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Urban low-carbon governance
and ecological efficiency: new
evidence from prefecture-level
cities in China
Jiaqi Liu, Kexin Xu, Dian Jin, Chengliang Wu and Yang Zhang*

School of Economics and Management, Beijing Forestry University, Beijing, China
Introduction: In the search for sustainable development, urban eco-

development is becoming a core agenda for all countries. China’s low-carbon

city pilot (LCCP) policy is an important initiative to promote urban low-carbon

governance. And exploring the direction of LCCP policy is an important step

towards sustainable urban development.

Methods: Super-SBM is employed to calculate urban ecological efficiency using

panel data from 254 prefecture-level cities between 2007 and 2020. The

methods of kernel density estimation and spatial Markov chains are applied to

the spatial analysis of urban ecological efficiency. The spatial analyses examine

the spatiotemporal patterns and dynamic evolving trends of urban ecological

efficiency. Additionally, the multiperiod difference-in-differences method is used

to assess the impact of the LCCP policy on urban ecological efficiency. On this

basis, we apply the method of mechanism analysis to discuss the

influence mechanism.

Results: The results indicate that urban ecological efficiency gradually forms a

continuous spatial clustering pattern, although there is a widening tendency in

the absolute differences. In the subsequent transfer process, the spatial factor

plays a highly significant role. Benchmark regressions and auxiliary robustness

tests demonstrate that the LCCP policy is effective in improving urban ecological

efficiency. Further analysis shows that the effect of LCCP policies on ecological

efficiency can be transmitted by promoting green technology innovation as well

as facilitating a low-carbon transition in the energy mix. The above findings

indicate the presence of the "Green Innovation Effect" and the

"Decoupling Effect".

Discussion: These discoveries enhance the theoretical framework of urban

ecology and offer valuable insights for other regions seeking to implement

low-carbon urban governance.
KEYWORDS

low-carbon city, super-SBM model, ecological efficiency, kernel density estimation,
spatial Markov chain model, multi-period difference-in-differences (DID), green
innovation effect, decoupling effect
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1 Introduction

A thriving and flourishing ecological environment is crucial for

urban sustainable development. Effective environmental systems

form the foundation and core driving force for this development

(Shen et al., 2023a). With the energy crisis deepening, the frequency

of extreme meteorological events increasing, and biodiversity loss

escalating, the pursuit of ecological wellbeing has recently become a

priority in international policy discussions (Ramzan et al., 2023). In

developing countries, weather-related economic losses are nearing

$35 billion per year (Wen et al., 2024a). In China, the heavy

industry and manufacturing-focused development strategy

adopted after the reform and opening up has resulted in

significant urban pollution and ecological damage (Wang and

Wang, 2023). Solutions in policy, technology, and resource

management are needed to address these issues. The creation of

high-quality urban ecosystems has become a global policy

consensus (Xu et al., 2022). Therefore, accelerating the ecological

development of cities and exploring ways to implement the concept

of ecological civilization is one of today’s most urgent and

practical challenges.

Cities play an important role in addressing environmental

problems caused by excessive carbon emissions, which are an

important module in the development of low-carbon governance.

In the process of rapid urbanization, industrialization has become

the driving force behind human agglomeration activities (Wu et al.,

2024). Being one of the countries with rich population

agglomeration activities and rapid urbanization, China has aimed

to peak carbon emissions by 2030 and achieve carbon neutrality by

2060. In 2009, China first proposed integrating “low-carbon city”

concepts with “ecological city” ideals, introducing the concept of a

low-carbon urban environment. Building on early successes, the

National Development and Reform Commission (NDRC) launched

the low-carbon city pilot (LCCP) in 2010, with subsequent strategic

policy phases in 2012 and 2017. These policies aim to enhance

energy efficiency, foster low-carbon industries, allocate resources

with ecological considerations, and establish a sustainable roadmap

amid rapid urbanization (Cheng et al., 2019). What remains is to

consolidate this experimental framework with urban low-carbon

governance and ecological development, advancing existing

theories to address pressing environmental imperatives. It is

therefore of great interest to study whether China’s low-carbon

city policies have been effective in promoting low-carbon

governance and solving environmental problems and whether

their experience can provide references and lessons for

sustainable development in other regions and countries.

To begin the review of efficiency evolution within the

framework of urban ecology theory, it is essential first to outline

urban ecological efficiency. This concept has been proposed and has

been studied more extensively in the existing literature. This

concept aims to establish the appropriate balance needed to

synergize economic growth with resource utilization while

mitigating negative impacts on the environment (Wen et al.,

2024b). Emphasis is placed on achieving sustainable development

across economic, social, and environmental spheres (Sun et al.,

2019; Yasmeen et al., 2020). In this pursuit, this study has traced
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back to a host of techniques developed over the years to measure

ecological efficiency. Some of these include the alternative indicator

approach (Wang et al., 2015), multilevel analysis (Gao et al., 2018),

and the DPSIR model (Sobhani et al., 2023), among others. The

DEA technique stands out for efficiency appraisal, as it can perform

the appraisal without using specific functional form structures,

especially in cases involving multi-input evaluations. For instance,

Wang et al. (2020) examined the detrimental effects of corruption

and resource misalignments on ecological efficiency through a

three-factor model. Additionally, Dong et al. (2020) utilized the

ecological footprint model as input into the environmental

efficiency measurement model using data envelopment analysis to

depict the spatiotemporal characteristics of ecological efficiency

among 30 Chinese provinces. Zhao et al. (2020) applied the super

efficiency slack-based model to measure the ecological efficiency of

286 Chinese cities at a prefecture level, considering industrial

structure distortions to explore possible causal relationships. The

latter is discussed further to provide strong support for the

presented ecological efficiency measurement model in

current studies.

Optimizing the urban ecosystem is a multidimensional and

comprehensive issue, encompassing sustainable land use planning

(Das et al., 2023), enhancement of urban innovation dynamics (Li

et al., 2021), and increasing electricity supply (Fan et al., 2021),

among others. Creating low-carbon cities has become a crucial task

worldwide for addressing environmental issues and tackling the

climate crisis (Haarstad, 2016; Holtz et al., 2018). For instance, in

China, Zhao et al. (2023b) identified characteristic CO2 emission

features of urban clusters and developed collective programs to

reduce emissions based on this information. Cheng et al. (2019)

employed difference-in-differences analysis to examine the

relationship between low-carbon city construction and the

greening of city economies. Chen et al. (2023a) explored urban

sustainable development through the reconceptualization of LCCP

policies. Zhao et al. (2023a) analyzed urban carbon lock-in

attributes and considered potential critical impacts of variations

in LCCP policy. A synthesis of these studies suggests that achieving

a high degree of ecological efficiency is a prominent outcome of

urban low-carbon governance.

By applying the super-efficiency SBM method, we establish an

ecological efficiency analysis index system and design a quasi-

natural experiment based on the pilot low-carbon city policy

proposed by the Chinese government in 2010. At the same time,

this study also handles carbon dioxide emission data to better fit the

connotation of eco-efficiency indicators. This study empirically

investigates whether urban low-carbon governance can effectively

improve eco-efficiency by utilizing panel data from 254 Chinese

cities. This study also utilizes a combination of kernel density

estimation and spatial Markov chain methods to portray the

dynamic evolutionary trend of eco-efficiency. In addition, we

investigate the mechanisms by which low-carbon governance

affects eco-efficiency.

This study is anticipated to contribute to the existing literature

in three key ways. Firstly, it introduces ecological outcomes and

establishes a framework for assessing ecological efficiency,

encompassing 11 indicators of input and output. This approach
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offers a more nuanced definition of urban ecological efficiency,

thereby enhancing the applicability of existing theories. Secondly,

the study analyzes a sample of 254 Chinese prefecture-level cities to

examine the policy effects of urban low-carbon governance from the

municipalities’ perspective. Robustness tests were conducted to

ensure the reliability of the core findings. Finally, the paper

investigates green technological innovation and energy structure

as two mechanism variables that influence the relationship between

low-carbon city policies and ecological efficiency, aiming to

understand their intermediary effects. Regional variations in the

sample were also considered to observe the diverse impacts of LCCP

policies across different geographic locations, including urban

clusters, and resource endowments.

