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Quantifying the impact of
environmental changes on
migratory species: a model
perturbation framework
Phoebe Smith1*, Ben Adams1 and Chris Guiver2

1Department of Mathematical Sciences, University of Bath, Bath, United Kingdom, 2School of Computing,
Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, United Kingdom
Migratory species use different habitats and pathways across their migratory route.

Pathway contribution metrics are transient metrics of population growth, derived

from population models, and quantify the predicted contribution of an individual,

travelling along a specified migratory route, to the total population over a specified

length of time. Environmental disturbances or management actions may occur

temporally or spatially throughout the process of migration. The impact that a given

perturbationmay have on pathway contributionmetrics is not always obvious owing

to the propagation of the perturbation through the migratory cycle. Here, we

develop a general modelling framework that incorporates perturbations into a

class of matrix migratory population models, and which quantifies the effect that

perturbations to the model, in terms of the transition rates of habitats and pathways,

have on pathway contributionmetrics. We also detail how to calculate the sensitivity

of pathway contribution metrics to the perturbations considered. Our framework

may be used to provide insights into the impact that environmental disturbances or

management actions have on migratory populations. These insights may be used to

inform management actions which either buffer against possible deleterious

disturbances or increase the population size through targeted interventions. Our

theoretical results are illustrated via hypothetical examples and a model inspired by

the monarch butterfly; we uncover results that are not clear from the calculation of

the pathway contribution metrics alone.
KEYWORDS

contribution metric, environmental change, full-annual-cycle matrix model, migration,
perturbation, population management, sensitivity analysis, spatially-structured population
1 Introduction

Migratory species are fundamental to many ecosystems. Migratory populations may be

affected by changes in land use and climate across multiple habitats. Conservation or

management strategies must account for the fact that these habitats may be subject to

different jurisdictions and some may be difficult or impossible to influence. Here, we
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provide two frameworks that quantify how changes to the vital rates

of a migratory population influence the short- and long-term

growth of the population.

Climate change poses a risk to many species. Despite migration

evolving in response to seasonal changes in climate and habitat

(Dingle and Drake, 2007), the unprecedented speed and magnitude

of climate change is leading to a decline in many migratory species

(Huntley et al., 2006; Robinson et al., 2009; Wilcove and Wikelski,

2008). In fact, migratory species can be more at risk than sedentary

species (Runge et al., 2014). This increased risk could be due to

migratory species using habitats that are far removed from each

other, making it difficult for the species to adapt to the changing

environment (Both and Visser, 2001; Shuter et al., 2011); or due to

their reliance on high latitude, high altitude and wetland habitats

which are more affected by climate change (Hassol, 2004; Robinson

et al., 2009).

Migratory species link distant ecosystems and provide them

with large inputs of energy and nutrients (Bauer and Hoye, 2014;

Wilcove and Wikelski, 2008). Their movements are often

predictable, enabling other species to shape their life history

strategies around the movements of migratory species to take

advantage of the influx of energy and nutrients (Bauer and Hoye,

2014). Changes to the timing and route of migration or the number

of individuals migrating may cause wide-ranging environmental,

economic or social consequences (Robinson et al., 2009). The

conservation of migratory species requires an international and

collaborative approach due to their use of different habitats across

their migratory cycle (Kirby et al., 2008; Robinson et al., 2009;

Runge et al., 2015; Thornton et al., 2018). However this can be

challenging and few species are protected across their entire range

(Runge et al., 2014, 2015). In fact, IUCN (International Union for

Conservation of Nature) targets are met for a smaller proportion of

migratory species than for sedentary species (Runge et al., 2015).

Models that assess the importance of different parts of a

migratory cycle will arguably be an essential tool in the

conservation of migratory species. There are numerous existing

metapopulation models, based on the work in Levins (1969), that

assess the importance of habitats to the growth of the population.

Although these models study similar systems, with movement

between discrete habitats, they do not account for the seasonal

movement back and forth between habitats, as is required in the

study of migratory species (Taylor and Hall, 2012). Thus, models

that consider this specific periodic movement are required to fully

understand and study the dynamics of migratory species.

Many analytical tools used in the modelling of migratory species

consider choices made by an individual (Bowlin et al., 2010).

However, contribution metrics that assess the importance of

habitats and pathways to the total population are developed

across: Runge et al. (2006); Sample et al. (2019); Smith et al.

(2022); Wiederholt et al. (2018). These metrics build on existing

metapopulation theory, extending it to account for the periodic

nature of migratory cycles. The contribution metrics are computed

from a population model that is assumed to be fixed, and so their

numerical value is constant. Additional insight could be gathered
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from the contribution metrics by assessing how they change in

response to changes in the model parameters. There are a number

of scenarios where it is important to gain insight into how changes

affect a model, including (Caswell, 2019): when environmental

change is expected; when theoretically testing possible

management actions; and to identify the parameters that have the

biggest effect on the outcome(s) of interest.

To assess the impact that environmental change has on

migratory species, recent studies have performed perturbation

analyses on migratory networks. Payo-Payo et al. (2022) construct

a general annual cycle matrix model and evaluate how the choice of

migration route and survival during migration affect the asymptotic

growth rate of the population. This framework does not allow for

perturbations to the demographic vital rates, only allows for two

habitats and does not consider transient dynamics.

Sample et al. (2020) develop a habitat metric that quantifies the

effect of perturbing one habitat by a fixed amount in every season of

the annual cycle. They also develop a pathway metric that quantifies

the effect of perturbing a directed pathway by a fixed amount in

every season of the annual cycle. These perturbations are applied to

the seasonal population matrices, which contain both the

demographic and movement update information. This framework

does not allow for perturbations to be applied to specific

demographic or migratory rates, or groups of these rates. The

impact that the perturbations have on the asymptotic growth of

the population is not considered.

Here, we analyse the impact of these perturbations in a general

framework that overcomes these limitations. Our methodology

allows perturbations to be applied to any of the vital rates of a

migratory population modelled using a matrix population model

(as in, for example, Caswell (2001)). Applying perturbations directly

to specific vital rates ensures that the ecological meaning of the

perturbations is clear. Furthermore, perturbations can be applied to

any number of vital rates, and so the effects of mixed intervention

strategies and trade-offs can be explored.

We provide two frameworks that assess how changes in the vital

rates of a migratory population influence the size of the

contribution metrics developed in Smith et al. (2022) and the

asymptotic growth rate. The first framework is a structured

perturbation framework [inspired by Hodgson and Townley

(2004)] that uses linear algebra to predict the actual change that a

perturbation causes to the contribution metrics and asymptotic

growth rate. The second framework uses differential calculus to

compute sensitivity formulae [inspired by Caswell (2019)] that

predict the rate of change in the contribution metrics and

asymptotic growth rate at a given point. These two frameworks

can be used together or individually to identify the vital rates that

are expected to cause the migratory population to grow, remain

stable, or decrease in both the short- and long-term. The results of

analyses using these frameworks can be used to inform population

management decisions that consider the whole migratory cycle.

The remainder of the paper is organised as follows. In Section 2,

we present our two perturbation frameworks. In Section 3, we

present examples to illustrate the frameworks’ utility. Section 4 is
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the discussion. A number of technical details are provided in the

Supplementary Material.
2 Materials and methods

Here we present a modelling framework for incorporating

perturbations in annual cycle models — a class of discrete-time

structured matrix population models for migratory species — and

understanding the consequent effects on pathway contribution

metrics. To do so, we briefly recap annual cycle models and

pathway contribution metrics from Smith et al. (2022). As

mentioned there, the underlying annual cycle model is inspired

by those appearing in Hunter and Caswell (2005) and Sample et al.

