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Introduction: The selection of an optimal scale or granularity in landscape

analysis is pivotal for uncovering inherent patterns and changes driven by

processes. Variations in spatial resolution can significantly alter the proportions

and distributions of various landscape types, thereby impacting the assessment

of landscape patterns. Despite its importance, the scale factor is frequently

neglected in studies focusing on long-term landscape dynamics.

Methods: Bridging this gap, we utilized remote sensing imagery data from 1986

to 2020 for Lushui City, integrating remote sensing (RS) and geographic

information system (GIS) technologies to generate land cover maps. Our focus

centered on investigating the sensitivity of landscape pattern indices within the

30–1000m scale. Combining the first scale domain with an information loss

assessment model, we identified the optimal granularity for the analysis,

conducting a detailed spatiotemporal examination of landscape pattern from

1986 to 2020 using the index analysis method.

Results and discussion: The results show that: (1) The dominance of forests in

Lushui City, yet reveal a significant increase in construction land area over the

study period, primarily driven by the conversion of forest and grassland. (2)

Among the 10 examined indices, four (PD, ED, TE, and LSI) demonstrated

predictable responses to changes in granularity, while three (PAFEAC,

COHESION, AI) exhibited unpredictable stepwise reactions. Three indices (LPI,

SHDI, PLAND) displayed minimal regularity to granularity changes. (3) The

optimal long-term landscape analysis granularity for Lushui was identified as

100 m. (4) Before 1996, the city’s landscape exhibited characteristics of

aggregation, good connectivity, and minimal anthropogenic disturbance.

However, post-1996, the landscape experienced disruptions, leading to an

overall increase in fragmentation. The expansion of cultivated land and
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construction land due to urbanization has intensified landscape fragmentation.

However, policies such as converting cropland to forest and planned ecological

civilization initiatives have restored forest coverage and improved landscape

cohesion and connectivity in Lushui City. This research offers vital insights for

ecological planning and resource management in alpine valley watershed cities,

deepening our grasp of landscape pattern evolution.
KEYWORDS
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1 Introduction

Landscapes are heterogeneous regions composed of multiple

ecosystems or mosaics of different land use type (Su and Fu, 2012),

and their patterns have become a crucial focus of ecological

research. They are both the concrete manifestation of landscape

heterogeneity and the result of various ecological processes

operating at different scales (Wagner and Fortin, 2005). Diverse

landscape types, such as large grasslands, beautiful lakes, and

impressive mountains, offer tourism a wide variety of natural

resources. Studying landscape patterns and their dynamic

evolution processes enables a deeper understanding of the

interaction mechanisms between human activities and the natural

environment, revealing the distribution characteristics and

interrelationships of land resources within a region. This, in turn,

provides a scientific basis for land use planning, urban planning,

tourism resource development, and more (Gustafson, 1998; Fu

et al., 2001; Dadashpoor et al., 2019). Through landscape pattern

analysis, we can identify the factors and mechanisms that generate

and control spatial patterns, compare the spatial patterns and effects

of different landscapes, and uncover the impacts of landscape

changes on landscape services (Ma et al., 2019; Van der Sluis

et al., 2019; Li et al., 2020). Then serves as a solid theoretical

foundation for the scientific planning and development of

tourism resources.

Notably, the influence of landscape patterns on ecological

processes exhibits a pronounced scale dependence, making scale

selection a crucial factor in guiding the scientific exploration of

land-use landscape changes and ecological effects in the study area

(Zhang et al., 2020). This scale effect is not only pivotal for

maintaining ecological balance but also profoundly influences the

planning and design of tourism activities, as the diversity, integrity,

and accessibility of landscapes exhibit varying degrees of charm at

different scales, thereby determining the attractiveness and

sustainability of tourism resources. Research on the spatial scale

of landscape patterns distinguishes between artificially defined

boundaries and natural landscape boundaries. Artificially defined
02
boundaries correspond to various administrative levels, such as

global, national, provincial, county, and township scales. In

contrast, natural landscape boundaries are represented in features

such as watersheds, wetlands, grasslands, and protected areas.

In landscape scale studies, the granularity effect plays a pivotal role.

Granularity refers to the smallest identifiable unit in a landscape,

usually corresponding to the maximum resolution and size of pixels

in spatial data and image materials. It significantly influences the

description and analysis results of landscape patterns (Xiao and Li,

2003). Previous granularity studies have revealed that observed

landscape patterns may differ at different granularities. Smaller

granularities can provide more detailed information but may lead to

excessive subdivision and increased noise, while larger granularities can

simplify the analysis but may overlook some important details (Zhang

et al., 2013; Wu et al., 2016; Teng et al., 2016; Fang et al., 2017).

Therefore, selecting an appropriate granularity is crucial in landscape

pattern research, considering the location and characteristic differences

of the study area, as well as the methods, range, and step size of

granularity division (Nagendra et al., 2004). Only when the

measurement scale, research objectives, and intrinsic features align

with the study area can landscape indices accurately display and reflect

the landscape patterns of the study area (Pan et al., 2019). However,

most studies focus solely on the impact of spatial scale on landscape

patterns for a specific period, emphasizing the scale effect of static

patterns and paying less attention to the scale effect of dynamic pattern

changes. There is a particular lack of research on the spatial granularity

effect of land-use pattern changes.

In alpine gorge areas, the complex topography and varied

climatic conditions, coupled with the generally steep slopes of

arable land, collectively form the natural bottleneck for land use

efficiency in such regions (Bao et al., 2015). Additionally, frequent

natural disasters such as landslides and debris flows pose a severe

threat to ecological safety and the sustainable use of land resources

(Chen and Shi, 2018; Huang et al., 2020). Against the backdrop of

rapid urbanization, alpine gorge areas are also inevitably profoundly

affected by this trend. On one hand, the occupation of surrounding

high-quality arable land and ecological land exacerbates the
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contradictions and conflicts between different types of land use; on

the other hand, indiscriminate expansion strategies further intensify

the degree of land fragmentation, posing a serious challenge to

regional ecological security (Li, 2022). Concurrently, the

implementation of ecological restoration projects such as

converting farmland back to forest has played a positive role in

mitigating land fragmentation and restoring landscape connectivity

(Li et al., 2021). However, the dynamic balance between destruction

and conservation continually reshapes the landscape pattern. In this

context, an in-depth investigation of the dynamic characteristics of

multi-scale landscape patterns and their granularity thresholds in

alpine gorge areas can enhance our understanding of biodiversity

maintenance mechanisms within large-scale geographical contexts

and provide vital theoretical support for the development of

scientifically sound ecological conservation strategies. Although

academic studies have addressed the spatiotemporal variations in

landscape patterns in alpine gorge watersheds (Liang et al., 2014;

Huang et al., 2021; Wang et al., 2023), there are still many gaps

regarding the optimal scale of analysis.

