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Introduction: Bamboo is one of the fastest-growing plants on earth, and its

young culms are formed by the elongation of internodes. However, the

mathematical intricacies of its internode elongation are not well understood.

Methods: This study investigated the internode length growth of Phyllostachys

edulis, Phyllostachys iridescens, and Pseudosasa amabilis at ten different culm

height developmental stages (G1–G10).

Results and discussion: The tempo of internode elongation from the culm base

to the tip generally followed a “slow-fast-slow” growth rhythm. The internode

length and the serial number relationship showed a right-skewed curve. As the

bamboo grows taller, the longest internode moves from the base to the middle

of the culm. The relationship between relative internode number (RIN) and

relative cumulative internode length (RCIL) displayed a typical S-shaped

growth curve. The modified Brière (MBE) sigmoid equation achieved better

goodness-of-fit than the logistic, power, and third-order functions in fitting

the RIN-RCIL curves with the smallest average root mean square error (RMSE).

The elongation rates of internodes varied not only with the growth of culm

height, but also with the position of the bamboo culm from base to tip. In

addition, as the bamboo grows in height, more internodes gradually contribute

to the culm height growth. At G1 development stage, 24.01–38.23% of the

internodes contributed 65.27–73.59% of the culm height, whereas at G10 stage,

49.28–61.07% of the internodes contributed 66.70–78.18% of the culm height.

Our findings provide new insights into the mathematical characterization of

bamboo internode elongation patterns involved in the rapid culm growth.
KEYWORDS

internode length, culm height growth, modified Brière equation, Phyllostachys edulis,
Phyllostachys iridescens, Pseudosasa amabilis
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1 Introduction

Bamboo belongs to the subfamily Bambusoideae of the family

Gramineae and is an important non-timber forest resource as well as

an important renewable biomass resource (van der Lugt and

Vogtlander, 2015). The world has more than 70 genera and 1,300

species of bamboo, which are widely distributed in tropical and

subtropical regions, covering 25 million hectares worldwide (Liese

and Khöl, 2015). Bamboo is one of the most fast-growing plants on

earth. Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) can

grow almost a meter in a single day (Chen et al., 2022). Bamboo

forests contribute to mitigating climate change by sequestering large

amounts of atmospheric carbon, in a similar way that trees do (Sohel

et al., 2015). Further, the culms of some bamboo species belonging to

the perennial tall grass family are highly lignified and tough, and can

be used for the production of paper, furniture, crafts, and building

sectors (Silva et al., 2020). In addition, bamboo presents itself as an

excellent sustainable substitute for wood and plastic. The traditional

saying of the local farmers: “Without bamboo, the land dies”

(Christanty et al., 1996). Bamboo’s utilization and climate change

mitigation capabilities may be due to its fast-growing characteristics.

The tempo of height growth of bamboo culm generally follows

the growth rhythm of “slow-fast-slow” (Song et al., 2016; Wang

et al., 2016; Chen et al., 2022). Before the emergence of shoots from

the soil, the number of nodes is almost definite. After that,

internodes elongate by cell division and elongation of the

intermediate meristematic issue (Liese and Weiner, 1996; Wang

et al., 2021). The parenchyma cells within and between vascular

bundles of bamboo internodes feature rapid elongation and are the

basis for culm internode elongation (Zheng et al., 2022). He et al.

(2002) reported that the parenchyma tissues of bamboo have two

types of vertically positioned cells: the short and long parenchyma

cells. The long parenchyma cells had thickened, polylamellate, and

lignified walls, which were considered as an energy reservoir in the

form of starch granules (Liese and Weiner, 1996). The short cells

had dense cytoplasm, thin walls, and peroxidase activities, which

were scattered among the long parenchyma cells (Parameswaran

and Liese, 1980). A bamboo culm grows to its full height of 2 m to

above 30 m within a period of few months (Liese and Weiner, 1996;

Wang et al., 2016; Yen, 2016). In the beginning, the height of the

bamboo culm grows slowly. Thereafter, the growth of the

internodes under the soil stops and bamboo roots begin to grow

into a root system. At the same time, the growth rate of the culm

internodes accelerates until it reaches its peak. At the end, the top of

the young culm bends, branches spread fast, and the growth of the

young culm slows down till ending. As young culms are formed by

the elongation of internodes. What is the elongation pattern of

bamboo culm internodes?