(2019); the pathway contribution metrics generalise those

developed over Runge et al. (2006); Sample et al. (2019);

Wiederholt et al. (2018). The mathematical notation used to

define the model is recorded in Table 1.
2.1 The annual cycle model

The annual cycle model uses theory from matrix population

models [see, for example, Caswell (2001); Cushing (1998)] to

project a population over an annual cycle from a fixed

anniversary season. The annual cycle matrix A ∈ Rcn�cn
+ stratifies

the population by stage structure and spatial location (or habitat)

(Sample et al., 2019; Smith et al., 2022); A contains both the

demographic update information associated with habitats and the

migration update information associated with migration pathways.

It is assumed that there are c stages and n habitats. The underlying

discrete-time annual cycle model is given by

x(t + 1) = Ax(t) t = 0, 1, 2,… , x(0) = x0 , (1)

where x(t) ∈ Rcn
+ is the structured population at (annual) time-step t,

recorded during the anniversary season. The vector x0 denotes the

initial population distribution. The dominant eigenvalue ofA, denoted

by l, is known to give the asymptotic growth rate of the population.

Migratory populations experience different vital rates in different

seasons. As such, the annual cycle model decomposes each year into s

seasons— the word being used roughly to denote some portion of the

year — indexed by k ∈ 1,…, sf g. For ease of notation, we make the

convention that the anniversary season is labelled number one, and

subsequent seasons enumerated consecutively.

Then, an order c� c demographic projection matrix,

denoted Dj,k, is associated with each habitat j ∈ 1,…, nf g and

season k ∈ 1,…, sf g. Similarly, for each stage i ∈ 1,…, cf g, we
associate order n� n movement matrices Pi

k and Sik, which

respectively contain the probabilities that, during season k, an

individual of stage i uses a migration pathway and the

probabilities that an individual of stage i survives migration. The

matrices Dj,k, P
i
k and Sik are the fundamental ingredients of the

annual cycle model, and together combine to form seasonal

matrices, denoted by Ak ∈ Rcn�cn
+ . The seasonal matrices project

the population across all stages and habitats over season k and are
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given by

Ak = o
n

j=1
En,jj ⊗Dj,k

 !
o
c

i=1
Pi
k ⊗ Ec,ii

 !
∘ o

c

i=1
Sik ⊗ Ec,ii

 ! !

= :Dk(Pk ∘ Sk)  : (2)

Here: ⊗ denotes a Kronecker product; En,ii is a n� n matrix of

zeros, apart from a one in the (i, i)-th entry; ∘ denotes Hadamard

(entrywise) matrix product. The order of multiplication assumes

that, within a season, migration is followed by demography. Then,

the annual cycle matrix A is constructed by taking the product of s

seasonal matrices via left multiplication, that is,

A : =
Ys
k=1

Ak = As ⋯A2A1  : (3)

Seasonal survival matrices, Â k ∈ Rcn�cn
+ , that encode the migratory

survival and demographic rates, but, unlike Ak, do not include the
TABLE 1 Symbols used for parameters and matrices in the annual
cycle model.

Symbol Definition

c number of population stages

n number of habitat patches

s number of seasons in the annual cycle

t discrete time variable (years)

A cn × cn annual cycle matrix that projects the population over one
increment of t

x(t) cn × 1 vector of the population distribution at the start of annual
cycle t

Ak cn × cn seasonal matrix that projects the population over
season k,Ak : = DkMk

Dk cn × cn block matrix containing the demographic update
information for all habitats in season k

Mk cn × cn block matrix containing the migration update information
for all stages in season k

Dj,k c × c demographic projection matrix for habitat j in season k

Mi
k n × n migration projection matrix for stage i in season k, contains

the probability that an individual in stage i migrates along a
pathway in season k and survives

Pk cn × cn block matrix containing the probability that an individual
migrates along a pathway
in season k, for all stages

Pi
k n × n matrix containing the probability that an individual in stage

i migrates along a pathway in season k

Sk cn × cn block matrix containing the survival probability of
migrating along a pathway in season k, for all stages

Sik n × n matrix containing the probability that an individual in stage
i survives migration along a pathway in season k

Â k cn × cn seasonal survival matrix that contains the survival
probability of migration along
pathways and demographic rates for season k; probability that an
individual migrates along pathways is not included
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information regarding the proportion of the population that

migrate along pathways, are given by

Â k : = o
n

j=1
En,jj ⊗Dj,k

 !
o
c

i=1
Sik ⊗ Ec,ii

 !
= :DkSk  : (4)

For further detail about the construction of the annual cycle model,

see Smith et al. (2022, Section 2.2).
2.2 Pathway contribution metrics

We describe the pathway contribution metrics introduced in

Smith et al. (2022). They define amigratory route to comprise all the

pathways that an individual migrates along during an annual cycle;

where a pathway is defined to be the migration an individual takes

between one habitat and another (or itself) during a season. This is

written mathematically by introducing the vector P ∈ Rs+1
+ to

describe the migratory route. The k-th entry of P, written P(k),
denotes the habitat that the subpopulation starts season k in (and

ends season k − 1 in).

When defining the migratory route that a focal subpopulation

takes, it is not necessary to specify the pathway taken in every

season. If a pathway is not specified in a season, then all valid

pathways from the starting habitat are tracked. To help visualise

which pathways are specified and unspecified in a migratory route,

we use arrows (→) and crossed arrows (↛), respectively. For

example, in an annual cycle model with 3 seasons, if the

pathways used during seasons 1 and 3 are unspecified and the

pathway used during season 2 is specified, then the focal

subpopulation travels along the migratory route

P(1)↛P(2) → P(3)↛P(4)  : (5)

Once the migratory route has been specified, it is then possible to

populate the vector P. To do this, each P(k) is set to be an integer in

0, 1,…, nf g, where the pathway taken during season k is denoted by

P(k) and P(k + 1). If P(k) = 0, then the habitat that the

subpopulation starts season k in (and ends season k − 1 in) is

unspecified. For example, if the pathway specified in season 2 of

Equation 5 is the pathway from habitat 1 to habitat 2, then Equation 5

becomes

0↛ 1 → 2↛ 0 , and P : = ½ 0 1 2 0 �  :
Finally, f ∈ 0, 1,…, sf g is set to be the number of seasons for

which a pathway is specified, and F ∈ Rf stores the labels of these

seasons. Once P, f and F have been defined, the pathway

contribution metrics can be calculated. The projection matrices

for the subpopulation that travels along migratory route P are

extracted from A using the function

Ak : =
Â k ∘ (En,P(k+1)P(k) ⊗ Jc) , k ∈ F  ,

Ak , otherwise  :

(
(6)

Here, Jc is an c × c matrix of ones.

In Smith et al. (2022), two types of pathway contribution

metrics are defined. The first are called the subpopulation
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pathway contribution metrics, and are defined by

C(P) : = 1⊤cn
Ys
k=1

Ak = 1⊤cnAs ⋯A2A1

= ½C1
1(P) ⋯ Cc

1(P) j ⋯ j C1
n(P) ⋯ Cc

n(P) �  :
(7)

Here Ci
j(P) is the per capita contribution of an individual that

starts the annual cycle in stage i and habitat j and migrates along P,
to the subpopulation that migrates along P.