Lushui city is located in the heart of the Nujiang River Basin.

The Nujiang River Basin is a region of remarkable heterogeneity

and diversity on a global scale, forming high mountains, deep

valleys and unique river valley ecosystems, it has various

landscape types and rich ecological resources. The dynamic

changes in landscape patterns within the basin directly impact

crucial ecosystem services such as water conservation and soil

retention. As a nationally prioritized ecological functional zone

for soil and water conservation, and a testing ground for China’s

conservation efforts, Lushui holds significant ecological strategic

importance. Given Lushui’s relatively underdeveloped economic

base, urbanization, agricultural expansion, and infrastructure

development have pronounced impacts on landscape patterns and

their spatio-temporal variations. This makes Lushui a critical area

for study. Moreover, the city’s diverse ethnic groups and rich

cultural heritage lead to varied land use practices that significantly

influence landscape patterns and their temporal evolution,

warranting in-depth investigation. Therefore, this study focuses

on Lushui City to explore the dynamic changes in multi-scale

landscape patterns and analyze the optimal spatial resolution

required in this complex terrain with sensitive human-nature

interactions. Such research is crucial for understanding the

interactions between humans and landscapes within large-scale

geographical contexts and for developing scientifically informed

ecological protection strategies.

This study used long-term land classification data from 1986 to

2022. We selected key landscape pattern indices to analyze the grain

effect of landscape patterns at multiple scales. Through fitting function

analysis, we explored the grain response characteristics of landscape

patterns across different scales and inferred the optimal grain

thresholds for each spatial scale. This research provides a

foundational understanding and reference for spatial grain selection

in subsequent landscape pattern optimization, ecosystem function

analysis, forest landscape restoration, and ecological rehabilitation. It

also highlights the role and importance of the grain effect in

landscape changes.
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2 Materials and methods

2.1 Study area

Lushui City (99°09’ – 99°34’E, 25°33’ – 26°32’N) is located in

Nujiang Prefecture in the northwest of Yunnan, China (Figure 1).

With a maximum horizontal extent of 58 km, a vertical span of

108 km, and covering an area of 3203.04 km² (Li et al., 2019).

Lushui City experiences an Indian Ocean tropical monsoon climate.

Its unique topography creates a three-tier vertical climate,

encompassing a river valley subtropical zone, a mountain

temperate zone, and a high-altitude frigid zone. Overall, the

climate features a small annual temperature difference, significant

daily temperature fluctuations, noticeable dry and wet season

variations, and indistinct seasonal changes (Li et al., 2021).

Lushui City is located at the core area of the Nujiang River

Basin, a crucial high mountain and deep valley topographic region.

As a typical high-mountain gorge region, approximately 94% of the

city’s terrain is mountainous, with forests constituting the major

land use type. It is designated as a national key ecological function

area for soil and water conservation and serves as a pilot base for

soil and water conservation efforts in China. The Nujiang River

basin is a region of significant heterogeneity and diversity on a

global scale, featuring unique alpine gorge landscapes and river

valley ecosystems. The landscape patterns and their dynamic

changes within the basin directly impact regional ecosystem

services such as water conservation and soil retention.

Additionally, these patterns significantly shape the area’s

biodiversity and the complexity of its ecological processes. With

the annual increase in forest coverage in Lushui City, the ecological

environment has significantly improved. Lushui City has a

population of approximately 200,000 people, primarily composed

of Han and various ethnic minorities, with a high proportion of

minority populations contributing to its rich cultural diversity.

Economically, Lushui City is predominantly agricultural, with key

crops including rice, corn, and wheat, alongside significant

cultivation of tea, walnuts, and edible fungi as cash crops. In

recent years, the development of the tourism industry,

particularly eco-tourism centered around high mountain gorges

and ethnic culture, has rapidly emerged as a crucial driver of local

economic growth.
2.2 Data collection and processing

The research data spans from 1986 to 2022 and comprises

Landsat images sourced from the United States Geological Survey

(USGS). These images underwent essential preprocessing steps,

such as radiometric calibration, atmospheric correction, subset,

and mosaicking, to obtain the image data for Lushui City in 1986,

1996, 2004, 2010, 2016, and 2022. The bad tape problem in the

Landsat 7 satellite image was fixed with the “landsat_gapfill” plugin

in ENVI software. All images were processed using the WGS-1984

coordinate system, and specific details about each image are

provided in Table 1.
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Taking into account the current state of the study area and

guided by principles of practicality, scientific rigor, and

comprehensiveness, the research categorized land use in the study

region into five main groups: cultivated land, forest land, grassland,

construction land, and water bodies. This classification followed the

system provided by the China Academy of Sciences Resource and

Environmental Science Data Center for land use remote

sensing monitoring.

The widely utilized Maximum Likelihood Classification method

was applied in the computer interpretation process, with ground

truth data utilized for accuracy verification during the primary

classification (Valjarević, 2024). To maintain an accuracy level

exceeding 80%, a human-machine interactive interpretation mode

was employed for visual interpretation and correction.

Utilizing remote sensing and Google Earth historical images, we

selected 100 sample points per year in each study area. The ENVI

5.3 software platform was employed for analysis, and accuracy

verification was performed using the evaluation module based on
Frontiers in Ecology and Evolution 04
the confusion matrix (Zhang et al., 2017). The results confirm that

the Kappa coefficients for various periods exceed 0.8, ensuring an

overall accuracy consistently above 85% (Tables A1–A6).
2.3 Landscape pattern indices

This study utilized landscape pattern analysis software to

compute landscape indices and analyze the spatial patterns of

land use in Lushui City at two levels: landscape and landscape

class. At the class-level indexes, the study identified features such as

the quantity and spatial configuration of individual patch types. At

the landscape level, the main identified features encompassed the

spatial patterns of the entire landscape mosaic, including

composition and configuration. To comprehensively explore the

relationship between various patches in the city and urban

development changes in Lushui City, the study selected

landscape-level indices, namely Cohesion (COHESION),
TABLE 1 Data source and detailed information.