The remainder of this paper is organized as follows. Section 2

provides a critical review of the literature, focusing on the LCCP

policy. In Section 3, the theoretical framework of this investigation

is elaborated in response to the policy background of the LCCP.

Section 4 details the research methodology, including the variables

used and data acquisition methods. Section 5 discusses the

geographical distribution and dynamic characteristics of

ecological efficiency. Finally, Section 6 explores studies on the

causal relationship between the LCCP policy and ecological

efficiency. Section 7 explores the mechanisms by which both

green technology innovations and the energy mix are affected,

and demonstrates the heterogeneity of policy impacts. The final

section of the paper, Section 8, is named “Conclusions and

policy implications.”
2 Literature review and
theoretical analysis

Most of the existing literature suggests that urban low-carbon

governance improves ecological efficiency mainly by promoting

technological innovation and optimizing energy structure. For

instance, Du et al. (2022) indicated that China’s LCCP policy

could impact urban ecological construction by reducing carbon

emissions and improving infrastructure. Song et al. (2020) explored

the influencing mechanism of technological innovation paths but

did not definitively confirm the energy efficiency transmission

channel. Hou et al. (2023) demonstrated the driving role of

environmental regulatory policies and financial incentives in

urban low-carbon governance and urban ecological construction.

Lan et al. (2023) analyzed the operational mechanism of urban

functions in low-carbon cities and carbon emission reduction using

functional data from 178 cities in China. In general, we find that the

LCCP policy has increased urban ecological supply by adjusting

industrial structures, implementing financial incentives, improving

energy efficiency, and promoting urban innovation. However, it

remains questionable whether the policy will continue to increase

urban ecological supply through technological innovation and

energy structure. Therefore, this paper addresses both aspects in

more detail.
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2.1 Green technology innovation and
ecological efficiency

On the one hand, urban technological innovation does not

necessarily benefit the natural environment (Zhao et al., 2023d;

Zhou et al., 2022). The mismatch of factors may lead to

technological innovation that ignores environmental costs,

thereby supporting the “pollution paradise hypothesis.”

Technological innovation and economic freedom can sometimes

pose significant obstacles to improving urban eco-quality

(Sakariyahu et al., 2023). This is why the focus on ecological cost-

oriented green technology innovation has been chosen. Green

technology innovation can be defined as a technological concept

that avoids harmful environmental consequences and aligns with

natural ecosystems to mitigate the adverse impacts of invasive

ecological characteristics (Zhang et al., 2023). It typically includes

pollution inhibition, abatement technology, recycling technology,

ecological process technology, and similar approaches (Xu et al.,

2023). Ozkan et al. (2023) further reveal in their study that the long-

term impact of GTI on CEMS in Chinese cities is positive, using

autoregressive distributed lag simulation in a dynamic framework.

Danish et al. (2023) also demonstrate that simulating

environmentally friendly technological innovation can help

smooth policy effects. In conclusion, green technology innovation

appears more suitable for the LCCP policy, fostering a pattern of

green innovative growth (Stucki and Woerter, 2017).
2.2 Energy structure and
ecological efficiency

It remains to be verified whether low-carbon urban governance

can effectively detach from economic development and energy use

by altering the energy structure to achieve the “decoupling effect.”

Another crucial point is the predominance of research focused on

explaining the formation mechanism of the relationship between

low-carbon governance and energy efficiency. For example, Wang

et al. (2023a) suggest that the enhancement of the low-carbon

governance effect on energy efficiency in cities is delayed.

Additionally, Shen et al. (2023b) established the causality of the

LCCP policy concerning the energy transition index in their

research. Yang et al. (2023a) found that while the LCCP policy

can significantly reduce energy efficiency in industries, this is not

always the case. Nevertheless, much attention is not given to the

energy structure in the city level and thus further empirical research

may be immensely useful to this relationship.
2.3 Research gaps

Through the literature review, we find the following research

gaps in past studies. First, there are few works exploring the

prosperity of ecological output, and most scholars tend to define
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ecological efficiency as merely the correlation between economic

development and the consumption of resources, which in return,

overlooks the need to build up ecology. Second, due to the

limitation of the definition of urban ecological efficiency in

previous studies, it is necessary to explore whether urban low-

carbon governance can still promote ecological efficiency with

richer connotations. Moreover, the existing literature mostly

conducted research from the level of city agglomerations and

provinces, which makes it difficult to provide pilot experiences

for city-level sample units. Third, in our opinion, more solid data

are required to verify the mechanism of IT and energy structure in

the context of LCCP policy as well as ecological efficiency.
3 Policy background and
research hypotheses

3.1 Policy background

The concept of “low carbon” is a relatively new paradigm of this

century, emerging in response to escalating global warming and

energy crises. The term “low-carbon city” was initially introduced

by the UK in 2003 and formally included in the Energy White

Paper. Encouraged by market trends and bolstered by substantial

logistical support from the central government, this concept aims to

promote the widespread adoption of low-carbon technologies

across the industry and construction sectors. Its primary goal is

to foster economic preparedness and establish a sustainable

economic structure. In 2010, China’s NDRC issued the “Notice

on the Pilot Work of Low-Carbon Provinces, Regions, and Cities,”

marking the beginning of efforts to reshape the traditional

urbanization model and lead the way in low-carbon industrial

development. The initial phase focused on pilot cities such as

Tianjin, Chongqing, and Shenzhen. Building on the success of

these initial pilots, NDRC expanded the program nationwide,
Frontiers in Ecology and Evolution 04
garnering positive responses from 2 provinces and 37 cities in

subsequent rounds of policy implementation. In 2017, NDRC

reaffirmed its commitment to low-carbon development with the

“Notice on the Pilot Work of Low-Carbon Communities,”

underscoring the nation’s dedication to sustainable development

and the integration of low-carbon principles into everyday life.

Experiences from various cities have demonstrated that the

transformation to low-carbon cities is a complex and systematic

endeavor, encompassing all urban elements, territories, and

progress (Lin et al., 2022a). This strategic undertaking demands

meticulous planning, coordination, and harmonization. In China,

the objective is to achieve high-quality modernization and

development guided by a low-carbon economic framework.
3.2 Research hypotheses

In essence, Figure 1 presents a conceptual map of one of the

most crucial instruments in research aimed at reducing carbon

emissions. Initially, the LCCP policy focuses on developing and

enhancing low-carbon growth-related policies. It aims to

restructure industries to significantly reduce carbon emissions.

Simultaneously, the policy supports research into managing

carbon emissions operationally.

At the governmental level, low-carbon cities encourage local

governments to shift from pursuing “economic championships” to

prioritizing “ecological performance.” They develop corresponding

low-carbon development plans and formulate policies that support

low-carbon initiatives. Effective incentives guide resources toward

environmentally friendly industries (Wang et al., 2023b). At the

corporate level, the LCCP enhances existing procedures while

advancing low-carbon technologies. It provides incentives for

firms to adopt these technologies and optimizes industrial

frameworks, integrating cleaner, innovative manufacturing and

service sectors. These measures are outlined by Zhao et al. (2023c).
FIGURE 1

Conceptual framework.
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Degrees of influence on different economic and social bodies: At

the community level, the state advocates for low-carbon

consumption patterns and lifestyles. It promotes the use of low-

carbon products and encourages the adoption of low-carbon living

(Zhang and Zheng, 2023). From this perspective, it delves deeply

into various aspects of economic society while addressing the

relationship between energy consumption and economic

development, aiming to construct a new urban ecological

civilization (Wang et al., 2022). In this regard, the paper advances

the following hypothesis:

H1: The LCCP policy can significantly promote urban

ecological efficiency.

Moreover, as indicated in the literature review section, there is a

lack of adequate theoretical evidence regarding the mechanisms

linking green technology innovation and energy structure. The

LCCP is essentially a government-led formal environmental

regulation. From the perspective of neoclassical economics, the

LCCP promotes the adoption of low-carbon technologies to

achieve program initiatives, compelling firms to engage in R&D

focused on these technologies. This stimulation fosters their

expansion into sectors such as energy conservation, environmental

protection, and new energy sources, positioning them as burgeoning

strategic industries. From a market demand perspective, LCCP

policies create investment opportunities in “low-carbon and

emission reduction” initiatives, incentivizing enterprises to adopt

and develop green technologies (Jie and Jiahui, 2023).

