreover, the findings indicate the importance of having large

replicates and well-designed sampling to improve the models’

predictive strengths.

The approach used here provided a more spatially refined view

of biodiversity of Mozambique’s coast than previous efforts. Our

model found that both coral and fish were affected by the historical
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patterns of acute and chronic stress and not just excess heat. In fact,

modest amountsof excessheat appeared topromotecorals acclimation

to climate change. Therefore, high environmental variability around

Mozambique suggests low tolerance to excess heat but some resilience

via high environmental spatial variation. The cell-level predictions of

the models indicated that smaller scale environmental factors were

among the most influential. Therefore, failure to account for this fine-

scale variability is likely to produceweaknesses in identifying locations

and biodiversity priority locations. Clearly, filling spatial gaps, ground-

truthing, and considering environmental and important demographic

influenceswill be an important next step to improve the prediction and

the protected are prioritization process. Our approach of comparing

common modelling decisions produced both differences and novel

insights that should stimulate further investigations.
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