Image ID Data source Imaging time Sensor Path-Row
Spatial

resolution (m)
Cloud

cover (%)

LT51320421986345BJC01 Landsat5 1986-12-11 TM 132/42 30 11

LT51320421996357CLT00 Landsat5 1996-12-22 TM 132/42 30 17.63

LT51320422004363BJC00 Landsat7 2004-12-28 ETM+ 132/42 30 0.67

LE71320422010355EDC00 Landsat7 2010-12-21 ETM+ 132/42 30 0.1

LC81320422016364LGN01 Landsat8 2016-12-29 OLI 132/42 30 1.2

LC81320422022332LGN00 Landsat8 2022-11-28 OLI 132/42 30 0.19
FIGURE 1

Location and the digital elevation model (DEM) of the study area.
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Shannon’s Diversity Index (SHDI), Perimeter-Area Fractal

Dimension (PAFRAC), Edge Density (ED), Patch Density (PD),

and Largest Patch Index (LPI). At the class level, the study

considered four aspects: Percentage of Landscape (PLAND),

Landscape Shape Index (LSI), Total Edge (TE), and Aggregation

Index (AI). The calculation formulas and significance of landscape

pattern indices are presented in the Table 2.
2.4 Spatial grain analysis

2.4.1 First scale domain
This study explores granularity, focusing on the spatial resolution

of remote sensing images and the size of the analysis data raster. Using
Frontiers in Ecology and Evolution 05
annual 30m-resolution remote sensing images of Lushui City, the

research explores the sensitivity of landscape pattern indices to

granularity variations across different spatial resolutions. Landscape

classification vector maps were imported, vector data were rasterized,

and resampling was conducted through the dominant type method

within a granularity range of 30-1000m (Zhao et al., 2003). Among the

selected 25 granularity sizes, each raster was imported to calculate

landscape pattern indices, enabling a comprehensive analysis of the

granularity effect in Lushui City. The first scale domain, where

landscape indices change with grain size, holds the most landscape

feature information. Determined by the first inflection point on the

response curve of landscape indices, the first scale domain is the region

between the two inflection points (Zhao et al., 2003). To ensure efficient

data processing and present rich landscape feature information in

landscape pattern studies, the spatial granularity slightly larger than the

minimum granularity value within the first scale domain should be

chosen as the suitable granularity for the study area.

2.4.2 Information loss evaluation model
In the resampling of land-use landscape data to coarsen

granularity, alterations in the boundaries and perimeters of raster

data occur, causing changes in adjacent land class attributes and

resulting in the loss of effective information. Hence, in landscape

pattern analysis, it is recommended to choose a scale domain with

minimal and relatively stable landscape information loss. To quantify

the information loss for different landscape classes during data

resampling, the absolute values of landscape information losses are

summed (Zhai et al., 2018). Following this principle, the information

loss evaluation model is expressed as follows:

P = 100*
M
Ab

�
�
�
�

�
�
�
�

(1)

M =o
n

i=1
Agi − Abi

�
�

�
� (2)

where: P represents the percentage of information loss for a

specific landscape pattern index; M is the total amount of

information loss for that landscape pattern index; Ab is the sum

of baseline data values (30m) for all landscape types; Agi is the

corresponding raster data value for the ith landscape type for that

index; Abi is the baseline data value (30m) for the i th landscape type

for that index; n is the total number of land-use landscape types.
3 Results

3.1 Land use changes in Lushui City from
1986 to 2022

3.1.1 Changes in land use structure
According to Table 3, the land use structure changes in Lushui

City from 1986 to 2022 exhibit the following characteristics: (1)

Cultivated land has shown an overall increase, expanding its

proportion from 11.75% to 20.25% of the total area. Forest, a

major land use type in Lushui City, has decreased from 2169.29
TABLE 2 Ecological significance of landscape pattern indices.

Type Landscape
pattern indices

Ecological
significance

Landscape-
level

Cohesion (COHESION)

The aggregation and
dispersion of patches in the
landscape, and its value is
in the range of –1 ~ 1.

Shannon’s Diversity
Index (SHDI)

The biodiversity within a
landscape, providing a
measure of ecological
complexity and resilience to
environmental changes.

Perimeter-Area Fractal
Dimension (PAFRAC)

The non-integer dimension
of the irregular geometric
shape of the landscape,
reflecting the complexity of
the landscape shape.

Edge Density (ED)

A direct response to the
degree of landscape
fragmentation, and the
higher the density of the
boundary, the higher the
degree of
landscape fragmentation.

Patch Density (PD)
The ratio of patch number
to patch area in
landscape types

Largest Patch Index (LPI)
The area of the largest
patch in a landscape or
landscape class

Class-level

Percentage of
Landscape (PLAND)

Various types of land
accounted for the
proportion of the total area,
the largest area for the
main landscape.

Number of patches (NP)
The number of patches, or
the number of certain types
of landscape patches.

Landscape Shape Index (LSI)
The complexity level of
patch shapes.

Aggregation Index (AI)

Connectivity between
landscape-type patches. The
smaller the value, the more
discrete the landscape.
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km² to 1956.79 km². However, during the periods 1986-1996 and

2010-2016, forest increased, possibly due to afforestation projects.

(2) Grassland area declined from 1986 to 1996, saw an increase

from 1996 to 2010, and then decreased again, constituting

approximately 14% overall. (3) Construction land witnessed a

significant increase, growing from 27.25 km² in 1986 to 102.30

km² in 2022, reflecting urbanization characteristics. (4) The overall

proportion of water bodies is relatively low, exhibiting a decrease

followed by an increase during the study period.