Simultaneously, these policies impose stricter admission criteria on

high-emission and high-pollution industries, compelling them to

adjust their business strategies. Porter’s hypothesis also suggests

that appropriate environmental regulations can stimulate

technological innovation (Feng et al., 2023). On the supply side, the

gradual enhancement of supportive policies and infrastructure

reduces development costs and investment risks. Incentive

implementations further encourage market favorability toward

technologies and concepts with promising prospects (Wang and

Deng, 2021). Based on this, we propose the following hypothesis:

H2a: The LCCP policy can increase urban ecological efficiency

by encouraging green technology innovation and producing the

“green innovation effect.”

The past growth path of China has involved extensive energy

use and considerable emissions, creating significant challenges as

urban infrastructures advance and resulting in considerable carbon

lock-in, also known as “high-carbon lock-in” (Chen et al., 2023b).

The LCCP blueprint aims to break the “strong linkage” pattern that

connects economic growth with increased resource consumption.

Instead, it seeks to reshape the pattern of economic growth by

imposing “ecological constraints” on market agents. From the

supply side, it will motivate firms to increase investment in R&D,

supported by increased incentives and rewards (Zhang et al., 2023).

From the perspective of the social identity theory and the social

pressure theory, the LCCP policy will have a demonstration effect

and a regulatory effect on urban residents. Individuals will be

empowered to enhance energy efficiency through new concepts

such as green travel, low-carbon commuting, and sustainable living.

On the demand side, the pilot policy of phasing out outdated

industries imposes higher environmental costs on high-emitting
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and energy-intensive firms. Fluidity among these factors will also

provide a pathway for firms with higher efficiency in clean

production to capture a larger market share (Yin et al., 2023). In

other words, the hypothesis can be stated as:

H2b: The LCCP policy can promote urban ecological efficiency

by reducing energy structure, thus exerting the “decoupling effect.”
4 Materials and methods

4.1 Model specification

4.1.1 Benchmark model
It has become particularly useful in empirical policy evaluation,

as previously mentioned when describing the difference-in-

differences (DID) approach. Essentially, this method attempts to

analyze the comparison between individuals before encountering a

policy and after being subjected to it, allowing deduction of the

policy’s effects on individuals (Callaway and Sant’Anna, 2018). This

analysis depends on the variation between these two times, which

can effectively offset biases resulting from variations in endogenous

variables. For instance, China initiated the LCCP policy in 2010,

subsequently extending it in 2012 and 2017. Currently, the NDRC

has announced the names of cities participating in three rounds of

pilot projects. Therefore, following the specifications of this paper,

the policy is considered a quasi-natural experiment, and a

multiperiod DID method is employed to analyze its outcomes.

One of the city-level indicators for identifying the policy’s

inception is the date when a city first attempts to launch pilot

projects. Indeed, in some cities, first-, second-, and third-stage pilot

experiments were conducted. Furthermore, if an entire province is

designated as a pilot low-carbon area, then all cities related to that

province are considered to have adopted the low-carbon city policy.

The overall sample under investigation includes panel data from

254 cities spanning from 2007 to 2020, with 112 cities in the

treatment group and 142 cities in the control group.

Based on the above analysis, this paper establishes a benchmark

regression model to examine changes in ecological efficiency

resulting from the LCCP policy, incorporating individual and

time fixed effects. The model is structured as follows:

EEit = c0 + c1LCCPit +ok
2ckXkit + mi + tt + eit (1)

Here, EEit represents urban ecological efficiency index. LCCPit
is the cross-multiplier term of the pilot policy and the pilot timing.

If city i conducts the LCCP policy in year t, LCCPit is equal to 1 in

year t and subsequent years; otherwise, it will be equal to 0; Xkit is

the controlling variables, as described in detail in the variable

description below; mi and tt represent individual fixed effect and

time fixed effect, respectively. eit is a stochastic disturbance term.

4.1.2 Mediating effect model
Our hypothesis goes on to state that the LCCP policy should

boost urban ecological efficiency further by innovating

opportunities for green technology and lowering the linkage

between economic growth and energy use. We test this

hypothesis using the mediating effect model:
frontiersin.org

https://doi.org/10.3389/fevo.2024.1442755
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Liu et al. 10.3389/fevo.2024.1442755
Mit = a0 + a1LCCPit +ok
2akXkit + mi + tt + eit (2)

EEit = b0 + b1LCCPit + b2Mit +ok
3bkXkit + mi + tt + eit (3)

In this paper, we respectively regard Greentit and Egdpit as the

mediating variables of green technology innovation and energy

structure. The meanings of other variables are consistent with the

baseline model. Equation 1 estimates the total effect c1; Equation 2

estimates the allocation effect a1; and Equation 3 estimates the

direct effect b1 and indirect effects b2a1.

In addition to traditional tests, this research employs other

methods to evaluate the validity of the proposed mediating effect.

One such method is the Sobel test, which assumes that the

parameter of interest is normally distributed—a condition that is

often unrealistic in practical applications. Therefore, this study also

utilizes the bootstrap approach, as recommended by Preacher and

Hayes (2008). According to this method, if the confidence interval

based on bootstrapping does not include 0, the mediating effect can

be considered statistically significant.
4.2 Variables

4.2.1 Explained variable: ecological efficiency
The explained variable of this paper is ecological efficiency (EE).

We construct the ecological efficiency evaluation index system

based on previous research (He and Hu, 2022; Lin et al., 2022b;

Wu et al., 2022; Zhang and Liu, 2021). First, we select 11 input and

output indicators, considering energy, land, labor, capital, and other

factors as the core input indicators. The desirable output indicators

are regional GDP and green coverage of building-up area. Secondly,

since carbon emission has become the considerable issue in the field

of ecological environment (Li et al., 2023b), we try to incorporate

CO2 emissions into the index system of ecological efficiency

evaluation. Finally, we select CO2 emissions, industrial waste gas,

industrial wastewater, and industrial smoke and dust emission as

undesirable output indicators. The specific indicator system is

shown in Table 1.

The primary issue with computing the ecological efficiency

metric in both the radial or angular CCR and BBC models lies in

their significant limitations. Unintended outputs are incorporated

into the super-SBM model, which is a non-radial and non-angular

model developed by Tone to compute ecological efficiency. The

computational steps are as follows: Assume there are n1 decision-

making units (DMUs), each with n inputs. Let s1 represent the

desired output and s2 the undesired output. The objective function,

r, defines the super-SBM model as follows:

min r =

1
non

m=1

xq
xq0

1
S (os1

p=1

�ylp
ylp0

+os2
k=1

y−ak
ylk0

)

(4)
Frontiers in Ecology and Evolution 06
s : t :
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i=1,≠0
sixi,�y⩽on1

i=1,≠0
siy

l
i

�y⩽on1

n1
siy

a
i , �x⩾ x0,�y

l ⩽ yl0, y
˙

a ⩾ ya0

on1

n1
si = 1,�yl ⩾ 0,s ⩾ 0

8>>>>><
>>>>>:

(5)

Here, s is a weight vector, when r < 1, it indicates that the

decision unit is in an ineffective state; when r > 1, it means that the

input remains unchanged. At this time, reducing or maintaining

output can achieve an effective state.
4.2.2 Core explanatory variable
The primary explanatory variable in this paper is the dummy

variable for the LCCP policy. This paper focuses on the coefficient of

the LCCP policy, which impacts urban ecological efficiency. Positive

coefficients indicate a promotion effect, while negative coefficients

indicate an inhibitory effect.
TABLE 1 Urban ecological efficiency evaluation index system.