The culm height depends on the length of the culms, and it

varies from 2 to 37 m depending on the species’ character (McClure,

1966). Banik (1991) graphically represented the march of increase

and decrease in the culm internode length of ten different bamboo

species by plotting the internode length against its serial number

from the culm base to the tip. In the studied bamboo species, the

relationship between internode length and serial number indicates a

right-skewed curve, which is usually steeper on the “left” side while
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flatter on the “right” side. The relationship between internode

length and its serial number varies due to the variation in culm

size (Higuchi, 1981). Inoue et al. (2012) further found that the

relationship between the relative internode number (RIN, the

internode number relativized by the total number of internodes)

and the relative cumulated internode length (RCIL) of Moso

bamboo should be described not by a power function but by a

sigmoid function such as a third-order function. Inoue et al. (2017)

demonstrated that the node distribution (RIN-RCIL relationship)

of three bamboo species (P. edulis, Phyllostachys nigra var. henonis,

and Phyllostachys nigra Munro) with different culm sizes can be

represented by a single sigmoid curve. As a third-order sigmoid

function, the Brière equation (BE) has been widely used to depict

the effect of temperature on the development rate of insects (Brière

et al., 1999; Shi et al., 2017). Jin et al. (2022) modified the BE by

adding an additional parameter to further improve the elasticity of

its data fitting and referred to the new equation as the modified

Brière (MBE) equation. Their results showed that MBE achieved a

good fit to plant height and biomass development data. Previous

studies used three-parameter logistic equations and third-order

polynomial functions to describe the RIN-RCIL relationship, but

have not applied the MBE. Bamboo culms can grow to a full height

of 2 m to above 30 m within a period of few months, and the culm

height depends on the elongation of the internodes. How the

relationship between internode length and serial number changes

with culm height growth is not well understood.

In this study, the internode length growth of P. edulis,

Phyllostachys iridescens C.Y.Yao & S.Y.Chen and Pseudosasa

amabilis (McClure) Keng f. at different culm height stages were

investigated. The objectives of the current study were (1) to

understand the internode length growth pattern of these three

bamboo species, (2) to test the validity of the MBE-sigmoid

equation to fit the RIN-RCIL relationship, and (3) to explore the

changes in the internode elongation characteristics with the

development of culm height.
2 Materials and methods

2.1 Study site and culm sampling

In this study, we examined three bamboo species with different

culm heights: P. edulis, P. iridescens, and P. amabilis. Moso bamboo

(P. edulis), a native bamboo species to China, is one of the largest

bamboo species and on average approximately 18 m in tall and

11 cm in diameter at breast height (Kuehl, 2015). Moso bamboo is

widely distributed in southern China and is one of the most widely

distributed bamboo species in China (Shi et al., 2020). P. iridescens

is native to southeastern China and grows primarily in warm

temperate biomes, with culms 6–12 m tall and 6–10 cm in

diameter, and is used as an ornamental plant and as a vegetable.

P. Amabilis is also native to China with culms up to 6 m tall and

1.5–2.0 cm in diameter.

The research was carried out in P. edulis forests in Jiangning,

Nanjing, China (118°41’18”E, 31°44’30”N) and P. iridescens and P.

amabilis forests on the campus of Nanjing Forestry University,
frontiersin.org

https://doi.org/10.3389/fevo.2024.1440494
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Tan et al. 10.3389/fevo.2024.1440494
China (118°48’51”E, 32°04’59”N). In Jiangning, the annual mean

temperature and precipitation in 2021 are 17.15°C and 1362.2 mm,

and 16.98°C and 889.7 mm in 2022, respectively. On the campus of

Nanjing Forestry University, the annual mean temperature and

precipitation in 2021 are 17.36°C and 1343.7 mm, and 17.19°C and

867.1 mm in 2022, respectively. The climate data were based on

records from the gridded CRU TS dataset with a spatial resolution

of 0.5° (the CRU website: https://crudata.uea.ac.uk/cru/data/hrg/).