3.1.2 Land use transfer characteristics
Between 1986 and 2022, Lushui City witnessed frequent transitions

among different land use types, primarily due to significant conversions

involving forest land, cultivated land, and grassland (Figure 2). During

the periods 1996-2004, 2004-2010, and 2016-2022, forest converted to

cultivated land by 196.05 km², 170.88 km², and 159.39 km²,

respectively. In the years 2016-2022, construction land underwent

rapid expansion, predominantly transitioning from forest (27.99

km²) and cultivated land (25.25 km²). This phase marked an

accelerated urbanization process, characterized by a development

pattern focused on incremental land use, resulting in extensive

expansion of the central urban area and substantial encroachment of

construction land onto cultivated land and other land types.
3.2 The spatiotemporal scale effect of
landscape pattern indices

3.2.1 Scale effect of landscape-level landscape
pattern indices

Changes in landscape granularity can modify patch boundaries,

segmentation, or fusion, thereby altering landscape patterns and

leading to corresponding adjustments in the indices used to

characterize these patterns.

At the temporal scale, discerning the consistency of landscape

index response curves across six periods allows for the classification

of indices into three types: Type I exhibits predictable responses to

scale changes, exemplified by PD and ED; Type II demonstrates

step-like responses that are less predictable, like PAFRAC and
Frontiers in Ecology and Evolution 06
COHESION; Type III displays instability and lacks consistent

scale relationships during scale changes, typified by LPI and SHDI.

From Figure 3, it is evident that both PD and ED in Lushui

City’s land use landscapes follow a decreasing “L” trend as

granularity increases, displaying a strong fit with power functions,

with R2 exceeding 0.96 (Table A7). This highlights the high

predictability of these indices, facilitating accurate extrapolation

or interpolation of landscape features at various spatial scales. PD

notably declines as granularity increases, particularly before

reaching 100m, with a lesser decrease between 100-200m, and

stabilization occurring after 200m, with minimal granularity-

induced fluctuations. Similarly, ED experiences rapid decreases

within the 30-100m granularity range, followed by gradual

flattening beyond 500m. This trend suggests that as granularity

rises, smaller patches within the landscape merge gradually with

dominant ones, thereby reducing landscape fragmentation,

promoting a more uniform landscape shape, and enhancing the

dispersion of different land use types. The consistency in PD and

ED variations across different periods indicates that the scale effects

of these two indices remain unaffected by time.

Type II PAFRAC demonstrates a step-like increase with

increasing granularity, with the first inflection point occurring

between 60-100m. At a granularity of 100m, it undergoes a

gradual increase across all years, albeit with slight variations.

Before 200m, the most significant growth occurred in 2010, while

after 250m, the increase peaked in 1996, with 2016 showing the

most fluctuation between 400m-800m. In contrast, COHESION

exhibits a step-like decrease with increasing granularity, with more

pronounced changes at smaller scales. The first inflection point for

Patch Cohesion ranges from 40-110m across different years, with

notable fluctuations observed in 2022.

Type III LSI shows varying ranges of the first inflection point,

spanning from 40-450m across different years. Unlike other indices,

the inflection points for Landscape Shape Index are relatively broad

and shift over time, with the first inflection point occurring at 450m

in 2022. This suggests significant variability in the response of

Landscape Shape Index to granularity across different periods.

SHDI displays the first inflection point ranging from 120m to

225m in different years.
TABLE 3 Land use structure in Lushui city from 1986 to 2022.

Cultivated land Forest Grassland Construction land Waterbody

Area
Percentage

(%)
Area

Percentage
(%)

Area
Percentage

(%)
Area

Percentage
(%)

Area
Percentage

(%)

1986 363.39 11.75 2,169.29 70.16 516.63 16.71 27.25 0.88 15.19 0.49

1996 395.02 12.78 2,268.77 73.38 382.99 12.39 35.64 1.15 9.39 0.30

2004 475.87 15.39 2,139.76 69.21 424.95 13.75 43.07 1.39 7.90 0.26

2010 609.13 19.70 1,915.91 61.97 508.56 16.45 49.70 1.61 8.25 0.27

2016 478.35 15.47 2,087.96 67.54 454.32 14.70 61.65 1.99 9.13 0.30

2022 625.96 20.25 1,956.79 63.31 394.17 12.75 102.30 3.31 11.83 0.38
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3.2.2 Scale effects of class-level landscape
pattern indices

At the class level (Figure 4), PLAND exhibits irregular changes

with increasing granularity. Generally, PLAND for grassland,

forest land, cultivated land, construction land, and water bodies

shows minimal variation with granularity before 150m, followed

by increased fluctuations after 150m. PLAND responses to scale
Frontiers in Ecology and Evolution 07
differ across different years. TE and LSI decrease with increasing

granularity for all five land types, following predictable power

curves for grassland, cultivated land, forest land, and construction

land, with significant reductions in variation after a granularity of

100m and a flattening trend after 200m. Comparatively, despite

varying initial granularity values (30m) for these land types across

different years, their responses to granularity exhibit consistent
FIGURE 2

Land types transfer map.
FIGURE 3

Landscape level exponential granularity response curve. (A) Patch Density (PD); (B) Cohesion Index (COHESION); (C) Shannon’s Diversity Index
(SHDI); (D) Edge density (ED); (E) Largest Patch Index (LPI); (F) Perimeter Area Fractal Dimension (PAFRAC).
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trends and magnitudes over time, indicating that the scale

response of these indices is not influenced by time. The TE of

water bodies shows a step-like decreasing trend with increasing

granularity, with most years exhibiting an inflection point around

120m, while the first inflection point for water body LSI ranges

from 60-120m, reflecting the sensitivity of edge indicators for this

land type to scale changes compared to others. AI shows a two-

stage response to scale, with slight variations between different

land types. Grassland, cultivated land, and forest land exhibit a

significant decline before 200m, followed by a slowing trend after

200m, with a few inflection points. Construction land and water

bodies enter a stable period around 100m, with both frequency

and magnitude of index changes increasing with scale. The

variations in these indices for different land types also differ

across different years.
3.3 Determination of suitable granularity
for landscape pattern analysis

3.3.1 First scale domain
By employing the first scale domain method to analyze the

granularity response curves of landscape-level indices in Lushui

City across different years, we found consistent scale inflection

points for the chosen six indices at 100m and 200m. Similarly,

through an examination of the granularity response curves of

class-level indices across various land use types, we determined

the first scale domain and appropriate granularity range for each

index, as detailed in Table 4. The first scale domain is categorized

into two ranges: 30-100m and 30-200m. Consequently, we

conclude that the optimal scale for landscape pattern analysis in

Lushui City is 100m.
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3.3.2 Information loss evaluation model
This study investigated the impact of granularity on the

landscape information loss of 10 landscape pattern indices in

Lushui City from 1986 to 2022, as illustrated in Figure 5.