Indicator
type

Primary
indicators

Secondary
indicators

Indicator
connotation

Input
indicators

Ecological
resources inputs

Energy input
Electricity

consumption of
the whole society

Land input
Land area for

urban
construction

Water input
Water

consumption of
the whole society

Social
resources inputs

Capital output
Total investment
in fixed assets

Labor output
Average number
of employees of
the whole society

Output
indicators

Desirable outputs

Economic
development

Regional GDP

Ecological
construction

Green coverage of
the building-

up area

Undesirable outputs

Carbon
emission

CO2 emission

Wastewater
emission

Industrial
wastewater
emission

Waste
gas emission

Industrial
SO2 emission

Smoke and
dust emission

Industrial smoke
and dust emission
The calculation of carbon emission data refers to the study of scholars (Wang, 2017; Cong
et al., 2014; Xu and Wang, 2022). The data sources for other indicators are detailed in 4.3
Data sources.
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4.2.3 Control variables
Based on the previous research foundation of scholars (Ahmad

and Wu, 2022; Hou et al., 2022; Su et al., 2021; Yin et al., 2022), the

control variables are selected as follows:
Fron
1. Level of economic development (pgdp): This refers to the per

capita gross regionalproduct, established for thepopulationof a

given region. A higher level of economic development typically

entails greater resource usage. However, according to the

environmental Kuznets curve, economic development can

enhance environmental quality and ecological balance once

per capita income surpasses a “critical point” (Niu et al., 2024).

2. Size of local finance (gov): This is determined by local

government general budget expenditures as a percentage of

GDP. The extent of government influence can determine

the degree of governmental interference in the distribution

of regional resources. On one hand, the “visible hand” of

the government can effectively implement strategies for

ecological protection and green development. On the other

hand, “GDP worship”may cause the government to neglect

ecological protection and lead the market toward “profit

competition” (Zhang et al., 2024).

3. Degree of fiscal decentralization (fid): This can be measured

by the relationship between local government’s own-source

revenues and total expenditures. Greater fiscal space allows

local governments to promote inclusiveness and foster

sustainable development through improved renewable

energy resources (Sun et al., 2023).

4. Financial development (fdp) levels are measured by the ratio

of financial intermediaries’ credit aggregates to GDP. This

metric indicates the efficiency of resource allocation,

particularly in direct investments and the rapid

implementation of related policies and decisions. However,

this can lead to inefficient resource allocation favoring

resource-based sectors, potentially increasing ecological and

environmental degradation (Ahmad and Wu, 2022).

5. The security of a society, especially in termsof socialwelfare, is

often assessed by the proportion of the government’s budget

allocated to social security and employment-related spending

(social). A robust social security system acts as a buffer,

ensuring the smooth operation of a market economy. This

not only enhances the overall wellbeing of the population but

also encourages greener production methods and lifestyles

among citizens (Brendler, 2022).However, a highlydeveloped

social security network can have a drawback; a densely

constructed social network may influence people to engage

in environmentally adverse activities, which contradicts the

goal of improving urban environmental quality.
Of these variables, we drop the natural logarithm of the level of

economic development into the variable lnpgdp for analysis below.
4.2.4 Mechanism variables
In our exploration of the fundamental forces driving change, we

have identified green technology innovation and energy intensity as
tiers in Ecology and Evolution 07
critical variables. To measure the progress of urban green

technology, we are tracking two key indicators: the annual count

of eco-friendly inventions (Greent1) and the number of green utility

patents (Greent2). Recognizing that some cities may experience

periods with no activity in these areas, leading to 0 values, we have

refined our methodology to address this issue. To avoid division by

0 and better reflect the scale of innovation, we add one to the count

and then take the logarithm. This approach allows us to capture a

city’s innovative efforts in eco-technology even in the absence of

documented green breakthroughs or patents.

Greent = ln (Greent1 + Greent2 + 1) (6)

As mentioned earlier, the low-carbon transition of the energy

mix (ES) is the mechanism variable that is the focus of this paper.

Among many economic indicators, we finally choose coal share as

the variable to measure ES for theoretical and practical research

reasons. As the main category of energy consumption in most

regions, the utilization efficiency of coal directly reflects the urban

energy structure. Moreover, with the continued global attention to

sustainable development issues, reducing the use of fossil fuels such

as coal has become an international consensus. The research of

some scholars further supports the validity of this economic

variable in economic analysis (Shen et al., 2024; Wang and

Feng, 2021).

For the calculation of this indicator, Chinese prefecture-level cities

have not yet published specific information on the consumption of all

energy categories. We draw on the China Urban Statistical Yearbook

and the study byBie et al. (2024) to derive the share of coal by using all-

society electricity consumption/(natural gas + liquefied petroleum gas

+ all-society electricity consumption).
4.3 Data sources and descriptive statistics

In this context, the material was collected from different official

sources to compare the indicators of the ecological efficiency of

cities. Based on the aspects of data collection, the main data sources

are derived from the National Bureau of Statistics, including the

China Statistical Yearbook, China Urban Statistical Yearbook,
TABLE 2 Descriptive statistics of the main variables.

Variable Mean SD Min Max N

EE 0.320 0.2249 0.033 1.393 3,556

LCCP 0.251 0.4334 0.000 1.000 3,556

pgdp 10.474 0.6720 8.131 13.056 3,556

gov 0.191 0.1062 0.043 1.485 3,556

fid 0.447 0.2247 0.054 1.541 3,556

fdp 0.906 0.5622 0.075 7.450 3,556

social 0.135 0.0492 0.002 0.682 3,556

Greent 4.659 1.7532 0.693 10.153 3,556

Egdp 0.096 0.3886 0.004 14.902 3,556
fro
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China Energy Statistical Yearbook, China Economic and Social Big

Data Research Platform, and Wind Macroeconomic Database. To

have a basic understanding of any missing information, the

statistical yearbooks of the specific city can be referred to. In the

same way, the CSMAR database provides information about

the amount of green spaces in urban areas.

To followthenumberof inventionpatents inurbangreen,weuse the

Sate Intellectual Property Office statistics. Technically, to define a patent

as “green,” use ismade of the green patent classification code adopted at

the global level by the World Intellectual Property Organization.

The deficient data are obtained by linear interpolation method.

Table 2 shows the descriptive statistics of the main variables.

5 Spatiotemporal pattern and dynamic
evolution of urban ecological
efficiency level

First, as preliminary research before discussing the causal

relationship between the LCCP policy and urban ecological
Frontiers in Ecology and Evolution 08
efficiency, it is essential to examine the scope, time evolution, and

spatial evolution of Chinese urban ecological efficiency. All three

methods can comprehensively illustrate the relationship and

changes in the spatial–temporal pattern of urban ecological

efficiency. Static inscriptions are mainly used to provide a brief

snapshot of the spatiotemporal characteristics. Robust trends

involving the dynamics of evolution are assessed using kernel

density estimation. Additionally, employing the spatial Markov

chain method is suggested to gain further empirical support for

the results based on objective spatial factors.

Among the methods, the first one is a parametric estimation

method, while the other two are non-parametric estimation

methods. The most significant difference between these and

parametric estimation methods is that the latter often does not

require prior knowledge of the type of basic distribution being used.

This means that if there are incorrect assumptions about the overall

distribution, the errors can be significant, making the robustness of

the estimation results superior. Moreover, the principle of kernel

density estimation is entirely different from that of the evaluation

tool, which aims at an overall approach to tracking the development
FIGURE 2

Spatial distribution map. (A) 2007, (B) 2011, (C) 2015, (D) 2020.
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of ecological efficiency. Spatial Markov chains focus on the spatial

factors in the transition process and can compensate for the

limitation of traditional Markov chains, which cannot describe

spatial spillover effects.
5.1 Spatiotemporal pattern of
ecological efficiency

Based on Stata 17.0 statistical software, this paper analyzes

urban ecological efficiency levels for the years 2007, 2011, 2015, and

projected 2020 and presents a spatial distribution map (Figure 2).