The average culm diameters at breast height (1.3 m) of P. edulis, P.

iridescens, and P. amabilis forests are approximately 9.0 cm, 6.1 cm,

and 2.1 cm, respectively. Culms of P. edulis were collected between

April and June 2021/2022 at ten development stages. Bamboo culm

samples of P. iridescens and P. amabilis were collected at ten

development stages between April and June 2022. We set the ten

development stages of P. edulis and P. iridescens as G1: 1 m, G2:

2 m, G3: 3 m, G4: 4 m, G5: 5 m, G6: 6 m, G7: 7 m, G8: 8 m, G9: 9 m,

and G10: 10 m. The ten development stages of P. amabilis are G1:

0.5 m, G2: 1.0 m, G3: 1.5 m, G4: 2.0 m, G5: 2.5 m, G6: 3.0 m, G7:

3.5 m, G8: 4.0 m, G9: 4.5 m, and G10: 5.0 m. Between 3 and 11

samples were collected for each bamboo species at each stage,

totaling 121 bamboo culms (Table 1).

In spring, when the average culm height of new bamboo in the

stand reached each stage, we collected the healthy and living culm

samples and measured their culm height and internode length

immediately after collection. The length of a culm segment

between adjacent nodes is referred to as the internode length (IL,

Figure 1). The internode of each culm sample was numbered from

the culm base to the tip (IN, internode number).

Since the culm heights on the same sampling day were often not

exactly the same as the set values, the average culm heights of the

collected P. edulis samples at the ten stages were G1 = 0.91 m,

G2 = 2.08 m, G3 = 3.05 m, G4 = 4.01 m, G5 = 5.10 m, G6 = 5.86 m,

G7 = 7.12 m, G8 = 8.10 m, G9 = 8.75 m and G10 = 11.04 m

(Table 1). The mean culm heights of the collected P. iridescens at ten

stages were G1 = 1.13 m, G2 = 2.13 m, G3 = 3.06 m, G4 = 4.20 m,

G5 = 4.98 m, G6 = 5.76 m, G7 = 7.40 m, G8 = 8.20 m, G9 = 8.79 m

and G10 = 10.14 m, respectively. The mean culm heights of the

collected P. amabilis at ten stages were G1 = 0.67 m, G2 = 0.97 m,

G3 = 1.55 m, G4 = 1.93 m, G5 = 2.54 m, G6 = 2.97 m, G7 = 3.46 m,

G8 = 4.11 m, G9 = 4.50 m and G10 = 4.89 m, respectively.
2.2 Data analysis

To eliminate the effect of culm size, the method proposed by

Higuchi (1981) was applied in this study. The average length of each

internode was calculated for each growth stage (G1–G10) of each

studied bamboo species. The internode number (IN) is relativized

to the total number of internodes and is referred to as the relative

internode number (RIN). The internode length cumulated from the

base to a given internode is relativized by the total culm length

referred to as the relative cumulative internode length (RCIL). The

relationship between RIN and RCIL at ten different culm height

development stages was fitted by the following equations:

MBE-sigmoid equation: the integral form of the modified Brière

(MBE) equation:
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y =
ajx2(xmax − x)1=mjd if x ∈ (0,  xmax)

0 if x ∉ (0,  xmax)

(
(1)

Where y represents dRCIL
dRIN , and x represents the RIN. The a, m,

and d are the parameters. The xmax represents the upper

intersection between the curve and the x-axis.

Power function :   y = axb (2)

Logistic function :   y =
a

1 + bexp(cx)
(3)

Third� order function :   y = ax3 + bx2 + cx + d (4)

For Equations 2–4, where y is the relative cumulated internode

length (RCIL). The x represents the relative internode number

(RIN). The a, b, c, and d are the parameters.

To evaluate the accuracy of the model fit, the root mean square

error was calculated:

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RSS=N

p
(5)

Where N represents the number of data points, and RSS is the

residual sum of squares between the observed and predicted values.

The Nelder-Mead algorithm (Nelder and Mead, 1965) was used to

optimally minimize the RSS between observed and predicted values.

The “fitsigmoid” function in the “biogeom” package (Shi et al.,

2022) was performed to fit the RIN-RCIL curve using the MBE-

sigmoid (Equation 1) equation within an R environment (version

4.2.2). The “MbriereE” function (simplified version = 1) in the

“biogeom” package was performed to fit the RIN-RCIL rate using

the MBE equation. In addition, the RIN and RCIL of the right

inflection point of the RIN-RCIL rate fitted by the MBE equation was

plotted against the development stage. Other models (Equations 2–4)

were conducted by the “nls” function in the “stats” package. The

above calculations were based on the average length of each internode

and each growth stage of each bamboo species studied.