Generally, the information loss of each index increases with

granularity, but they display diverse trends. Indices like PD, ED,

TE, and LSI witness rapid information loss as scale increases. PD

and LSI stabilize after 300m, while ED and TE plateau after 400m.

Thus, a narrower scale range is preferable for these indices.

PAFRAC and AI show fluctuating information loss with scale,

with the first inflection point typically around 100m, followed by

stable fluctuations after 450m. Across different years, COHESION,

SHDI, and PLAND exhibit minor fluctuations within the initial

100m range but experience rapid information loss thereafter. The

information loss curves of LPI vary notably among different years,

with most indicating the first inflection point around 100m. Overall,

all landscape indices demonstrate relatively stable changes and

minimal information loss around 100m. Based on the analysis of

the information loss evaluation model, the suitable granularity

range for landscape pattern analysis is determined to be 100m.
3.4 The spatiotemporal variation of
landscape pattern indices in Lushui City

3.4.1 The spatiotemporal variation of landscape
pattern indices at the landscape level

We selected a granularity of 100 meters as the most suitable

scale for analyzing landscape pattern changes in Lushui City.

Consequently, we conducted a spatiotemporal analysis of

landscape pattern indices for six periods using a granularity of

100 meters. The analysis results of six landscape indices at the

landscape level, including PD, ED, PAFRAC, COHESION, LPI, and

SHDI, in the study area are shown in Figure 6.

PAFRAC shows overall stability, peaking at 1.60 in 2010,

reflecting the most intricate landscape shapes during that period.

Similarly, ED reached its peak in 2010, indicating significant

landscape fragmentation in Lushui City. PD fluctuated between

1.54 and 1.99, with an initial decline, subsequent increase, and

another decline. PD steadily rose from 1996 to 2016, hitting a peak

of 1.991 in 2016. SHDI declined from 1986 to 1996, then rose to a

peak of 1.019 in 2010 before gradually decreasing. COHESION and

LPI followed similar trends from 1986 to 2022, peaking before 1996,

declining steadily until 2010, and then experiencing a slight

increase. These trends suggest reduced human impact on the

landscape before 1996, increasing interference thereafter, and

some improvement post-2010.

In summary, Lushui City’s landscape exhibited a high level of

cohesion and connectivity before 1996, with minimal human

interference. However, after 1996, the landscape began to

degrade, showing increased fragmentation, reaching its peak in

2010, before gradually recovering. This shift could be attributed to

the city’s urban development trajectory. Following 1996, the
TABLE 4 The first scale domain of each index.

Landscape
pattern
indices

The range of the
first inflection

point

The suitable
granularity

range

Landscape-
level

PD 100m 30-100m

ED 100m 30-100m

PAFRAC 60-100m 30-100m

COHESION 40-110m 30-110m

LPI 40-450m 30-450m

SHDI 120-225m 30-225m

Class-level

PLAND 150m 30-150

TE 100-120m 30-120m

LSI 60-120m 30-120m

AI 100-200m 30-200m

Total 100m
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economy underwent rapid growth, accelerating urbanization and

causing ongoing destruction and encroachment on natural

landscapes. However, after 2010, the construction of ecological

civilization was incorporated into the five-in-one overall layout of

socialism with Chinese characteristics. Lushui City has deeply

implemented this initiative, commencing vigorous efforts to

protect the environment, leading to the restoration of landscapes.
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3.4.2 The spatiotemporal variation of landscape
pattern indices at the class level

The characteristics of different landscape types vary

significantly (see Figure 7). Forest consistently dominates Lushui

City’s landscape, having the highest PLAND values, followed by

cultivated land and grassland, whereas construction land and

water bodies exhibit lower PLAND values. Forest and cultivated
FIGURE 4

Landscape type horizontal exponential granularity response curve. (A) PLAND-Cultivated land; (B) PLAND-Forest; (C) PLAND-Grassland; (D) PLAND-
Construction land; (E) PLAND-Waterbody; (F) TE-Cultivated land; (G) TE-Forest; (H) TE-Grassland; (I) TE-Construction land; (J) TE-Waterbody; (K)
LSI-Cultivated land; (L) LSI-Forest; (M) LSI-Grassland; (N) LSI-Construction land; (O) LSI-Waterbody; (P) AI-Cultivated land; (Q) AI-Forest; (R) AI-
Grassland; (S) AI-Construction land; (T) AI-Waterbody.
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land both peaked in TE values in 2010, while grassland reached its

maximum in 1986. Regarding LSI, grassland and cultivated land

have relatively larger indices, indicating more irregular patch

shapes in these two land types. Water bodies consistently have

the smallest and relatively stable LSI values over different years,

suggesting relatively simple patch shapes. Conversely, there is an

increasing trend in construction land’s LSI, indicating a gradual

shift towards irregular patch shapes in this land type. Forest and

cultivated land show relatively stable changes in AI from 1986 to

2022, while grassland shows a trend of gradual enhancement,

indicating strong spatial aggregation. Construction land and water

bodies fluctuate over different years, primarily due to their
Frontiers in Ecology and Evolution 10
susceptibility to human disturbance, leading to instability in

their aggregation levels.
4 Discussion

4.1 Response of landscape metrics to
changing grain size

This study examines variations in landscape indices across

multiple grain sizes, encompassing both landscape and class

levels, to provide a comprehensive portrayal of analyzed
FIGURE 5

Information loss of landscape pattern indices for different grain sizes. (A) PD; (B) ED; (C) PAFRAC; (D) COHESION; (E) SHDI; (F) LPI; (G) PLAND; (H)
TE; (I) LSI; (J) AI.
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landscapes. We selected 10 commonly used landscape indices,

including six at the landscape level and four at the class level.