The detailed breakdown of the study’s results is as follows:

In 2007, the overall scale of urban ecological efficiency was

lower, showing a more dispersed pattern compared to subsequent

years. By 2011, there was a continuous improvement in urban

ecological efficiency levels in the central and eastern regions, with a

trend toward dispersal. Regional distribution patterns showed

characteristics of small-scale agglomeration. In 2015, overall

urban ecological efficiency levels continued to rise, with some

cities making significant advancements that influenced the

efficiency of surrounding areas. By 2020, urban ecological

efficiency levels in the central and eastern regions had risen

significantly. This improvement trend extended westward,

forming a more cohesive agglomeration pattern along the

horizontal axis.
5.2 Dynamic evolution trend of
ecological efficiency

5.2.1 Kernel density estimation
To compare and further study the dynamic evolution of urban

ecological efficiency levels in China, this paper will utilize KDF

analysis to examine the distribution, flexibility, and polarization
Frontiers in Ecology and Evolution 09
trends among different cities. The specific method is as follows:

Assuming that the density function of random variable Y is f (y), the

probability density at point Y can be estimated by Equations 7 and

8. The specific expressions are as follows:

f (y) =
1
Nho

N
j=1K(

Yj − Y0

h
) (7)

K(y) =
1ffiffiffiffiffiffi
2p

p exp ( −
y2

2
) (8)

h = 1:06SeN − 1=5 (9)

In the above equation, N is the number of observations, and h is

the bandwidth to control the degree of smoothing. Equation 9 is the

optimal broadband expression, Se is the standard deviation of the

observations of the random variable (Silverman, 1987), Xi is the

independently distributed observations, and Y is the mean value.

This paper presents a three-dimensional kernel density map to

illustrate the calculation results, as depicted in Figure 3. From a

distribution standpoint, the center of the kernel density estimation

curve shows a tendency to shift rightward, indicating an increasing

trend in urban ecological efficiency levels. Regarding distribution

spread, the curve exhibits a distinct right-trailing characteristic,

suggesting a higher degree of regional development imbalance.

Analyzing the wave peaks, each year shows two or more peaks,

with the main peak significantly higher than the side peaks,

implying the presence of multiple centers and a noticeable trend

toward multipolarization. The curve shape transitions from “tall

and narrow” to “flat and narrow,” indicating an expanding gap in

urban ecological efficiency levels among cities.
5.2.2 Spatial Markov chain model
The application of the spatial Markov chain model employs the

aspect of the spatial lag to analyze the influence of the spatial factors
FIGURE 3

Three-dimensional kernel density estimation map.
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which are the level of neighbor cities on the transfer probability of a

given city.

For a Markov transition matrix in the form of k� k, when k

spatial lag types are considered as the transition conditions of

regions, k conditional transition matrices in the form of k� k will

be generated, denoted as Pt,t+d
ijjl . The specific meaning of Pt,t+d

ijjl is that

under the condition of the ecological efficiency of spatial lag in that

year is l, the probability of ecological efficiency transferring from

type i to type j in the region after d years. In this paper, the

phenomenon of the change of ecological efficiency is defined as the

upward (or downward) n-order transfer; for example, a change in a

neighboring type is an upward or downward first-order transfer.

In this paper, we use the economic spatial weight matrix (Wij)

to calculate the spatial Markov chain. Wij can be calculated from

Equation 10, and matrix elements can be obtained from Equations

11 and 12. Where yij and yj, respectively, represent the per capita

GDP of the i and j city during the observation period.

Wij = w1 � E (10)

w1 =
1
d2 , i ≠ j

0, i = j

(
(11)

E =
1

yi−yj
, i ≠ j

0, i = j

(
(12)

In addressing whether space factors can impact the growth of

the ecological efficiency index in urban development, this article

employs the chi-square test. The formula used is as follows:

Q = −2 log
Y2

l=1

Yk

i=1

Yk

j=1½
Pt,t+d
ij

Pt,t+d
ij (l)

�
nij(l)

( )
(13)

In Equation (13), k is the level type, Pt,t+d
ij (l) and nij(l),

respectively, represents the sum of the element values of the two

types of transition matrices and the number of regions belonging to

this type of transition when the time length is d; Pt,t+d
ij is the

transition probability value calculated after merging the two types

of data; Q obeys the chi-square distribution and its degree of

freedom is k� (k − 1) subtract the number of transition

probabilities of 0.

Initially, based on the ecological efficiency index of 254 cities in

China, these are categorized into four levels: low (L), low to medium

(ML), medium high (MH), and high (H). Subsequently, cross-

entropy is employed to estimate the 1-year lag of the transition

probability matrix for the urban ecological efficiency index. For

preliminary analysis of transition paths, the transitional Markov

chain model is utilized. The results are summarized in Table 3.

Overall, the following conclusions can be drawn: 1) Evaluation

of the stepping stone model probabilities shows a higher likelihood

on the diagonal and a convergence phenomenon among the four

types of clubs; 2) regarding urban ecological efficiency at low and

medium high levels, there is a gradual upward trend, with higher

transfer probabilities compared to downward transitions; and 3)

despite cross-level transfers occurring, the process is not entirely

smooth or straightforward; most transitions between different levels
Frontiers in Ecology and Evolution 10
tend to move directly to the next higher level. For instance, the

relatively mobile transition probability from low-level cities to the

upper order is 14.4%, while the probability of transitioning to the

higher two orders is only 1%.

The conventional theory of Markov chains assumes that each

city is an isolated entity, solely analyzing the temporal dynamic

properties of the ecological efficiency level of each city. Due to the

constant evolution of policies, it is believed that the development

level of neighboring cities will influence local eco-efficiency.

Therefore, based on the results of the economic spatial weight

analysis, we proceed with the study using the spatial Markov chain

method. These findings are summarized in the table below.

However, if viewed without considering their previous experience

in database design, they would appear as presented in Table 4.

Overall, the following conclusions are drawn: First, there is a

clear indication of convergence toward clusters within Chinese

cities. For instance, there are no low-level cities around high-level

cities, and the possibility of downward transfer approaches 0. This

also supports the observation of a trend toward multipolarization in
TABLE 3 Transition probability matrix of traditional Markov chain.

t + 1 Type n L ML MH H

L 977 0.845 0.151 0.003 0

ML 935 0.020 0.834 0.144 0.001

MH 905 0.001 0.011 0.903 0.085

H 888 0 0 0.009 0.991
fron
TABLE 4 Transition probability matrix of spatial Markov chain.

Adjacency
type

Type n
Type

L ML MH H

L

L 43 0.884 0.116 0 0

ML 10 0 0.900 0.100 0

MH 4 0 0 1 0

H 4 0 0 0 1

ML

L 610 0.866 0.134 0 0

ML 349 0.017 0.834 0.149 0

MH 210 0 0.005 0.919 0.076

H 194 0 0 0 1

MH

L 324 0.802 0.188 0.009 0

ML 566 0.023 0.834 0.141 0.002

MH 664 0.002 0.014 0.900 0.084

H 581 0 0 0.010 0.990

H

L 0 0 0 0 0

ML 9 0 0.889 0.110 0

MH 16 0 0 0.750 0.250

H 108 0 0 0.019 0.981
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the kernel density estimation above. Second, spatial dynamics play a

significant role in the transfer of relative ecological efficiency within

urban areas. Higher levels of policy implementation and

technological resource advantages have positive effects in

stimulating surrounding cities and reducing the likelihood of

bottom-up transfers.

At the same time, this paper uses the chi-square test method to

test whether the spatial factors are significant to the growth of urban

ecological efficiency. The final calculation result is that theQ value is

81.44, the degree of freedom is 36, c2 is 58.619, and the p-value is

0.0000. The Q value is greater than the critical value and rejects the

original hypothesis, which indicates that neighboring cities do have

a significant impact on the transfer of the local ecological

efficiency index.
6 Empirical results

6.1 Correlation test

First of all, we calculate the values of the Pearson coefficient for

those main variables which were used in this article; we also draw

the correlation coefficient matrix. A tabular representation of the

identified results is presented in Table 5.
6.2 Benchmark regression

In this paper, we conducted tests and analyses on the data using

the statistical software STATA 17.0 to estimate the model.