The second pathway contribution metrics introduced are called

the metapopulation pathway contribution metrics, and are defined

by

~C(P) : = 1⊤cn
Ys
k=1

AkPk = 1⊤cnAsPs ⋯A2P2A1P1

= ½ ~C1
1(P) ⋯ ~Cc

1(P) j ⋯ j ~C1
n(P) ⋯ ~Cc

n(P) �  :
(8)

Here ~Ci
j(P) is the per capita contribution of an individual that

starts the annual cycle in stage i and habitat j and travels along the

migratory route P, to the total population. The matrices Pk in

Equation 8 are given by

Pk : =
In ⊗ (Pk)P(k+1),P(k) , k ∈ F ,

Icn , otherwise  :

(

H e r e : In ⊗ (Pk)P(k+1),(k) i s a cn� cn m a t r i x w i t h

the (P(k + 1),P(k))-th block of Pk along the diagonal; Pk ∈ Rcn�cn
+

contains the proportion of the population travelling along each pathway

in season k. Further details on the above two pathway contribution

metrics are given in Smith et al. (2022, Section 2.3). We also note that if

there are no specified paths, then both pathway contribution metrics

recover the so-called habitat contribution metrics developed in Sample

et al. (2019). The habitat contribution metrics calculate the expected

number of individuals generated from an individual occupying the focal

habitat at the start of the annual cycle.

The contribution metrics stored in ~C(P) can be averaged over

stage and habitat to assess the contribution of habitats and stages,

respectively; see Smith et al. (2022, Section 2.7) for more detail.

A diagram summarising the annual cycle model, its various

components and relationships, as well as the pathway contribution

metrics, is given in Figure 1.
2.3 Perturbations to annual cycle models
and pathway contribution metrics

We describe a modelling framework for incorporating

structured perturbations into annual cycle models and,

consequently, into pathway contribution metrics. The term

structured here essentially means that perturbations are applied to

specific model parameters. The framework is general and flexible,

and enables each season of the annual cycle and all population states

to be perturbed independently of each other. We proceed to outline

the method, before giving the mathematical details.

An (additive) structured perturbation to a matrix M means

replacing (or updating) M by
frontiersin.org
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M + QDR , (9)

for matrix terms Q, D and R. Here, the matrices Q and R describe

the structure of the perturbation, meaning on which entries of M it

is assumed to act. For a given structure of perturbation, these

matrices are fixed and assumed known. The term D describes the

magnitude of the perturbation, and is typically assumed to be

unknown or at least variable. The case D = 0 corresponds to no

perturbation of M, sometimes called the nominal or unperturbed

model. The simplest case is when Q = q and R = r⊤ are vectors, and

D = d is a scalar variable. The matrices Q, R and D will in practice

have certain constraints, to ensure that the perturbed matrix

M +QDR is still ecologically meaningful. In the context of matrix

population projection models (matrix PPMs), structured

perturbations of the form Equation 9 have been proposed and

studied across, for example: Guiver et al. (2016); Hodgson et al.

(2006); Hodgson and Townley (2004); Lubben et al. (2009). They

are amenable to analysis by a range of mathematical techniques.

We represent perturbations to the annual cycle model (1) in

terms of structured perturbations of the form Equation 9 to the

demography matrices, Dj,k, and the movement matrices, Pi
k and Sik.

These are the fundamental building blocks of the annual cycle

model. The entries of the matrices Dj,k, P
i
k and Sik have clear

ecological interpretations, and it is natural to assume that

proposed management actions, or environmental changes, may

affect these. More importantly, ecologically meaningful

perturbations to these terms shall, by construction, give rise to an

ecologically meaningful perturbed annual cycle model. In general,

the effect of a given vital rate in, say, Dj,k on the corresponding

seasonal matrix Ak or overall annual cycle matrix A is complicated,

and arguably difficult to capture correctly by perturbing Ak or A
directly. The upshot is that structured perturbations to Dj,k, P

i
k and

Sik will propagate through the annual cycle model and pathway

contribution metrics in accordance with Figure 1.

Let P denote a given, fixed migratory route. Computing the

perturbed pathway contribution metrics in Equations 7, 8,
Frontiers in Ecology and Evolution 05
respectively denoted C(P,D) and ~C(P,D), we obtain expressions

of the form

C(P,D) = C(P) + EC(P,D) and 

~C(P,D) = ~C(P) + E~C(P,D) ,
(10)

for some perturbation or error vectors E(P,D), where D is the

collection of all perturbations performed in the annual cycle.

Similar formulae are valid for perturbed averaged pathway

contribution metrics, presented in Supplementary Material

Section 1. Owing to the generality of structured perturbations

permitted, the formulae for the E(P,D) terms are somewhat

complicated, but can be computed exactly and details are given in

Supplementary Material Sections 1 and 2. We note that in practice it

is likely that the formula will simplify as perturbations need not be

applied to all vital rates at once. Computing the formula allows for

more insight into the algebra that underpins the perturbation,

which can provide analytical insight into how the perturbations

are carried through the model. However, if only the values of the

perturbed contribution metrics are of interest, then computing the

left-hand side of Equation 10 is numerically simpler than

computing the right-hand side.

An illustrative example demonstrating the ideas underpinning our

perturbation framework and Equation 10 appears in Section 3.1.1.

Next, we provide interpretation of the perturbed pathway contribution

metrics in Equation 10, with some informative special cases.

2.3.1 First observations and special cases
Consider Equation 10 for perturbation D. When the perturbation

is non-negative, meaning all the structure matrices QX , RX and

perturbation magnitudes DX are (componentwise) non-negative,

it is clear that EC(P,D) and E~C(P,D) are also non-negative. So a

non-negative perturbation increases the pathway contribution

metrics (or leaves them unchanged). This relationship is intuitively

clear, as improving vital rates can only increase, or leave unchanged,

the contribution of a given individual in the population, regardless of
FIGURE 1

Diagram illustrating components of the annual cycle model (1) and associated pathway contribution metrics.
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the pathway. Similarly, a non-positive perturbation decreases the

pathway contribution metrics.

Thus, the most interesting and subtle case is when QX , DX or RX

contain mixed signs, often described as trade-offs. In this case, before

calculating the metrics, there is no guarantee of any overall sign to

EC(P,D) or E~C(P,D). So, under these perturbations, some pathway

contribution metrics may increase whilst others decrease. Given the

potential complexity of the annual cycle model and perturbations,

teasing out the overall effects of a perturbation on the pathway

contribution metrics without resorting to Equation 10 seems

intractable. In any case, zero entries of E correspond to stage and

habitat combinations which are unchanged by the perturbation.

If a single perturbation of the form D = d I, for scalar variable d ,
is applied in a single season to a single matrix from Dj,k, P

i
k and Sik,

then the error term E of the perturbed pathway contribution metric

depends linearly on the perturbation magnitude d. To see this,

suppose that Dj,k is perturbed in this way. Then the corresponding

Dk and Ak perturb according to

Dk(d ) = Dk + (En,jj ⊗ (qdr⊤))

and

Ak(d ) = Dk(d )(Pk ∘ Sk) = (Dk + (En,jj ⊗ (qdr⊤)))(Pk ∘ Sk)

= Ak + (En,jj ⊗ (qd r⊤))(Pk ∘ Sk) = :Ak + EA,k(d )  :

Here, j ∈ 1,…, nf g indexes the habitat that is affected by the

perturbation. All other model terms Dl , Pl , Sl for l ≠ k, and hence

Al as well, remain unchanged. Therefore

C(P, d ) = 1⊤AsAs−1 ⋯Ak(d )⋯A1

= 1⊤AsAs−1 ⋯A1 + 1⊤As ⋯EA,k(d )(Pk ∘ Sk)⋯A1

  = C(P) + dE0 ,

for some vector E0 which is independent of d. This is the case in the

example in Section 3.1.1.