Notably, indices such as PD and ED at the landscape level, and LSI

and TE at the class level, decreased as grain size increased. This

trend is attributed to patch fusion with larger grain sizes, reducing

patch numbers, weakening boundary effects, and decreasing shape

indices. Conversely, indices like COHESION at the landscape level

and AI at the class level showed a stepped downward trend due to

enlarged grain sizes blurring patch boundaries and merging smaller

patches. This disrupts landscape connectivity, reducing overall

cohesion and aggregation. Larger grain sizes also tend to

homogenize landscape appearance, potentially dispersing patch

type distributions and further lowering COHESION and AI

values. Furthermore, changes in grain size influence patch type

dominance, potentially reducing landscape diversity and

homogenizing aggregation areas. This observation aligns with

findings by Zhang et al (Zhang et al., 2020). On the other hand,

PAFRAC exhibited a stepped upward trend with increasing grain

size, consistent with Qiao et al.’s findings (Qiao et al., 2022),

validating our results. LPI and SHDI at the landscape level, as

well as PLAND at the class level, did not exhibit regular changes

with scale variations. This aligns with observations of landscape

granularity effects in coastal wetlands by Peng et al. in Yancheng

(Tian et al., 2019). LPI increased with grain size due to patch

merging up to a certain threshold, beyond which the largest patch

stabilized, fluctuating within a specific range. The inconsistent scale

relationship for indices like SHDI and PLAND may be due to
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Lushui City’s dominance by forest landscapes, comprising over 60%

of the area, which minimizes the impact of grain size changes on

landscape diversity and class proportions.

Due to the nonlinear ecological processes and interactions

within landscapes, the changes in landscape pattern indices may

exhibit different forms with increasing scale (Li et al., 2023).

Autocorrelation within landscapes, characterized by similar

structures across spatial scales, may lead to power-law curve

changes in some indices (Li et al., 2022). However, the inherent

diversity and heterogeneity within landscapes can result in irregular

or unpredictable trends in response to scale changes, influenced by

factors like terrain, land use, and natural environment variations

across regions (Wu et al., 2000).

This study combines qualitative and quantitative methods to

determine the optimal landscape analysis granularity for Lushui City,

pinpointing it at 100 meters. These methods have been extensively

validated in other regions like Guiyang, Chongqing, and Shanghai

(Wang et al., 2021; Guan et al., 2022; Hu et al., 2023). Despite a

slightly larger optimal granularity compared to previous studies

within a similar area range, this variation is attributed to

differences in regional landscape dynamics and characteristics (Ren

et al., 2018; Wang and Li, 2021). Notably, Lushui City’s landscape is

predominantly forested, with forest landscapes showing lower

sensitivity to scale changes compared to other land types.

Moreover, our long-term analysis of landscape indices considers

variations across different time points, justifying the selection of a

slightly larger optimal granularity than that of a single time series.
FIGURE 6

Spatiotemporal variation of landscape pattern indices at landscape level in Lushui City.
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4.2 Patterns of landscape pattern changes

The changes in land use are easily driven by multiple factors.

Land use changes in Lushui City are closely related to local policies.

The main land use type in Lushui City is forestland. During the

study period, land use transitions primarily occurred among

forestland, cultivated land, and grassland. From 1986 to 2010, the

area of cultivated land increased. This was because during this

period, Lushui City’s economy was predominantly agricultural,

directly promoting the expansion of agricultural land in the

region. From 2010 to 2016, there was an increase in forestland

area while cultivated land area decreased. During this period,

Lushui City responded to the national policy of Grain for Green

Program by initiating reforestation projects (Li et al., 2021). From

2016 to 2022, Lushui City actively responded to the national call for

poverty alleviation and, as one of the deeply impoverished areas,

implemented large-scale territorial spatial transformation actions.

In this series of measures, the advancement of projects such as

relocation and road construction directly led to a sharp increase in

construction land area (Li, 2022). While accelerating urbanization,

Lushui City also closely followed the national guidelines for

protecting cultivated land, making the protection and

construction of high-standard farmland a major task (Yang et al.,
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2023). Consequently, cultivated land area was restored during

this period.

The changes in land use types are the main reasons for the

transformation of landscape patterns, and quantitatively studying

the evolution of landscape patterns is a necessary process to

understand the consequences of land use changes (Nie et al.,

2022; Ma et al., 2023). Among the selected indicators, PAFRAC,

ED, and SHDI show consistent trends: they decreased from 1986 to

1996, increased from 1996 to 2004, and then continued to decrease.

In contrast, COHESION and LPI changed oppositely. It can be

inferred that Lushui City experienced two significant turning points

in landscape pattern changes, namely in 1996 and 2010. In 1996,

COHESION and LPI reached their highest values, indicating good

connectivity and clustering of species in the landscape, suggesting

minimal human interference in Lushui City’s landscape before this

time (Yang et al., 2022b). From 1996 to 2010, PAFRAC, ED, and

SHDI increased, indicating increased complexity in landscape patch

shapes, fragmentation, and heterogeneity, often associated with

human activities such as land development and urbanization

processes. The unreasonable expansion of urbanization led to

continuous natural patches becoming discontinuous patches (Luo

et al., 2022), resulting in landscape degradation and increased

overall fragmentation after 1996. After 2010, urban development
FIGURE 7

Spatiotemporal variation of landscape pattern indices at the class level of Lushui City. (A) PLAND; (B) TE; (C) LSI; (D) AI.
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in Lushui City entered a planning phase. While advancing

urbanization, the city also emphasized ecological civilization

construction, and vegetation restoration not only changed the

composition and spatial structure of the landscape types but also

improved regional ecosystem functions (Huang et al., 2022).

Urbanization drives modernization and economic growth,

propelling regional economic and social advancement. Yet, it also

triggers swift alterations in landscape dynamics (Hong et al., 2021).
4.3 Uncertainty

This study offers insights into the long-term landscape analysis

scale in Lushui City. However, due to data limitations and real-

world constraints, uncertainties persist. Initially, Landsat satellite

images with a 30-meter resolution were utilized, and land

classification was performed through visual interpretation, posing

challenges in ensuring classification accuracy. Nonetheless, the

accuracy of land use classification significantly influences the

sensitivity of landscape indices (Liu et al., 2021). Lower spatial

resolution images may compress or merge individual features,

thereby affecting the calculation of landscape pattern indices. For

instance, in sparsely populated urban areas, a 30-meter resolution

may lead to four times as many buildings compared to a 15-meter

resolution (Bhatta et al., 2010). Therefore, future studies could

employ higher resolution images, such as 10m or 5m, coupled with

field detection points to enhance land classification accuracy.