The relationship between the longest internode length and its serial

number (i.e., internode number) of each studied species was performed

by a general linear regression model at the individual level. All the

above analyses were implemented in the R software (version 4.2.2).
3 Results

The internode elongation patterns of the three bamboo species at

ten different growth stages are shown in Figure 2. In general, the three

species showed a similar pattern, i.e., as the number of internodes

increased from culm base to tip, the internode length showed a

tendency to increase first and then decrease. The relationship

between the internode length and the serial number showed a right-

skewed curve, with the peaks of the curves gradually shifting from the

“left” side to the center as the development stage of bamboo culm

height progressed from G1 to G10. In addition, there was a significant

linear positive relationship between the serial number of the longest

internodes and the culm length (Figure 3). The number of internodes

with the longest length increased linearly as the culm length increased.
frontiersin.org
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Figure 4; Supplementary Figure S1 depict the RIN-RCIL

relationships at ten growth stages for the three bamboo species

studied. The RIN-RCIL relationships of P. edulis, P. iridescens, and

P. amabilis were consistent with an S-shaped curve, indicating that

the tempo of internode length of bamboo culms generally follows

the growth rhythm of “slow-fast-slow” from culm base to tip.

Furthermore, as the height of the bamboo culm increased, the

number of internodes that are in the fast-growing stage increased.

The RMSE of the three studied species at ten development stages
Frontiers in Ecology and Evolution 04
ranged from 0.0044 to 0.1476 (Figure 5; Supplementary Table S1;

Equation 5). The power function had the highest mean RMSE

among the four equations (P. edulis = 0.1026, P. iridescens = 0.1085,

P. amabilis = 0.1104). The mean RMSE of the third-order function

was the second highest (P. edulis = 0.0343, P. iridescens = 0.0328, P.

amabilis = 0.0429). This was followed by the logistic function with

mean RMSE values of 0.0172, 0.0162, and 0.0220 for P. edulis, P.

iridescens, and P. amabilis, respectively. The MBE-sigmoid equation

showed the lowest RMSE values with P. edulis = 0.0150, P. iridescens
TABLE 1 Detailed information of bamboo culm samples.

Species Stage
Culm

height (cm)
NO

Average
internode
number

Average
internode
length (cm)

Maximum
internode
length (cm)