If m perturbations of the form D = dlI for l = 1, 2,…,m are

applied across seasons and across the matrices Dj,k, P
i
k and Sik, then

the above arguments indicate that the pathway contribution metrics

perturb according to

C(P, d )  = C(P)  + Em(d1, d2,…, dm),

where Em is a vector-valued function which depends linearly on

each of the dl . If each of the dl are equal, that is, dl = d for all l then

Em depends polynomially on d (and so, in particular, nonlinearly),

with degree at most m.

We conclude this subsection by commenting that one of the

reasons for the complexity of Equation 10 is that, roughly speaking,

the perturbations we consider to the annual cycle model data Dj,k, P
i
k

and Sik are of the form Equation 9, and hence are additive

perturbations, yet the annual cycle model inherently combines

these ingredients multiplicatively. Since matrix multiplication is not

commutative, matrix formulae need not simplify as scalar equations

do. Consequently, perturbations of the same magnitude to the same

vital rate may have different effects on the resulting pathway
Frontiers in Ecology and Evolution 06
contribution metrics if applied in different seasons. In general,

seasons occurring earlier in the annual cycle than the perturbed

season influence which population states (and hence which Ci
j and ~Ci

j

) are perturbed, whilst seasons that occur later in the annual cycle

than the perturbed season propagate the perturbation effect through

the annual cycle. Ecologically, this makes sense as the population is

projected through seasons occurring before the perturbed season; this

results in the structure of the population at the time of perturbation

differing to the initial population structure, not just due to the matrix

R, but also due to the previous seasonal matrices. Following the

perturbation, the population is projected through the rest of the

annual cycle before being counted. These latter seasons will alter the

population structure, but will have no influence on which

population states the perturbation acts on as the perturbation has

already happened.
2.4 Sensitivities and elasticities of pathway
contribution metrics

Sensitivity analysis in ecology broadly refers to a number of

calculus-based tools for computing how quantities of interest

(outcomes) change with respect to parameters, and dates back to

work from the 1960s and 1970s, including: Caswell (1978);

Demetrius (1969); Goodman (1971); Hamilton (1966). We note

that sensitivity analysis computes the rate of change of outcomes in

response to changes to parameters at a given point, whereas the

perturbation framework considered in Section 2.3 computes

the actual change of outcomes following changes to parameters.

The work in this section is inspired by Caswell (2019, Sections 8.2

and 8.3). We provide sensitivity formulae that assess how the

pathway contribution metrics respond to changes in the

parameters of the annual cycle model. We define p to be a vector

of parameters corresponding to vital rates of interest, spread across

the relevant matrices (Dj,k, P
i
k and/or S

i
k); it can take multiple forms

which are discussed in further detail in Caswell (2019, Section 2.1).

Once p is specified, the sensitivity of the subpopulation pathway

contribution metrics is calculated using the derivative

dC(P)⊤
dp⊤

=
dCi(P)
dpj

 !
ij

  :

We use Magnus and Neudecker (1985) notation for matrix

differentiation, such that ð dCi(P)
dpj Þ is a matrix where the (i, j)-th

entry is the derivative of Ci(P) with respect to pj. This derivative

can then be related to the annual cycle model using the chain rule

dC(P)⊤
dp⊤

=
dC(P)⊤

d vec⊤
Qs

k=1 Ak

d vec 
Qs

k=1 Ak

dp⊤
 ,

where vec vectorises the matrix and  ⊤computes the transpose. See

Caswell (2019, Chapter 2) for more background information about

matrix differentiation.

Following cancellation of the subpopulation pathway contribution

metrics and the product of the seasonal matrices, we have
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dC(P)⊤
dp⊤

= (Icn ⊗1⊤cn)
d vec 

Qs
k=1 Ak

dp⊤

= (Icn ⊗ 1⊤cn)o
s

k=1

Yk−1
1

� �⊤
⊗Ys

k+1

� �
d vec (Ak)

dp⊤
, (11)

where Yj
i : = Aj ⋯Ai with i ≤ j and Y0

1 = Ys
s+1 = Icn. For detailed

calculations see the Supplementary Material Section 3.

As in the perturbation analysis considered thus far, the

sensitivity framework allows for changes to be applied to any

parameter of the model. To allow for the suggested changes to be

applied in a biologically reasonable way, we break down the

sensitivity formula so that it contains the matrices Dj,k, P
i
k and Sik.

Following some careful calculus which is detailed in Supplementary

Material Section 3, we obtain

d vec (Ak)
dp⊤ =ðZ1,ko

n

j=1
X1 vec  En,jj

� �
⊗

d vec Dj,k

dp⊤

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

perturbations of Dj,k

 

+Z2,k o
c

i=1
X1

d vec Pi
k

dp⊤
⊗ vec (Ec,ii)

� � !
∘ vec (Sk)

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

perturbations of Pi
k

 

  + X2,k Z3,k ∘ o
c

i=1
X1

d vec Sik
dp⊤

⊗ vec (Ec,ii)

� � ! !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

perturbations of Si
k

Þ ∘Z4,k ,

(12)

which can be substituted into Equation 11 to give a formula for the

sensitivity of C(P) with respect to the demographic and movement

matrices. Here: X1 : = In ⊗Kc,n ⊗ Ic, where Kc,n is the vec-

permutation matrix; X2,k : = Icn ⊗Dk; and,

Z1,k : =
S⊤k ⊗ Icn , k ∈ F ,

(Pk ∘ Sk)⊤ ⊗ Icn, otherwise  :
 Z2,k : =

0c2n2 , k ∈ F ,

Icn ⊗Dk  otherwise  :

((

Z3,k : =
vec (0cn),   k ∈ F ,

vec (Pk), otherwise  :
 Z4,k : =

vec (En,P(k+1)P(k) ⊗ Jc),  k ∈ F ,

1c2n2 ,   otherwise  :

((

Note that Z4,k depends on the exact pathway specified, not just

whether a pathway has been specified or not. We recall that the vec-

permutation matrix is given by

Kc,n =o
c

i=1
o
n

j=1
Eij ⊗ E⊤

ij ∈ Rcn�cn
+  ,

where Eij is an c × n zero matrix with a 1 in the (i, j)-th entry.

The Equations 11, 12 are for general perturbation structure, and

so, due to full generality, are complex. However, though the size of the

matrices may be large, many of them are sparse due to the

underlying migratory structure they contain, and can be easily

computed numerically. Furthermore, in practice it is unlikely that

perturbations are applied to all the Dj,k, S
i
k and Pi

k matrices, so the

formula will simplify as the differential of all unperturbed matrices

is zero.
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A similar formula can be constructed for the sensitivity of the

metapopulation pathway contribution metrics, which is given by

d~C(P)⊤
dp⊤ = (Icn ⊗ 1⊤cn)

d vec 
Qs

k=1
AkPk

dp⊤

  = (Icn ⊗ 1⊤cn)o
s

k=1

ϒk−1
1

� �⊤
⊗ϒs

k+1

� �

(P⊤
k ⊗ Icn)

d vec(Ak)
dp⊤

+ (Icn ⊗Ak)
d vec(Pk)

dp⊤

� � :

(13)

Here,ϒj
i : = AjPj ⋯AiPi for i ≤ j and setϒ0

1 = ϒs
s+1 = Icn. As before,

the sensitivity of Ak is given by Equation 12. The sensitivity of Pk is

given by,

d vec(Pk)
dp⊤

= Z5,kX1ðvec (In)⊗ð(T⊤
2,k ⊗T1,k)

o
c

i=1
X1

d vec (Pi
k)

dp⊤
⊗ vec (Ec,ii)

� � !ÞÞ  :

Here, X1 = In ⊗Kc,n ⊗ Ic, as before and,

Z5,k : =
Ic2n2 , k ∈ F ,

0c2n2 ,   otherwise ,

(

T1,k : = e⊤n,P(k+1) ⊗ Ic and T2,k : = en,P(k) ⊗ Ic ,

where en,i is a n� 1 vector of zeros with a one in position i. We

note that the construction of T1,k and T2,k is such that T1,k is a

c� cn zero matrix with the P(k + 1)-th block equal to Ic and T2,k is

a cn� c zero matrix with the P(k)-th block equal to Ic.