However, it’s crucial to acknowledge that while high spatial

resolution images enhance interpretability, they may generate

numerous patches, posing challenges during classification

algorithm application. Moreover, heightened heterogeneity in

high-resolution images significantly impacts spatial correlation

and heterogeneity analysis.

In terms of indicator selection, although the landscape pattern

indices used in this study provide information about landscape

organization, form, connectivity, and diversity, which can describe

and quantify the spatial structure and pattern characteristics of

landscapes for analyzing the scale response of landscape features,

they have overlooked the interaction relationships between

landscape patches. These relationships, known as topological

indices (Zhang et al., 2023), have been proven to have significant

impacts on landscape connectivity and ecological service functions.

Future research incorporating topological indices will help in

understanding the variations in landscape ecological processes at

different scales.

This study focuses on Lushui City as a representative area of

alpine gorge watershed, deeply analyzing how land use changes

trigger significant changes in landscape patterns across temporal

and spatial dimensions. However, it is worth noting that although

the research has touched upon the surface changes in landscape

patterns, it has not yet conducted a thorough and systematic

quantitative analysis of the core factors driving these changes.

Existing research has clearly indicated that hydrological processes,

climatic conditions, and extensive human activities all act as key

drivers that can profoundly impact landscape patterns (Yang et al.,
Frontiers in Ecology and Evolution 13
2022a; Kisvarga et al., 2023; Xiong et al., 2023). These drivers, each

independently and interwoven with others, collectively shape the

evolutionary trajectory of regional landscapes.

In light of this, future research should strive to fill these gaps by

constructing scientifically sound quantitative models and indicator

systems to conduct in-depth analyses of the driving factors behind

landscape patterns. This effort will not only help us better

understand the internal logic and external manifestations of

landscape evolution in high mountain gorge areas but also

provide robust scientific foundations and data support for

regional ecological conservation, land use planning, and

sustainable development strategies.
5 Conclusion

This study, conducted using remote sensing images spanning

from 1986 to 2022, employed the first scale domain and an

information loss model to determine the optimal granularity for

long-term landscape analysis. It also examined the spatiotemporal

changes of landscape pattern indices. The key findings are

summarized as follows:
1. The primary land type in Lushui City is forest. During the

agricultural dominance period (1986-2010), cultivated land

increased. Following the implementation of the policy to

Grain for Green Program (2010-2016), forest expanded

while cultivated land decreased. During the high-speed

urbanization phase from 2016 to 2022, the area of

construction land sharply increased. However,

concurrently, policies to protect cultivated land

contributed to a partial recovery in cultivated land area.

The land changes in Lushui City have been significantly

influenced by policies.

2. Due to the increased grain size leading to patch fusion and

weakened boundary effects, four indicators (PD, ED, TE, and

LSI) show a predictable “L” shaped decreasing trend with

grain size variation, largely unaffected by time. The

homogenization and singularization of landscapes caused

by larger grain sizes result in two indicators (COHESION,

AI) exhibiting a stair-like declining trend, while PAFRAC

shows a stair-like upward trend, with lower predictability

and slight differences across different temporal scales. Three

indicators (LPI, SHDI, PLAND) show no discernible pattern

with grain size changes. Therefore, when conducting

landscape pattern analysis, priority may be given to

selecting indicators that demonstrate predictability.

3. The suitable granularity of the index selected in this study is

between 30-200m., with variations observed across

different years. In 2022, landscape indices showed a more

pronounced response to scale changes. At the class level,

water bodies in Lushui City are the most sensitive to scale

effects. Combining with an information loss model,

conducting long-term landscape analysis of Lushui City

at a 100-meter scale is most suitable, as it reduces data
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Fron
volume while maintaining a relatively low amount of

information loss. Landscape indices exhibit significant

scale effects. Choosing appropriate scales and landscape

indices facilitates further analysis of landscape patterns.

4. This study, based on landscape pattern indices such as

PAFRAC, ED, SHDI, COHESION, and LPI, reveals two

critical turning points in the landscape pattern changes in

Lushui City: 1996 and 2010. Before 1996, landscape

connectivity and clustering were relatively high. From

1996 to 2010, with increasing human activities, landscape

fragmentation intensified, and heterogeneity increased.

However, since 2010, urban development has entered a

planning phase, focusing on ecological civilization

construction, which has improved ecosystem functions.

The damage to Lushui City’s landscape due to urban

construction and land changes has been somewhat

restored after reasonable planning and ecological

conservation efforts.
In essence, this study sheds light on effective land management

and ecological conservation strategies in Lushui City through a

thorough examination of landscape pattern indices and scale effects

over an extensive time frame. It furnishes a logical foundation for

harmonizing ecological preservation with sustainable development.
Data availability statement

Publicly available datasets were analyzed in this study. The data

sources and access links are indicated in the text. Requests to access

these datasets should be directed to 20230025@ynu.edu.cn.
tiers in Ecology and Evolution 14
Author contributions

YW: Conceptualization, Writing – original draft. XY: Formal

analysis, Writing – review & editing. QF: Data curation, Writing –

review & editing. LW: Visualization, Writing – review & editing.