Consequently, Histogram 0 depicts the model estimated using the

software. It is also presented in Table 6, where the first two columns

contain coefficients estimated based on the OLS model, while the

last two contain fixed effect estimators. The estimates are presented

across four columns: Column (1) includes no control variables,

column (2) adds control variables, column (3) lacks control

variables, and column (4) includes them. All model biases arising

from heteroskedasticity are mitigated using the heteroskedasticity

robust standard error method.
Frontiers in Ecology and Evolution 11
Additionally, the estimated coefficients of the LCCP pass the

significance test at a 1% level, indicating a positive impact of the

LCCPpolicy onurban ecological efficiency.Comparing themodels, we

find that the regression coefficient steadilydeclines to0.259whenother

city characteristics and a two-way fixed effect of a person’s year in-

transition are controlled for. These regression results support the

study’s hypothesis H1, suggesting that the implementation of the

LCCP policy may enhance urban ecological efficiency.
6.3 Parallel trend test

However, there is an important precondition for the DIDmethod:

assuming a parallel trend between the treatment group and the control

group. This assumes that the trends in variation of urban ecological

efficiency levels in thepilot cities shouldbeparallel to those innon-pilot

cities before the policy implementation. Thus, it is crucial to justify the

benchmark regression results with a parallel trend test.

The base period of this paper is defined as the first period within

the research scope, identified as 2007. Due to the unavailability of

potentially valuable data beyond the longitudinal range of 2001 to

2005, the examination period is defined as the 2 years before and the

5 years after the policy implementation.

The results of the parallel trend test are depicted in Figure 4, where

the horizontal axis represents the year and the vertical axis represents

the coefficient of the policy variable. Since all coefficient values are

negative, it indicates that prior to policy implementation, none of the

coefficients were significant in the context of the treatment and control

group analysis. Therefore, thefluctuation of urban ecological efficiency

levels shown in the two groups meets the requirement of the parallel

trend test. Coefficients becomemeaningful in the year when the policy

was implemented and in the subsequent 4 years.
6.4 Robust test

6.4.1 PSM-DID test
On one hand, the formulation of policies and the establishment

of institutions in any country are not solely determined by external
TABLE 5 Correlation coefficient between variables.

LCCP EE lnpgdp gov fid ldr socioal Greent Edpe

LCCP 1

EE 0.145*** 1

lnpgdp 0.339*** 0.047*** 1

gov 0.012 0.292*** −0.370*** 1

fid 0.114*** −0.234*** 0.618*** −0.611*** 1

ldr 0.252*** 0.015 0.324*** 0.123*** 0.234*** 1

socioal 0.043** −0.089*** −0.220*** 0.166*** −0.328*** −0.057*** 1

Greent 0.359*** 0.057*** 0.707*** −0.293*** 0.564*** 0.473*** −0.251*** 1

Edpe −0.027 −0.089*** 0.073*** −0.045*** 0.059*** 0.096*** −0.014 −0.032* 1
* and *** represent the 10% and 1% statistical levels, respectively.
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random factors; some are self-selected and often influenced by a

series of economic and social reasons. Consequently, they

concurrently impact the urban ecological efficiency of a city (Niu

et al., 2023). Under such circumstances, our research design may

face a significant self-selection problem. It becomes challenging to

discern whether the LCCP policy affects urban ecological efficiency

or if differences and changes in urban ecological efficiency drive the

emergence and evolution of the policy. Therefore, using cities that

do not adopt the pilot policy as counterfactual results for those that

do could introduce sample selection bias.

To address this issue, we employ the PSM-DID method for

testing. Initially, control variables represent covariates, and we

utilize one-to-one nearest neighbor matching with replacement,

caliper matching with a radius of 0.01, and kernel matching to

enhance result credibility, effectively mitigating selection bias. This

paper ensures that matching effects between the treatment and

control groups are observed using density function graphs of

propensity score distributions. Specific findings from the study

are detailed as follows. Figure 5A denotes the propensity score

before matching; Figures 5B–D denotes the propensity score figure
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after using nearest neighbor matching, kernel matching, and caliper

matching, respectively. These figures demonstrate that post-

matching, the density distributions of propensity scores for the

treatment and control groups align more closely than pre-matching,

with kernel and radius matching results overlapping. This indicates

successful matching.

Following PSM, DID regression is conducted on the filtered

samples, yielding results shown in Table 7. The coefficients for

LCCP in regression results, screened through the three matching

methods, are 0.0259, 0.0236, and 0.0253, all significant at the 1%

level. These results largely mirror those of the benchmark regression

in the preceding section, confirming the robustness of benchmark

regression findings and further supporting hypothesis H1.

6.4.2 Placebo test
To exclude interference from other policies or random factors

and enhance the credibility of the benchmark regression results, this

paper conducts a placebo test using a fictitious treatment group.

Figure 6 presents the final distribution graph of the regression

estimated coefficients, indicating that the coefficients from random

sampling follow a normal distribution centered around 0. The results

of 500 regressions all lie to the left of the true regression estimate,

which is 0.0253. This suggests that our estimates are unlikely to have

been obtained by chance and are therefore unlikely to have been

influenced by other policies or random factors.

6.4.3 Policy lag order
Because policy lag is also a contingency factor influencing the

occurrence of a policy in this paper, the policy occurrence is shifted

backward in time, and the results are presented in Table 8. The

estimated effect of the LCCP policy is consistently greater than 0,

aligning with the regression results mentioned earlier.
6.4.4 Special samples deletion
Initially, the inclusion of data spanning from 2007 to 2020

encompassed cities that only began implementing low-carbon pilot

policies in 2017. Given this short timeframe, it was challenging to

discern the policy’s full impact. Therefore, one particular sample

was excluded and re-estimated using the transformation sample

method, as indicated in the first two columns of Table 9 below.

Following the exclusion of these samples, the estimated coefficients

for the LCCP policy showed a slight increase while maintaining

statistical significance at the 1% level. This strengthens the

credibility of the analysis and supports the conclusions drawn.

6.4.5 Exclusion of other policies
In this paper, the policies conducted concurrently with the LCCP

may introduce biases in assessing policy impacts. To mitigate this, we

focus on pilot policies implemented simultaneously in smart cities

and introduce a dummy variable (Smart) into our regression model.

The results are presented in the rightmost columns of Table 9, where

the regression findings reveal a significantly positive sign and

magnitude for the estimated coefficient of the LCCP. This suggests

that the outcomes of this policy within the LCCP framework are not
TABLE 6 Benchmark regression results.

(1) (2) (3) (4)

EE EE EE EE

LCCP 0.0752*** 0.0562*** 0.0313*** 0.0259***

(7.96) (6.21) (3.23) (2.75)

lnpgdp 0.0936*** 0.0807***

(11.84) (4.18)

gov 0.5678*** −0.4867***

(8.74) (−5.62)

fid −0.2998*** −0.0257

(−10.82) (−0.67)

ldr −0.0318*** −0.0505***

(−3.67) (−3.52)

socioal −0.8360*** −0.2419***

(−12.23) (−2.86)

_cons 0.3014*** −0.5068*** 0.3124*** −0.3484*

(73.72) (−6.64) (93.44) (−1.65)

Year
fixed
effects

Yes Yes Yes Yes

City
fixed
effects

Yes Yes Yes Yes

N 3,554 3,554 3,554 3,554

R2 0.0210 0.1934 0.6445 0.6640

F 63.406 118.769 10.424 27.034
t-values are in parentheses; * and *** represent the 10% and 1% statistical levels, respectively.
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influenced by other policies, affirming its contribution to the

benchmark regression results.

6.4.6 Bacon decomposition
We also found that due to a multiyear DID approach, the timing

of policy changes varies across different research units, and some

treatment groups can transition to the control group in any given

year (Goodman-Bacon, 2018). Therefore, this paper applies the

Bacon decomposition to diagnose such biases. Table 10 and

Figure 7 present the results of the Bacon decomposition.
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Upon examining the data in Table 8, it is evident that 86.3% of

the variation in LCCP stems from the treated and untreated groups,

while the time group (including × and ▲) has a smaller impact,

accounting for only 13.7%. The influence of the ineffective control

group (×) amounts to 6.6%, exerting minimal impact on the bias of

the LCCP estimator.