Furthermore, T1,kPkT2,k = (Pk)P(k+1),P(k). The sensitivity of

averaged contribution metrics can be calculated similarly and is

presented in Supplementary Material Sections 1, 3.

When parameters are measured on different scales, more

appropriate comparisons can be made by calculating the

proportional effects of proportional perturbations, otherwise

known as elasticities (Caswell, 2019, Section 2.7). The elasticity of

the C(P) to p is defined as

ЄC(P)⊤
Єp⊤

=
pj

Ci(P)
dCi(P)
dpj

 !
ij

  : (14)

Here, we have used the notation used in Caswell (2019) which is

adapted from that in Samuelson (1947). To ensure a meaningful

definition, we set the elasticity of Ci(P) to pj to equal zero when

Ci(P) equals zero and is unchanged by perturbation pj. However,

we comment that when a non-zero perturbation pj causes Ci(P) to
equal zero, then the corresponding elasticity is not well-defined. The

elasticity formula for the other contribution metrics is calculated

similarly from the corresponding sensitivity formula. The

derivation of the sensitivities given in this section are provided in

Supplementary Material Section 3. An illustrative example

demonstrating how Equations 11, 13 are computed, and their

connection to the structured perturbation approach in Section

2.3, appears in Section 3.1.2.
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2.5 Effects of perturbations on
asymptotic behaviour

Here we comment that the pathway contribution metrics are

measures of transient (indeed, annual) growth or decline of a

population. Consequently, by studying the effects of perturbations on

these metrics, we are studying the effects of perturbations on transient

behaviour. However, it is of course the case that perturbations to the

annual cycle matrixA in Equation 3 have corresponding effects on the

asymptotic behaviour of the solutions of the annual cycle model

Equation 1, that is, the predicted long-term behaviour of a migratory

population. Recall that the asymptotic behaviour of Equation 1 is

determined by its dominant eigenvalue, denoted by l. Much attention

in theoretical ecology has been dedicated to investigating the effects

perturbations have on l, with a number of techniques being prevalent.

On the one hand, classical sensitivity tools can be deployed,

such as those in Caswell (2019) to determine the sensitivity of l
with respect to model parameters. The sensitivity of l when there is

no pathway specified, is calculated via Caswell (2019, Equation

3.42), that is

dl
dp⊤

=
w⊤ ⊗ v⊤

v⊤w

� �
d vec A
dp⊤

� �
  : (15)

Here: v and w denote the corresponding left and right eigenvectors

of A, respectively; and the sensitivity of A is given by

d vec A
dp⊤

= o
s

k=1

Yk−1
1

� �⊤
⊗Ys

k+1

� �
d vec(Ak)

dp⊤
 ,

where the sensitivity of Ak is given by Equation 12 with no

pathways specified.

On the other hand, there are so-called transfer function

methods for structured matrix population models, appearing to

date back to Hodgson and Townley (2004), and based on concepts

from control engineering. These have been explored and further

developed across, for example: Hodgson et al. (2006); Lubben et al.

(2009). The effect of structured perturbations on so-called

population inertia (Koons et al., 2007) is explored in Guiver et al.

(2016, Section 4). Since sensitivity analyses compute pointwise rates

of change of l with respect to model parameters, and the underlying

relationships are typically nonlinear, it has been argued that

sensitivities should be used alongside nonlinear analyses (Carslake

et al., 2008). However, we highlight that a recent study has

cautioned against the uninformed use of transfer function

analysis (McElderry and Gaoue, 2022).

The general idea of transfer function methods can be briefly

summarised by noting that the statement
1:

p is an eigenvalue of A +QDR or A + UV ,

(presently the quantities of interest) is mathematically equivalent to

1 is an eigenvalue of DR(pI −A)−1Q or U(pI −A)−1V  : (16)
1 Strictly, assuming that p is not an eigenvalue of A.
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In control engineering functions of the formR(sI −A)−1Q, where

s is a complex variable, are called transfer functions. Although the above

two problems appear a priori similar in nature and complexity— they

are both eigenvalue problems— in the case thatR and/or Q are low-

rank, then the matrix D R(pI  −  A)−1 Q may be much smaller than

 A +QDR, perhaps even a scalar quantity. We comment that this is

one strong motivation for writing structured perturbations in the form

Equation 9. In the case that D = d is a scalar parameter and R(pI −

A)−1Q is scalar valued, then the first relationship in Equation 16 may

be solved in the sense of determining analytically what d is required to

achieve a desired dominant eigenvalue l of A +QDR.

The main purpose of this short section is to emphasise that by

using either of the above approaches, it is possible to consider the

effects of perturbations on both l and pathway contribution metrics

simultaneously. In other words, the effects of a perturbation on an

asymptotic and transient index may be examined concurrently. For

instance, one goal could be to maximise C(D,P) or ~C(D,P) over all
perturbations D which maintain l (of the perturbed annual cycle

matrix) above some desired threshold. A similar approach is taken

in Guiver et al. (2016, Example 4.3) in the context of maximising

population inertia in matrix population projection models for local

populations of non-migratory species.
3 Results

We illustrate our results through a selection of examples. First, we

consider a simple hypothetical model to illustrate the perturbation

framework outlined in Section 2.3 and the sensitivity framework

outlined in Section 2.4. Next, we consider a model based on the

monarch butterfly (Danaus plexippus) population dynamics to show

how the sensitivity framework can be used to identify which vital

rates are the most sensitive to perturbations in a given season of the

annual cycle. Finally, we use the same monarch butterfly model and

apply perturbations, representing threats and conservation actions, in

multiple seasons of the annual cycle to illustrate how the perturbation

framework can be used to identify how proposed management

actions will influence the contribution metrics.
3.1 Simple hypothetical example

3.1.1 The perturbation framework
We begin by illustrating how Equation 10 is derived, using a

simple model with two seasons, two habitats and two stages. The

model is depicted in Figure 2 and explained further in Smith et al.

(2022, Example 2.1) which itself is based on Sample et al. (2019,

Section 3.1). The model considers partial migration between a

higher quality habitat (habitat 1) and a lower quality habitat

(habitat 2). The demography matrices are given in Figure 2 and

Sample et al. (2019, p.5). The migration matrices used are the same

for all stage and season combinations, see Figure 2 and Smith et al.

(2022, Equation 2.14a). The model is specified such that, within a

season, movement happens before demography.