No. of the
longest

internode

P. edulis

G1 90.80 ± 6.98 4 30.00 ± 3.74 2.31 ± 0.12 7.30 ± 0.37 5.25 ± 1.30

G2 207.75 ± 9.13 4 33.25 ± 1.30 5.45 ± 0.20 18.63 ± 2.02 8.00 ± 0.00

G3 304.83 ± 25.23 3 32.33 ± 3.30 8.47 ± 1.31 24.60 ± 2.19 9.50 ± 1.22

G4 400.75 ± 23.52 11 37.73 ± 4.96 9.97 ± 1.35 25.69 ± 2.16 13.05 ± 1.39

G5 509.90 ± 27.59 10 41.40 ± 4.86 11.92 ± 1.82 28.57 ± 1.58 16.40 ± 0.66

G6 585.64 ± 25.50 7 38.43 ± 5.70 14.39 ± 2.25 32.23 ± 2.01 16.93 ± 0.84

G7 712.28 ± 24.13 8 52.50 ± 4.33 13.21 ± 1.04 33.73 ± 1.48 20.50 ± 1.66

G8 809.71 ± 28.23 7 51.57 ± 3.70 15.38 ± 1.41 33.87 ± 2.67 23.43 ± 0.86

G9 874.83 ± 12.74 3 54.33 ± 1.25 15.61 ± 0.32 35.53 ± 0.54 21.67 ± 0.94

G10 1104.33 ± 87.75 3 57.67 ± 4.19 18.68 ± 0.75 30.23 ± 2.07 27.67 ± 5.19

P.
iridescens

G1 112.67 ± 9.89 3 16.67 ± 3.40 5.10 ± 1.53 16.00 ± 1.07 3.33 ± 0.47

G2 212.50 ± 11.88 3 24.00 ± 2.94 7.47 ± 1.12 24.47 ± 1.08 5.67 ± 0.47

G3 306.00 ± 3.74 3 27.33 ± 3.09 10.12 ± 1.13 30.43 ± 0.63 8.00 ± 0.00

G4 419.67 ± 1.25 3 31.67 ± 1.25 11.85 ± 0.33 38.70 ± 1.16 9.67 ± 0.94

G5 498.27 ± 20.60 3 34.67 ± 2.05 13.65 ± 0.62 39.80 ± 3.65 12.00 ± 1.63

G6 576.00 ± 14.51 3 36.67 ± 0.47 14.61 ± 0.50 41.63 ± 0.48 11.67 ± 0.47

G7 740.00 ± 10.80 3 41.33 ± 2.05 17.14 ± 0.77 41.33 ± 2.94 16.33 ± 1.25

G8 820.00 ± 8.29 3 42.00 ± 2.16 18.81 ± 1.10 43.67 ± 1.24 16.00 ± 1.41

G9 879.00 ± 24.18 3 41.67 ± 1.25 20.43 ± 1.35 37.33 ± 5.22 14.67 ± 1.25

G10 1014.00 ± 44.59 3 45.00 ± 3.27 22.31 ± 2.09 39.70 ± 1.44 18.33 ± 1.25

P. amabilis

G1 67.00 ± 5.72 3 18.67 ± 0.47 2.46 ± 0.57 8.90 ± 2.99 6.00 ± 0.00

G2 96.67 ± 8.73 3 20.00 ± 0.82 4.25 ± 0.33 16.60 ± 0.54 5.33 ± 0.47

G3 155.33 ± 9.03 3 23.33 ± 1.70 5.98 ± 0.82 20.97 ± 4.75 7.67 ± 1.70

G4 193.00 ± 9.63 3 22.00 ± 1.41 7.74 ± 0.63 31.33 ± 3.02 6.67 ± 0.47

G5 254.00 ± 19.20 3 24.33 ± 2.49 10.52 ± 1.47 32.17 ± 4.22 8.33 ± 1.25

G6 297.25 ± 8.98 4 24.00 ± 1.58 12.31 ± 1.37 32.63 ± 4.71 9.00 ± 0.71

G7 346.33 ± 13.47 3 25.00 ± 2.16 13.12 ± 0.61 27.30 ± 4.47 9.67 ± 1.25

G8 410.67 ± 6.85 3 25.33 ± 1.70 17.51 ± 2.81 27.87 ± 2.57 12.67 ± 1.25

G9 450.00 ± 16.75 3 26.00 ± 1.63 19.31 ± 1.81 31.17 ± 4.64 10.67 ± 0.94

G10 488.67 ± 10.87 3 29.33 ± 2.36 16.20 ± 3.05 29.77 ± 3.60 11.00 ± 0.82
NO, number of culm samples; No. of the longest internode, the serial number of the longest internode in each culm.
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FIGURE 1

Schematic explanation of changes in internode length along a culm at different culm height stages.
FIGURE 2

The relationship between the internode number and the internode length at ten culm height developmental stages (G1–G10) of P. edulis (A),
P. iridescens (B), P. amabilis (C). Each point represents the average value of internode length for each internode and each stage.
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= 0.0154, and P. amabilis = 0.0131. The RIN-RCIL rates fitted with

the MBE equation are shown in Figure 6. The MBE equation reflects

the growth rate of RCIL to RIN as a derivative function, and its

integral over a certain interval exhibits the length of an internode.

The RIN-RCIL rate curves again verified that the number of

internodes in the rapid growth stage increased as the height of

the bamboo cum increased. The maximum rate of the relative
Frontiers in Ecology and Evolution 06
cumulative internode length was higher for culms in the early

height growth stage compared to the later growth stage. The

relationship between RCIL/RIN at the right inflection point of the

RIN-RCIL rate curve fitted by the MBE equation and the

development stage is shown in Figure 7. As the bamboo culm

height developed from G1 to G10, the RIN at the right inflection

point increased significantly (R2 = 0.5894, p < 0.001), while the
FIGURE 3

A linear relationship between the serial number of the longest internode and the culm length of P. edulis (A), P. iridescens (B), P. amabilis (C). Each point
represents the serial number of the internode with the longest length of each bamboo culm studied.
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positive correlation between the RCIL at the right inflection point

and the growth stage (R2 = 0.2406, p < 0.01) was weaker compared

to that of RIN.
4 Discussion

This study shows that as the serial number of internodes

increased from culm base to tip, the internode length of P. edulis,

P. iridescens, and P. amabilis showed a tendency to increase first and
Frontiers in Ecology and Evolution 07
then decrease (Figure 2). Consistent with the results of previous