Analysis of the results depicted in Figure 7 reveals that the time

groups predominantly cluster around point 0, with the total

estimator and the red line plots showing insignificant deviations

in most cases. This further indicates that the LCCP model estimator

is not significantly biased.
7 Further analysis

7.1 Mechanism testing

Asmentioned earlier, both the results of the robustness test as well

as the benchmark regression provide evidence for our conclusion

based on the LCCP policy—that high urban ecological efficiency is

increased. However, it is still necessary to uncover an aspect in which

the LCCP policy works, that is, to some extent, how does this policy

contribute to enhancing urban ecological efficiency? We think that as

for the LCCP policy, the mechanism enables the green innovation

effect and the decoupling effect for raising the level of urban ecological

efficiency. Table 11 also presents the summary of regression results. In

general, the overall regression value represents the contributionof each

individual variable to the overall model.
FIGURE 4

Parallel trend test.
FIGURE 5

Propensity score (A) before matching and after using (B) nearest neighbor matching, (C) kernel matching, and (D) caliper matching.
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The regression results of the first two columns show that the

LCCP policy increases at the level of 1% the degree of green

technology development and then improves the ecological

efficiency of urban areas. In support of hypothesis H2a, the

purpose and effectiveness of the LCCP policy has been identified

in this study, where it has been found to be capable of boosting the

vitality of green technology innovation in urban areas, facilitating

the flow of technology factor into eco-friendly industries, enhancing

the efficiency of ecological utility, and translating innovation in

green technology into the “green innovation effect.”

Analysis of the results of the last two columns most likely

related to the regression analysis showed that the impact of the

LCCP policy is rather significant in the negative direction to the

energy structure at the level of 5%, enabling an enhanced level of

urban ecological efficiency. Consequently, hypothesis H2b is valid:
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the LCCP policy can take the place of optimizing the energy

structure, enhancing the energy utilization efficacy, changing the

kernel of the driving force of economic growth, and realizing the

“decoupling” between the development economy and energy

consumption as carrying out the “decoupling effect.”

In the following part of the analysis, we use the bootstrap method

to perform auxiliary tests to apply the test on the assumption of

mediation effect. About the test of green technology innovation and

energy intensity, the 95% CI values after bias correction are,

respectively, as follows: (0.0061, 0.0139) and (0.0013, 0.0040). X2 is

greater thanX1 and the confidence intervals donot contain 0, and they

are significant at different levels, particularly at the 1% level, suggesting

that there is a mediating effect of green technology innovation and

energy intensity in the LCCP policy.
7.2 Heterogeneity analysis

7.2.1 Urban geographic location heterogeneity
China is a huge country and that makes it quite large both in

geographical size and population size. The economic and social

development of different cities is not similar, and the

implementation of policies differs with the local government; this

factor may be playing a role that can differently affect the proportion

of ecological efficiency due to the LCCP policy. This paper thus

partitions the sample into groups by region—east, west, and central

—and carries out the regression for each separately; the findings are

presented in Table 12 in the first three columns. The results of this

hypothesis report that the impact of the introduced LCCP policy is

more profound in the western cities in contrast to that observed in

the eastern and central cities. Therefore, we can also conclude that

geographic location plays a vital role in determining how the

implementation of the LCCP policy will affect the ecological

efficiency of cities.

This may be because, on the one hand, the eastern region, as a

more economically developed region in China, tends to be more
TABLE 7 PSM-DID regression results.

Nearest
neighbor
matching

Radius
matching

Kernel
matching

EE EE EE

LCCP 0.0259*** 0.0236** 0.0253***

(2.75) (2.51) (2.69)

_cons −0.3484* −0.4524** −0.3069

(−1.65) (−2.19) (−1.49)

Control
variables

Yes Yes Yes

Year
fixed effects

Yes Yes Yes

City
fixed effects

Yes Yes Yes

N 3,554 3,538 3,553

R2 0.6640 0.6650 0.6649

F 27.034 28.482 28.925
t-values are in parentheses; *, **, and *** represent the 10%, 5%, and 1% statistical
levels, respectively.
FIGURE 6

Placebo test.
TABLE 8 Policy lag order regression results.

L1 L2 L3

EE EE EE

LCCP 0.0273*** 0.0379*** 0.0312***

(2.73) (3.63) (2.68)

_cons −0.9827*** −1.0197*** −0.6443**

(−3.76) (−3.66) (−2.26)

Control variables Yes Yes Yes

Year fixed effects Yes Yes Yes

City fixed effects Yes Yes Yes

N 3,302 3,048 2,794

R2 0.6689 0.6765 0.6687

F 22.015 20.873 13.389
t-values are in parentheses; ** and *** represent the 5% and 1% statistical levels, respectively.
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industrialized but also faces more serious resource bottleneck

constraints and social problems, which make the policy

effectiveness to be more constrained. On the other hand,

industrialization and urbanization are the main features of the

development history of the central region, but the pollution during

industrialization has brought about a serious “ecological deficit.”

Therefore, the costs of the policy implementation are particularly

high, while there is a lack of capital for development with the

resources flowing to the east continually. It is difficult to choose

between the development and ecological construction in the central

region of China.

7.2.2 Urban resources heterogeneity
Taking into account the dissimilar nature of the development

processes in the industries of various cities and the fact that some

cities, on the one hand, manage urban advancement through the

RBIs is important. In this paper, the scope of the 254 prefecture-
TABLE 9 Regression results of sample transformation and exogenous
policy exclusion.

Special sample
deletion

Other
policies exclusion

EE EE EE EE

LCCP 0.0288*** 0.0261** 0.0323*** 0.0267***

(2.61) (2.40) (3.34) (2.81)

Smart
0.0265*** 0.0192**

(2.98) (2.16)

_cons 0.3160*** −0.6023*** 0.3066*** −0.5161**

(85.91) (−2.58) (78.52) (−2.33)

Control
variables

Yes Yes Yes Yes

Year
fixed
effects

Yes Yes Yes Yes

City
fixed
effects

Yes Yes Yes Yes

N 3,206 3,206 3,556 3,556

R2 0.6468 0.6640 0.6453 0.6625

F 6.795 20.216 9.188 20.127
F
rontiers in Ec
ology and Evolution
t-values are in parentheses; ** and *** represent the 5% and 1% statistical levels, respectively.
TABLE 10 Bacon decomposition results.

Total
DID estimator

0.031

Form Weight
Average

DID estimator

× 0.071 −0.011

× 0.066 0.021

▲ 0.863 0.036
15
FIGURE 7

Bacon decomposition.
TABLE 11 Mechanism test results.

(1) (2) (3) (4)

EE Greent EE ES

LCCP 0.0249*** 0.0871*** 0.0240** −0.0161**

(2.63) (2.81) (2.5360) (−2.14)

Greent 0.0113*

(1.93)

ES −0.1141***

(−2.67)

lnpgdp 0.0909*** 0.3601*** 0.0961*** 0.0100

(4.48) (4.52) (4.70) (0.80)

gov −0.3719*** −0.7145** −0.3897*** −0.0851*

(−3.69) (−1.98) (−3.71) (−1.66)

fid −0.0400 −0.0366 −0.0338 0.0288

(−1.02) (−0.94) (−0.87) (1.06)

ldr −0.0392** 0.0791* −0.0386** −0.0026

(−2.49) (1.92) (−2.49) (−0.31)

socioal −0.2206*** −1.2818*** −0.2589*** −0.2085**

(−2.59) (−3.69) (−3.00) (−2.53)

_cons −0.5379** 1.1216 −0.4404* 0.7441***

(−2.44) (1.23) (−1.94) (5.61)

Year
fixed effects

Yes Yes Yes Yes

City
fixed effects

Yes Yes Yes Yes

N 3,556 3,556 3,556 3,556

R2 0.6626 0.9386 0.6372 0.5521

F 19.980 16.289 19.92 2.74
t-values are in parentheses; *, **, and *** represent the 10%, 5%, and 1% statistical
levels, respectively.
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level cities is extended and is divided into two groups of resource-

based cities and non-resource-based cities as defined by the China

No. 45 National Development Document in 2013. We perform the

regressive analysis of the two groups, and the results are presented

in the last two columns of Table 12. This result demonstrated the

importance of LCCP construction toward the non-resource-based

cities which is significantly positive at the 1% level.

However, the promoting effect on resource-based cities is

negative, as shown by the following reasons: This might be due to

the fact that the resource-based cities have over a long time of

development, gradually developing a natural resource-oriented

industrial development system which not only discharges huge

amounts of greenhouse gases but also lacks the impetus of
Frontiers in Ecology and Evolution 16
innovating and constructing environmentally friendly industries

and sustaining resource-friendly industries.