Suppose that we wish to increase the survival of adults in

habitat 2 during the first season of the annual cycle by an
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additive structured perturbation. Since this corresponds to a

scalar perturbation, we write DD2,1
= d , and express the

perturbation as

D2,1(d ) = D2,1 +
0 0

0 d

" #
= D2,1 +

0

1

" #
d 0 1½ � = :D2,1 + QdR  :

As D2,1 is the only matrix that is perturbed, the matrices D1,1, Dj,2,

Sk and Pk (where j, k ∈{1,2}) are unchanged by the perturbation.

Thus, substituting D2,1(d ) into Equations 2, 4 gives

A1(D1) = D1(P1 ∘ S1) + (E2,22 ⊗ (QdR))(P1 ∘ S1)

= A1 + (E2,22 ⊗ (QdR))(P1 ∘ S1) (17)

and

Â 1(D1) = (D1 + E2,22 ⊗ (QdR))S1

= Â 1 + (E2,22 ⊗ (QdR))S1 , (18)

respectively. The seasonal matrices A2, Â 2 and, therefore, A2 are

unchanged by the perturbation, whilst substituting Equations 17, 18

into Equation 6 gives

A1(D1) : =
(Â 1 + (E2,22 ⊗ (QdR))S1) ∘ (E2,P(2)P(1) ⊗ J2) , 1 ∈ F ,

A1 + (E2,22 ⊗ (QdR))(P1 ∘ S1) , otherwise ,

(

=
A1 + ((E2,22 ⊗ (QdR))S1) ∘ (E2,P(2)P(1) ⊗ J2) , 1 ∈ F ,

A1 + (E2,22 ⊗ (QdR))(P1 ∘S1) , otherwise  :

(

This is then substituted into Equation 7 to calculate the perturbed

subpopulation pathway contribution metrics,

C(P,D) = 1⊤4
Y2
k=1

Ak(Dk) = 1⊤4A2A1(D1) ,
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which can be computed numerically. We have provided MATLAB

code in an online repository (see Data Availability Statement).

Furthermore, the matrices are sparse and noting which blocks of

the matrices are zero indicates which contribution metrics will be

unchanged by the perturbation. In this example, the perturbation to

Â 1 is captured in the matrix

(E2,22 ⊗ (QdR))S1 =
02�2 02�2

02�2 QdR

" #
(S1)1,1 (S1)1,2
(S1)2,1 (S1)2,2

" #

=
02�2 02�2

QdR(S1)2,1 QdR(S1)2,2

" #

      =

0 0 0 0

0 0 0 0

0 0 0 0

0 0:8d 0 d

2
666664

3
777775  :

Here: 02�2 ∈ R2�2
+ is a matrix of zeros, and (Sk)i,j ∈ R2�2

+ is the

(i, j) -th block of Sk. Observing where the non-zero entries are, we

see that the perturbation affects adults that migrate from habitat 1 to

habitat 2 in season 1, and adults that remain resident in habitat 2

during season 1. Thus, the perturbation only alters the pathway

contribution metrics associated with pathways where the

population ends the first season in habitat 2.

The distinct migratory routes of the population are,

P1 = 1 → 1 → 1 , P2 = 1 → 1 → 2 , P3 = 1 → 2 → 1 , P4 = 1 → 2 → 2 ,

P5 = 2 → 1 → 1 , P6 = 2 → 1 → 2 , P7 = 2 → 2 → 1 , P8 = 2 → 2 → 2  :

Since P1, P2, P5 and P6 do not end season 1 in habitat 2, the

pathway contribution metrics associated with these migratory

routes are unchanged, that is,
C(Pi,D) = C(Pi) and ~C(Pi,D) = ~C(Pi) ∀ i ∈ 1, 2, 5, 6f g :
The perturbed subpopulation pathway contribution metrics for
individuals using P3 is given by
FIGURE 2

Diagram of the hypothetical model used in Section 3.1.1, with two seasons (s = 2), two habitats (n = 2) and two stages (c = 2). Nodes represent
habitats and are labelled with their associated demographic matrices, Dj,k. Edges represent migratory routes and are labelled with the product of

their associated movement rates, pi
k � sik, which are assumed equal for all stages. The perturbation, d, is applied to adult survival in habitat 2 during

season 1. Shaded nodes and dashed edges represent where variables are influenced by the perturbation.
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C(P3,D) = 1⊤4
(Â2)1,2(Â 1)2,1 + (Â2)1,2QdR(S1)2,1 02�2

02�2 02�2

" #

   = 1⊤4

0 0:2976 0 0

0:3456 0:4032 + 0:576d 0 0

0 0 0 0

0 0 0 0

2
666664

3
777775

  = C(P3) + ½0 0:576d 0 0 �
= ½0:3456 0:7008 + 0:576d 0 0 �  :

The perturbed subpopulation pathway metrics for individuals

using paths P4, P7 and P8 are calculated similarly and are given by

C(P4,D) = C(P4) + ½ 0 0:56d 0 0 � = ½ 0:336 0:671 + 0:56d 0 0 � ,
C(P7,D) = C(P7) + ½ 0 0 0 0:72d � = ½ 0 0 0:432 0:876 + 0:72d � ,
C(P8,D) = C(P8) + ½ 0 0 0 0:7d � = ½ 0 0 0:42 0:8388 + 0:7d �  :
The perturbation causes subpopulation pathway contribution metrics

associated with adults usingP3,P4,P7 andP8 to increase linearly by

a scalar multiple of d, which is expected as the perturbation is positive
and acts only on one vital rate. The perturbation has the biggest

impact on adults that use P7, as this is where the coefficient of d is the
largest. Similarly, the perturbation has the smallest impact on adults

that use P4, as this is where the coefficient of d is the smallest. If the

goal of the management action is to increase the survival of adults

such that they replace themselves, within the subpopulation using the

same migratory route, over an annual cycle, then the required

perturbation for: P3 is d ≥ 0:5194; P4 is d ≥ 0:5875; P7

is d ≥ 0:1722; and P8 is d ≥ 0:2303. However, to maintain an

ecologically meaningful model requires d ≤ 0:3. So, when

considering the survival of adults in habitat 2, only the

subpopulations using P7 and P8 can be perturbed sufficiently to

ensure replacement.

The perturbed metapopulation pathway contribution metrics

are calculated via

~C(P,D) = 1⊤4
Y2
k=1

Ak(D1)Pk(D1) = 1⊤4A2P2A1(D1)P1 ,

where, as before, only A1 is affected by the perturbation.

Therefore, it is only the pathway contribution metrics associated

with P3, P4, P7 and P8 that are perturbed. The perturbed

metapopulation pathway contribution metrics for individuals

using P3 are given by

~C(P3,D) = 1⊤4
(Â 2)1,2(P2)1,2(Â 1)2,1(P1)2,1 + (Â 2)1,2(P2)1,2QdR(S1)2,1(P1)2,1 02�2

02�2 02�2

" #

      = 1⊤4

0 0:0476 0 0

0:0553 0:0645 + 0:0922d 0 0

0 0 0 0

0 0 0 0

2
666664

3
777775

      = ~C(P3) + ½ 0 0:0922d 0 0 � = ½ 0:0553 0:1121 + 0:0922d 0 0 �  :

The perturbed metapopulation pathway contribution metrics

for individuals using P4, P7 and P8 are calculated similarly and

given by
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~C(P4,D) = ~C(P4) + ½ 0 0:1344d 0 0 � = ½ 0:0806 0:161 + 0:1344d 0 0 � ,
~C(P7,D) = ~C(P7) + ½ 0 0 0 0:1728d � = ½ 0 0 0:1037 0:2102 + 0:1728d � ,
~C(P8,D) = ~C(P8) + ½ 0 0 0 0:252d � = ½ 0 0 0:1512 0:302 + 0:252d �  :

Note that these metrics and the impact the perturbation has on

them is smaller than the corresponding metrics in C(P), due to the

calculation of ~C(P) including the proportion of individuals using a

migratory route. As in the case of C(P), the perturbation causes the

metapopulation pathway contribution metrics associated with

adults using P3, P4, P7 and P8 to increase linearly by a factor of

d. However, this time, the perturbation has the biggest impact on

adults that use P8, and the smallest impact on adults that use P3,

rather than P7 and P4, respectively. In other words, perturbations

of this form that have the biggest impact on the contribution of the

focal subpopulation to itself are those applied to P7; whilst

perturbations of this form that have the biggest impact on the

contribution of the focal subpopulation to the total population are

those applied to P8.