studies, the relationship between internode length and its serial

number of the studied three bamboo species showed a right-

skewed curve (Banik, 1991; Cheng et al., 2017; Tsuyama et al.,

2017; Shimada et al., 2021). Further, as the culm height increased

(from G1 to G10), the peaks of the curves gradually shifted from the

“left” side to the center. Although the three bamboo species differ in

size, they exhibited similar relationships between internode length

and internode number. A significant linear positive relationship was

found between the serial number of the longest internodes and the
FIGURE 4

The relationship between the relative internode number (RIN) and the relative cumulative internode length (RCIL) of P. edulis (A), P. iridescens (B),
P. amabilis (C).
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culm length, which indicates that the internode with the longest

length moves from the base to the middle of the culm as the bamboo

grows taller (Table 1; Figure 3). At the entire bamboo stem, the lower

internodes grow and develop before the upper ones. In the early stage

of culm development (i.e., spring of the first growing season), the

degree of lignification and cell development is higher in basal

internodes than in upper ones (Cui et al., 2012; Tsuyama et al., 2017).

To eliminate the effect of culm size, the internode number was

relativized to the total number of internodes as the relative internode

number (RIN), and the internode length cumulated from base to a

given internode was relativized by the total culm length as the relative

cumulative internode length (RCIL; Higuchi, 1981; Inoue et al., 2012,

2017). The RIN-RCIL relationship for each species at ten development

stages displayed a typical S-shaped growth curve (sigmoid growth

curve, Figure 4; Supplementary Figure S1). Jin et al. (2022) illustrated

that the additional parameter d of the modified Brière (MBE) equation

significantly enhanced the adaptability in S-shaped curve fitting.

Compared to the Brière (BE) equation, this additional parameter of

the MBE equation expands the ability to fit S-shaped curves with

varying curvatures for its integral form, allowing the MBE equation to

demonstrate excellent fitting performance in a wide range of materials.

In our study, the MBE-sigmoid equation achieved better goodness-of-

fit than logistic, power, and third-order functions in fitting RIN-RCIL

curves, with the lowest average RMSE for all studied bamboo species

(Figure 5; Supplementary Table S1). In addition, the MBE-sigmoid

equation showed better stability and reliability, with the smallest

standard deviation of RMSE between different growth stages within

each studied species compared with other functions, e.g., for P.

iridescens, the standard deviation of the MBE-sigmoid, logistic,

power, and third-order functions are 0.0022, 0.0069, 0.0197 and 0.0129.
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The tempo of internode elongation from the culm base to the tip of

P. edulis, P. iridescens, and P. amabilis generally follows a growth

rhythm of “slow-fast-slow” (Figures 4, 6). This is consistent with

previous studies on P. edulis, Phyllostachys nigra var. henonis and

Phyllostachys nigra Munro growing in Japan (Inoue et al., 2012, 2017;

Shimada et al., 2021), P. edulis in Anhui province, China (Wu et al.,

2023), and Pseudosasa amabilis McClure in Jiangsu province, China

(Cheng et al., 2017). In the early stage of culm development (the first

growing season in spring), the RIN-RCIL rate fitted by the MBE

equation showed a left-leaning curve (Figure 6), which suggests that the

new internodes formed from the apex are shorter and undergo a slow

elongation phase, and the lower internodes begin and complete

elongation earlier than the upper internodes. As the development

stage of bamboo culm height progressed, the internode with the longest

length moved from the lower part of the bamboo culm to the middle,

indicating that there are differences in the elongation rates of different

internodes in the bamboo culm. That is, the elongation rates of the

same internode at different culm height development stages are

different, and the elongation rates of different internodes at the same

culm height development stage are also diverse. By observing the RIN

at the right inflection points of the RIN-RCIL rate curves, we found

that after entering the G1 development stage, 24.01–38.23% of the

internodes began to elongate rapidly to promote the height growth of

bamboo culms (Supplementary Table S2). Furthermore, by extracting

the RCIL at the right inflection points of the RIN-RCIL rate curves, we

can find that during the G1 development stage, the cumulative length

of the rapidly growing internodes (accounting for 24.01–38.23% of all

internodes) contributes 65.27–73.59% culm height (Supplementary

Table S2). As the bamboo height growth proceeded, more and more

internodes gradually contributed to the growth of culm height. By the
FIGURE 5

The root mean square error (RMSE) values obtained for P. edulis, P. iridescens, and P. amabilis using MBE-sigmoid, logistic, power, and third-order
equations. The horizontal solid line indicates the median, the red asterisk indicates the mean, and the whiskers extend to 1.5 times the interquartile
range from the top and bottom of the box.
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G10 development stage, the proportion of internodes participating in