The simple conventional low-carbon cities based on the so-

called “low-carbon” concept might be hard to have a definite

positive impact on ecological efficiency.

7.2.3 Urban agglomerations heterogeneity
This paper also therefore provides an analysis of how

heterogeneity of the LCCP construction has affected the ecological

efficiency of three selected major urban agglomerations (Beijing-

Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta).

Table 13 presents the specific regression results of each variable

on urban agglomerations heterogeneity. The empirical analysis

shows that the establishment of LCCP has a positive influence on

the ecological construction of the Pearl River Delta and Yangtze

River Delta’s agglomerations, and the relevant estimated parameters

are 0.0543 and 0.5825. However, it is not large in the Beijing-

Tianjin-Hebei tripartite region. Hence, the LCC construction has a

more obvious consequence for the ecological construction as an

external environment element in the Pearl River Delta and the

Yangtze River Delta agglomeration, whereas it has no apparent

result on the Beijing-Tianjin-Hebei agglomeration.
8 Conclusions and implications

The rapid pace of urbanization has resulted in a disregard for

environmental care, contributing to the proliferation of “urban ills”

such as prioritizing economic growth over ecological harmony,

industrial expansion leading to environmental degradation, and

urban sprawl accompanied by carbon-intensive activities. The low-

carbon city model, which integrates sustainability with progress,

aims to achieve a harmonious coexistence between humanity and

the planet. As previously noted, recent studies have identified causal

relationships between effective low-carbon city management and

environmental improvement. However, the absence of an indicator
TABLE 12 Regression results of urban geographic location and resource feature.

Eastern region Central region Western region Resource-based cities Non-resource-based cities

EE EE EE EE EE

LCCP −0.0124 −0.0094 0.0683*** −0.0254* 0.0421***

(−0.89) (−0.64) (3.17) (−1.72) (3.51)

_cons −0.2043 −0.8766** −0.6517 −0.5725** −0.2864

(−0.56) (−2.40) (−1.62) (−2.16) (−0.94)

Control variables Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes

City fixed effects Yes Yes Yes Yes Yes

N 1,120 1,330 1,106 1,484 2,072

R2 0.6051 0.7111 0.6802 0.6960 0.6534

F 23.376 19.879 8.090 10.865 13.525
t-values are in parentheses; *, **, and *** represent the 10%, 5%, and 1% statistical levels, respectively.
TABLE 13 Regression results of urban agglomerations
heterogeneity analysis.

Beijing-
Tianjin-Hebei

Yangtze
River Delta

Pearl
River Delta

EE EE EE

LCCP 0.1070 0.0543** 0.5825*

(0.75) (2.18) (2.02)

_cons 1.6133 −0.3687 2.2761

(0.92) (−0.37) (1.79)

Control
variables

Yes Yes Yes

Year
fixed effects

Yes Yes Yes

City
fixed effects

Yes Yes Yes

N 126 308 168

R2 0.5152 0.6856 0.3045
t-values are in parentheses; * and ** represent the 10% and 5% statistical levels, respectively.
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system for ecological output and carbon footprints skews

evaluations of ecological efficiency, often focusing solely on the

economic growth–energy consumption equation. Additionally, the

impact of technological innovation and energy consumption on

ecological efficiency requires more robust scientific validation.

This study utilizes balanced panel data encompassing 254

Chinese prefectural-level cities from 2007 to 2020 to establish a

framework for estimating ecological efficiency. It seeks to delineate

the nature and chronology of changes, as well as overall trends

within these urbanized settings and their definitive or indeterminate

impacts on ecosystem efficiency. To investigate the three

aforementioned hypotheses, this study employs the DID method

to analyze the effects of the LCCP on ecological efficiency.

Furthermore, it examines the mediating influence of green

technology innovation and energy structure on the relationship

between the LCCP and ecological efficiency. Based on the outlined

study, the following conclusions have been drawn:

Firstly, our analysis of ecological efficiency across Chinese cities

reveals an overall improving trend, both spatially and temporally,

leading to the emergence of distinct groups or clusters. As we track

changes over time, a clear divide in efficiency levels among cities

becomes evident, with an increasing gap between them. Utilizing

the classic Markov chain analysis, we have identified a “club

convergence” effect, indicating the difficulty for cities to transition

between different efficiency levels. The influence of location on

changes in ecological efficiency is significant. Regions with higher

ecological efficiency leverage their extensive experience in policy

implementation and technological prowess, benefiting themselves

and creating spillover effects that uplift nearby regions and reduce

the likelihood of regression in efficiency.

Secondly, the implementation of the LCCP policy has notably

enhanced the ecological efficiency of urbanization, a finding

supported by various robustness checks. This study builds upon

prior research exploring diverse, interconnected, and dynamic

aspects related to low-carbon urban strategies. These include the

relationship between low-carbon urban initiatives and air quality

(Yang et al., 2023b), strategies to promote green transport and

transform resident lifestyles toward sustainability (Li et al., 2023a;

Zhang and Zheng, 2023), and strategies to break away from carbon

lock-in (Zhao et al., 2023a). Other scholars have also supported our

conclusions from various perspectives, such as industrial structure

and innovation (Ling et al., 2024), industrial agglomeration (Wu

et al., 2022), and digital financial inclusion (Liu et al., 2024). In

contrast to evaluating single indicators or the necessity of ecological

efficiency indicators within specific fields, this paper delves into

redefining ecological efficiency in detail, offering robust data to

support the causal relationship between the LCCP policy and

ecological efficiency. Based on this foundation, the authors

propose that future steps should focus on piloting low-carbon

cities to amplify their pioneering and demonstrative effects,

thereby assisting neighboring cities in exploring ecological

civilization construction. Economically, to balance economic

development and ecological construction, governments should

formulate emission reduction strategies and foster the emergence

and development of cities specializing in low-carbon industries.

From an ecological sensitivity standpoint, expanding urban green
Frontiers in Ecology and Evolution 17
spaces and cultivating social norms favoring low-carbon

transportation are crucial.

Thirdly, in our key finding, we observe that the LCCP policy is

effectively enhancing the eco-friendliness of our cities. It aims to

promote innovative green technologies and reduce energy

consumption while maintaining productivity. We refer to these

dual benefits as the “green innovation effect” and the “decoupling

effect.” These concepts are not new; previous researchers have

discussed similar ideas, particularly when it comes to

understanding how we can push for more of this good stuff (Ali

et al., 2023) and “inhibition” (Zhao et al., 2023d; Zhou et al., 2022)

on the “innovation effect.” Few studies, however, have explored how

energy structure influences the relationship between the LCCP

policy and a city’s ecological efficiency. Our research addresses

this gap by focusing on green technology innovation and energy

consumption. Consequently, we suggest that governments should

discourage environmentally harmful industries and incentivize

companies to invest more in green research and development.

This can be achieved through tax incentives, performance-based

rewards, and funding support for research initiatives. Moreover, it is

imperative to reduce reliance on fossil fuels to safeguard our natural

resources and environment.

Fourthly, geographical location, natural resources, and urban

agglomerations significantly influence the effectiveness of pilot

policies. The impact of the LCCP policy appears more

pronounced in western regions, cities less dependent on natural

resources, and urban clusters like the Pearl River and Yangtze River

Deltas. This underscores the role of favorable location and

transportation infrastructure in policy efficacy. However, there is

a caveat: The policy seems less effective in resource-dependent

cities, potentially due to the “resource curse” hindering ecological

efficiency (Wu et al., 2023). Therefore, when implementing such

policies, it is crucial to tailor approaches to local conditions

and characteristics.

Finally, employing the DID approach to assess the impact of the

LCCP policy on ecological efficiency initiates a critical dialogue that

is still unfolding. Several areas warrant further investigation. Firstly,

our study is limited to Chinese cities, necessitating a broader global

perspective. Secondly, a deeper examination at the provincial and

county levels could provide richer insights. Additionally,

recognizing the limitations of our methodology, continuous

monitoring of policy effects over time is essential, alongside

consideration of other factors influencing ecological efficiency.
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