The impacts of the perturbation on the habitat contribution

metrics can be calculated independently, or by summing the

impacts the perturbation has on the metapopulation pathway

contribution metrics for all distinct migratory routes. They are

given by,

C(D) = 1⊤4A2(D2)A1(D1) = 1⊤4A2(A1 + (E2,22 ⊗ (QdR))(P1 ∘ S1)
  = C + ½ 0 0:2266d 0 0:4248d �
  = ½ 0:5027 0:9545 + 0:2266d 0:4505 0:8756 + 0:4248d �  :

The perturbation causes a linear increase in the habitat contribution

metrics associated with the adults of the population; and has a

greater effect on adults that start the annual cycle in habitat 2.

One reasonable management goal could be for the adult

populations of both habitats to replace themselves, this would be

achieved with 0.2928 ≤ d ≤ 0.3, to ensure the model remains

ecologically meaningful.

3.1.2 The sensitivity framework
We proceed to use the same simple hypothetical model to

illustrate the sensitivity framework described in Section 2.4. As

before, we are interested in the impact that increasing the survival

of adults in habitat 2 during season 1 has on the pathway contribution

metrics. In the sensitivity framework, we write this as (D2,1)2,2 =

 0:7  + d and p = d , whilst all other entries remain constant. Hence,

we wish to find the sensitivity of the contribution metrics with respect

to entry (2,2) in D2,1. Thus, we are interested in the matrix function

D2,1(d ) =
0   0:5813

0:6   0:7 + d

" #
 ,

as shown in Figure 2. As before, the sensitivity of the contribution

metrics corresponding to migratory routes P1, P2, P5 and P6 are

zero, as these routes do not end season 1 in habitat 2.

Since only D2,1, and hence also only A1, is perturbed, Equation

12 is only non-zero for k = 1. For individuals using P3, Equation 12

condenses to
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dvec (A1)
dp⊤

= Z1,1X1 vec (E2,22)⊗
dvec  D2,1

dp⊤

� �� �
∘Z4,1  :

Substituting this into Equation 11, noting that only season 1 is

of interest, we get

dC(P3)
⊤

dp⊤   = (I4 ⊗ 1⊤4 ) (Y0
1)

⊤ ⊗Y2
2

� �
Z1,1X1 vec (E2,22)⊗

d vec D2,1

dp⊤

� �� �
∘Z4,1

� �

 

= (I4 ⊗1⊤4 )ð I4 ⊗ (Â 2 ∘ (E2,12 ⊗ J2)
� �ð(S⊤1 ⊗ I4)(I2 ⊗K2,2 ⊗ I2)

vec (E2,22)⊗
d vec D2,1

dp⊤

� �Þ ∘ vec (E2,21 ⊗ J2)Þ
= ½ 0   0:576   0   0 �⊤  :

We note that the constants constants Z4,1 and Y2
2 depend on which

pathway is used in seasons 1 and 2; they will change between P3, P4,

P7 and P8. All other constants will remain the same between

calculations of the sensitivities. The sensitivity of the subpopulation

pathway contribution metrics for individuals using P4, P7 and P8 are

calculated similarly and are given by

dC(P4)
⊤

dp⊤
=

0

0:56

0

0

2
666664

3
777775 , 

dC(P7)
⊤

dp⊤
=

0

0

0

0:72

2
666664

3
777775 , and 

dC(P8)
⊤

dp⊤
=

0

0

0

  0:7

2
666664

3
777775 ,

respectively. As in Section 3.1.1, we see that only the adults using P3,

P4, P7 and P8 are affected by the perturbation. Furthermore, since

each sensitivity is positive and constant the subpopulation pathway

contributionmetrics are increasing linearly. In simple examples such as

this, where only a single matrix in a single season is perturbed, the

sensitivity framework gives the same results as linearising the results of

the perturbation framework; that is, the sensitivity of the subpopulation

pathway contribution metrics is equal to the coefficient of d in the

perturbation framework.

Similarly, Equation 13 for individuals using P3 condenses to

d~C(P3)
⊤

dp⊤ = (I4 ⊗ 1⊤4 ) (ϒ0
1)

⊤ ⊗ϒ2
2

� �
(P⊤

1 ⊗ I4)
d vec(A1)

dp⊤

� �
  = (I4 ⊗1⊤4 ) I4 ⊗ (Â 2 ∘ (E2,12 ⊗ J2))(I2 ⊗ (P2)12)

� �� �
((I2 ⊗ (P1)21)

⊤ ⊗ I4)
d vec(A1)

dp⊤

� �
  = ½ 0 0:0922 0 0 �⊤  :

Here, ϒ2
2 and P1 depend on which pathway is used in seasons 1 and

2, and so change between P3, P4, P7 and P8. All other constants

will remain the same between calculations of the sensitivities. The

sensitivity of the metapopulation pathway contribution metrics for

individuals using P4, P7 and P8 are calculated similarly and are

given by

d~C(P4)
⊤

dp⊤
=

0

0:1344

0

0

2
666664

3
777775 , 

d~C(P7)
⊤

dp⊤
=

0

0

0

0:1728

2
666664

3
777775 , and 

d~C(P8)
⊤

dp⊤
=

0

0

0

0:252

2
666664

3
777775 ,

respectively. As expected, we see that the sensitivity of the

metpopulation pathway contribution metrics is equal to the

coefficient of d in the perturbation framework.
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Similarly to the example in Section 3.1.1, the sensitivities of the

habitat contribution metrics can be calculated directly from

Equation 11 with k ∉  F for all k; alternatively, they can be

calculated by summing the sensitivities of the metapopulation

pathway contribution metrics. They are given by

dC⊤

dp⊤ = (I4 ⊗ 1⊤4 ) (Y0
1)

⊤ ⊗Y2
2

� �
Z1,1X1 vec  E2,22

� �
⊗ d vec D2,1

dp⊤

� �� �
∘Z4,1

� �
  = (I4 ⊗ 1⊤4 )(I4 ⊗A2)ðð((P1 ∘ S1)⊤ ⊗ I4)(I2 ⊗K2,2 ⊗ I2)

vec (E2,22)⊗
d vec  D2,1

dp⊤

� �Þ ∘116Þ
  = ½ 0 0:2266 0 0:4248 �⊤ :  

Again, the results of the sensitivity framework and the perturbation

framework agree with each other.
3.2 Monarch butterfly

3.2.1 Sensitivity of all the vital rates experienced
in a fixed season

Here, we assess the impact of individually altering each vital rate

experienced in a fixed season of the annual cycle model. We use the

model for the monarch butterfly (Danaus plexippus) in eastern

North America described in Smith et al. (2022), based on the

previous models in Flockhart et al. (2015) and Sample et al.