DC: Writing – review & editing. ZY: Methodology, Writing –

review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This research

was funded by Ministry of Education’s Humanities and Social Sciences

Research Fund for Youth Fund, China (20YJC760003).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Bao, H., Ding, Y., and Li, Y. (2015). Study on ecological restoration mode in alpine
valley area—a case study of lushui county of nujiang city. For. Resour. Manage. 0, 103.
doi: 10.13466/j.cnki.lyzygl.2015.05.018

Bhatta, B., Saraswati, S., and Bandyopadhyay, D. (2010). Urban sprawl measurement
from remote sensing data. Appl. Geogr. 30, 731–740. doi: 10.1016/j.apgeog.2010.02.002

Chen, X., and Shi, X. (2018). Geoscience landscape division and tourism zonation in
the mid-southern section of the Hengduan Mountains, eastern Qinghai-Tibet Plateau.
J. Mt. Sci. 15, 894–917. doi: 10.1007/s11629-017-4529-2

Dadashpoor, H., Azizi, P., andMoghadasi, M. (2019). Land use change, urbanization,
and change in landscape pattern in a metropolitan area. Sci. Total Environ. 655, 707–
719. doi: 10.1016/j.scitotenv.2018.11.267

Fang, S., Zhao, Y., Han, L., and Ma, C. (2017). Analysis of landscape patterns of arid
valleys in China, based on grain size effect. Sustainability 9, 2263. doi: 10.3390/su9122263

Fu, B., Chen, L., Ma, K., and Wang, Y. (2001). Theory and application of landscape
ecology (Beijing, China: Science Press).

Guan, D., Jiang, Y., and Cheng, L. (2022). How can the landscape ecological security
pattern be quantitatively optimized and effectively evaluated? An integrated analysis
with the granularity inverse method and landscape indicators. Environ. Sci. pollut. Res.
29, 41590–41616. doi: 10.1007/s11356-021-16759-1

Gustafson, E. J. (1998). Quantifying landscape spatial pattern: what is the state of the
art? Ecosystems 1, 143–156. doi: 10.1007/s100219900011

Hong, T., Yu, N., Mao, Z., and Zhang, S. (2021). Government-driven urbanisation
and its impact on regional economic growth in China. Cities 117, 103299. doi: 10.1016/
j.cities.2021.103299

Hu, C., Wu, W., Zhou, X., andWang, Z. (2023). Spatiotemporal changes in landscape
patterns in karst mountainous regions based on the optimal landscape scale: A case
study of guiyang city in guizhou province, China. Ecol. Indic. 150, 110211. doi: 10.1016/
j.ecolind.2023.110211

Huang, J., Xu, H., Duan, X., Li, X., and Wang, P. (2020). Activity patterns and
controlling factors of debris flows in the Upper Salween Alpine Valley. Nat. Hazards
103, 1367–1383. doi: 10.1007/s11069-020-04039-z

Huang, K., Peng, L., Wang, X., and Chen, T. (2022). Integrating landscape
connectivity and natural-anthropogenic interaction to understand karst vegetation
restoration: A case study of guizhou province, China. Front. Ecol. Evol. 10. doi: 10.3389/
fevo.2022.844437

Huang, X., Ye, Y., Zhang, Z., Ye, J., Gao, J., Bogonovich, M., et al. (2021). A township-
level assessment of forest fragmentation using morphological spatial pattern analysis in
Qujing, Yunnan Province, China. J. Mt. Sci. 18, 3125–3137. doi: 10.1007/s11629-021-
6752-0

Kisvarga, S., Horotán, K., Wani, M. A., and Orlóci, L. (2023). Plant responses to
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TABLE A.1 Evaluation of computer interpretation accuracy (1986).

1986 Confusion Matrix Accuracy Assessment

Prod. Acc. (Percent) User Acc. (Percent)

Cultivated land 90.28 74.8

Forest 91.59 95.63

Grassland 86.48 96.12

Construction
land

88.74 80.04

Waterbody 91.22 94.91

Total 92.03%

Kappa 0.8816
F
rontiers in Ecology
 and Evolution
TABLE A.2 Evaluation of computer interpretation accuracy (1996).

1996 Confusion Matrix Accuracy Assessment

Prod. Acc. (Percent) User Acc. (Percent)

Cultivated land 83.24 81.47

Forest 88.38 88.55

Grassland 90.15 83.12

Construction
land

86.11
78.01

Waterbody 98.22 100.00

Total 92.45%

Kappa 0.8477
TABLE A.3 Evaluation of computer interpretation accuracy (2004).

2004 Confusion Matrix Accuracy Assessment

Prod. Acc. (Percent) User Acc. (Percent)

Cultivated land 88.22 81.47

Forest 96.64 98.55

Grassland 71.80 83.10

Construction
land

92.48 98.01

Waterbody 97.55 100.00

Total 92.93%

Kappa 0.8477
16
TABLE A.4 Evaluation of computer interpretation accuracy (2010).

2010 Confusion Matrix Accuracy Assessment

Prod. Acc. (Percent) User Acc. (Percent)

Cultivated land 89.03 82.22

Forest 97.09 84.64

Grassland 82.14 97.14

Construction
land

90.34 74.42

Waterbody 98.91 99.93

Total 88.58%

Kappa 0.8286
TABLE A.5 Evaluation of computer interpretation accuracy (2016).

2016 Confusion Matrix Accuracy Assessment

Prod. Acc. (Percent) User Acc. (Percent)

Cultivated land 88.67 67.55

Forest 94.72 94.42

Grassland 73.02 97.39

Construction
land

78.15 64.74

Waterbody 99.67 100.00

Total 88.18%

Kappa 0.8033
TABLE A.6 Evaluation of computer interpretation accuracy (2022).

2022 Confusion Matrix Accuracy Assessment

Prod. Acc. (Percent) User Acc. (Percent)

Cultivated land 92.35 73.17

Forest 97.85 99.06

Grassland 86.61 98.03

Construction
land

70.73 95.42

Waterbody 89.42 99.95

Total 90.75%

Kappa 0.8505
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TABLE A.7 Landscape pattern indices granularity fitting function.

PD ED

Year Function R2 Year Function R2

1986 y   =   2519:2x−1:579 0.996 1986 y   =   579:9x−0:716 0.988

1996 y   =   2468:1x−1:593 0.995 1996 y   =   492:44x−0:704 0.986

2004 y   =   1829:4x−1:534 0.973 2004 y   =   499:26x−0:686 0.965

2010 y   =   2933:6x−1:618 0.981 2010 y   =   649:22x−0:723 0.976

2016 y   =   2881x−1:595 0.985 2016 y   =   619:08x−0:722 0.977

2022 y   =   1847x−1:552 0.990 2022 y   =   482:15x−0:709 0.981
F
rontiers in Ecology and Evolution
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