culm height growth reached 49.28–61.07%, and the cumulative length

of rapid-growing internodes contributed 66.70–78.18% of the total

culm height. Bamboo, as one of the most fast-growing plants on earth,

can reach a height of up to 30 m in a few months and grow almost a

meter in a single day (Liese and Weiner, 1996; Wang et al., 2016; Yen,

2016; Chen et al., 2022). The straight, hollow, and tapering structural

characteristics of bamboo culms composed of nodes and internodes

contribute to mechanical support during rapid height growth (Liese
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and Tang, 2015; Lorenzo and Mimendi, 2020; Kanahama and Sato,

2023). We speculate that during the early stage of culm development,

the cumulative length of the lower part internodes contributes the

majority of the total culm height, which may help support rapid cell

division of the shorter upper internodes. In addition, in the diaphragm,

the net-like structure of the vascular bundle systems consisting of

horizontal and axial vascular bundles, not only contributes to

mechanical properties, such as bending and crack resistance during

rapid height growth, but also facilitates the tangential and axial
FIGURE 6

The growth rate of relative cumulative internode length (RCIL) against relative internode number (RIN) was fitted by the MBE equation for P. edulis (A),
P. iridescens (B), and P. amabilis (C).
frontiersin.org

https://doi.org/10.3389/fevo.2024.1440494
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Tan et al. 10.3389/fevo.2024.1440494
transport of water and nutrients (Peng et al., 2014; Palombini et al.,

2020; Li et al., 2021; Huang et al., 2023).We speculate that the structure

of longer internodes in the lower part and shorter internodes in the

upper part, as well as the structure with sparse node distribution at the

mid-culm and dense near the ends of the culmmay facilitate the uptake

of water and nutrients from the culm base to tip. Bamboo development

consists of multiple stages from cell division to elongation, maturation,

and lignification (Wang et al., 2021). The results of this study validate

previous findings that cells of the lower part internodes are more
Frontiers in Ecology and Evolution 10
mature, longer, and more lignified than those in the upper part of

bamboo culm (Cui et al., 2012; Tsuyama et al., 2017; Tao et al., 2020).

In addition, the growth hormones auxins, cytokinins, and gibberellins

accumulated at the shoot apex of P. edulis, whereas the stress hormones

ABA, salicylic acid, and jasmonic acid are predominantly present in the

lower part of the shoot (Gamuyao et al., 2017). However, within the

internode, the cells transition from an active division phase at the base

to a cell elongation phase in the upper part, with a gradual thickening of

the cell wall. Within the internode, cell growth-related hormones are
FIGURE 7

Changes in (A) relative cumulative internode length (RCIL) and (B) relative internode number (RIN) at the right inflection points of the RIN-RCIL rate
curves with development stage (G1–G10). Each point indicates RCIL or RIN at the right inflection point of the RIN-RCIL rate curve in Figure 6.
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higher at the base compared to the upper part, leading to faster cell

division (Wang et al., 2021), and the dense and small cells in the lower

part may support the elongation of the upper cells. The growth pattern

of bamboo, i.e., the lower internodes of the entire culm grow and

develop before the upper internodes, and the opposite pattern occurs

within the internodes, is the basis for the rapid height growth of

bamboo. In future research, an in-depth understanding of the

mathematical relationship between cell division and elongation will

help to understand the mechanism of rapid height growth in bamboo.
5 Conclusions

The tempo of internode elongation from the culm base to the tip of

P. edulis, P. iridescens and P. amabilis generally follows a “slow-fast-

slow” growth rhythm. The relationship between internode length and

serial number of the three bamboo species studied showed a right-

skewed curve. Furthermore, as the culm height increased from G1 to

G10, the peaks of the curves gradually shifted from the “left” side to the

center, i.e., the longest internode moved from the base to the middle of

the culm. The RIN-RCIL relationship at ten development stages of each

species displayed a typical S-shaped growth curve, and the MBE-

sigmoid equation achieved better goodness of fit than logistic, power,

and third-order functions in fitting the RIN-RCIL curves with the

smallest average RMSE. By observing the RIN and RCIL at the right

inflection points of the RIN-RCIL rate curves, we found that as the

bamboo height growth proceeded, more internodes gradually

contributed to the culm height growth. This study improves the

understanding of the mathematics involved in the pattern of bamboo

internode elongation during rapid height growth.
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