(2018). The model is for the female population and contains five

stages (c = 5), four habitats (n = 4) and twelve seasons (s = 12). The

life stages are: immature individuals, including eggs, larval and

pupal development until eclosion (1); eclosed butterflies in their

first month of life and in reproductive diapause (2); eclosed

butterflies in their second month of life or older and in

reproductive diapause (3); eclosed butterflies in their first month

of life and in breeding condition (4); and, eclosed butterflies in their

second month of life or older and in breeding condition (5).

The habitats are: Mexico (M or 1), Southern US (S or 2), Central

US (C or 3) and Northern US (N or 4). In Smith et al. (2022,

Table 3.1), they calculate the pathway contribution metrics for every

possible pathway in the migratory cycle. They find that monarchs

travelling from habitat 3 to habitat 4 during season 6 contribute the

least (smallest value of C(P) and ~C(P)), whereas those travelling

from habitat 2 to habitat 3 during this month contribute the most

(largest value of C(P) and ~C(P)).
In this example, we calculate the sensitivity of all vital rates in

season 6 to establish where perturbations should be applied during

season 6 to have the biggest effect on the pathway contribution

metrics. In this case, the sensitivity and perturbation formulae give

the same results because the proposed perturbations linearly

perturb the annual cycle model. The pathways used by monarchs

during season 6 are

P1 :P1(6) = 2 ,P1(7) = 3 and P1(k) = 0 for k ∉ 6, 7f g ,
P2 :P2(6) = 2 ,P2(7) = 4 and P2(k) = 0 for k ∉ 6, 7f g ,
P3 :P3(6) = 3 ,P3(7) = 3 and P3(k) = 0 for k ∉ 6, 7f g ,
P4 :P4(6) = 3 ,P4(7) = 4 and P4(k) = 0 for k ∉ 6, 7f g  :
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Figures 3, 4 contain the network graphs corresponding to the

demography, movement survival and proportion migrating

during season 6, respectively.

We begin by perturbing the demographic rates experienced

during season 6 of the annual cycle. Since movement happens

before demography, the monarch butterflies will undergo

demography in habitats 3 and 4. Specifically, individuals using P1

and P3 will undergo demography in habitat 3, whilst individuals

using P2 and P4 will undergo demography in habitat 4. There are

seven demographic rates, associated with each habitat, which we

perturb individually and calculate sensitivities for both C(Pi) and
~C(Pi) using Equations 11, 13, respectively.

We outline how to use the equations in Section 2.4, by specifying

P1 and perturbing the transition of stage 3 individuals to stage 5

individuals (by d5, see Figure 3) in habitat 3 during season 6. Thus,

j = 3, P(6)  =  2 and P(7)  =  3, so that Equation 12 becomes
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d vec (A6)
dp⊤

= (S⊤6 ⊗ I20) X1 vec  E4,33
� �

⊗
dvec  D3,6

dp⊤

� �� �� �
∘ vec (E4,32 ⊗ J5) ,

(19)

where X1 = I4 ⊗K5,4 ⊗ I5. Substituting into Equation 11 gives
dC(P1)
dp⊤ = (I20 ⊗ 1⊤20) Y5

1ð Þ⊤⊗Y12
7

� �
d vec (A6)

dp⊤

  = 0   4:47� 10−2   4:47� 10−2   0 0   0⊤5
		 		 0⊤5

		 		 0⊤5
		 		� �

  :

(20)

Note that the sensitivity vector is only populated in the second and

third entries of the first sub-block, this is because the only viable

states of the population at the start of the annual cycle are

individuals that are in stage 2 or stage 3 and in habitat 1.

Similarly, we calculate the sensitivities of ~C(P1) by inputting

Equation 19 into Equation 13, which gives
FIGURE 3

The demographic population projection matrix and corresponding life cycle graph for monarch butterflies in region j ∈ 3, 4f g during season 6. Refer
to the main text for details of the life stages. Shaded nodes represent stages that are present in habitat 3 at the start of season 6; there are no stages
present in habitat 4 at the start of season 6. The perturbations dl with l ∈ 1,…, 7f g are applied to the vital rates one at a time when calculating the
sensitivities of pathway contribution metrics.
FIGURE 4

Movement rates of stage 4 and 5 individuals along migratory pathways during season 6. Stages 1–3 do not migrate during season 6. (A) The
perturbations to movement survival dl with l ∈ 1,…, 3f g are applied one at a time when calculating the sensitivities of contribution metrics. The
survival rate associated with remaining in habitat 3 is fixed and so cannot be perturbed. (B) The perturbations to the proportion moving d1 and d2 are
applied separately to each other, but to two pathways at once to ensure the proportions leaving habitat j during season 6 sum to 1.
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d~C(P1)
dp⊤ = (I20 ⊗1⊤20) ϒ5

1 )
⊤ ⊗ϒ 12

7

� �
((I4 ⊗ (P6)3,2)⊗ I20)

d vec (A6)
dp⊤

� �� ��
  = 0 2:48� 10−2 2:48� 10−2 0 0 0⊤

5j j 0⊤
5j j 0⊤

5j j
� �

  :

Note that dP6=dp
⊤ = 0, as only the demography matrices are

perturbed. The sensitivities of ~C(P1) are also only non-zero in the

second and third entries, which are equal to each other. In fact, all

C(Pi) and ~C(Pi) will take this form, and so in our results tables we

only record one sensitivity for each vital rate, but note that the

sensitivity of all contribution metrics will take the same form as the

vector in Equation 20. The sensitivity results for perturbing

demographic rates are recorded in Table 2.

To allow for easier comparison between the fecundity and

survival rates, we also compute the elasticities using Equation 14.

In this example, all the perturbed pathway contribution metrics are

linearly dependent on d, resulting in all sensitivities being constant.

Thus, Equation 14 becomes

ЄC(Pi)
⊤

Єp⊤
= (dl ⊘C(Pi, dl))

dC(Pi, dlÞ
ddl

� �
= (c1dl)⊘ (c1dl + c0)  :

Here, c0 is the vector of unperturbed subpopulation pathway

contribution metrics and c1 is the sensitivity vector; the division

of vectors is computed entrywise. The elasticities of the

metapopulation contribution metrics are calculated similarly. We

evaluate the elasticities with dl equal to 1% of the vital rate that it is

perturbing. The elasticity vector takes the same form as the

sensitivity vector (see Equation 20) and the results are recorded

in Table 3.

Next, we perturb the movement survival during season 6 of the

annual cycle, noting that the survival associated with remaining in

habitat 3 during season 6 is fixed at 1 and cannot be perturbed. The

movement survival associated with the remaining three pathways

are perturbed one at a time; only one dvec Si6=dp
⊤ is non-zero at a

time, as was the case for dDj,6=dp
⊤ when calculating the sensitivities

of the demographic rates. The resulting vectors for the sensitivities
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take the same form as Equation 20 and the value of the non-zero

elements are recorded in Table 4; the corresponding elasticities are

recorded in Table 5.

Finally, we perturb the proportion of the population that uses a

pathway during season 6. We note that all the proportions

associated with individuals using pathways from habitat j during

season 6 need to sum to 1. Hence, perturbing the proportion of

individuals migrating from habitat j to habitat l during season 6 will

perturb the proportions associated with all other pathways that start

season 6 in habitat j. Since there are only two pathways from each

habitat populated at the start of season 6, we achieve this by

applying dl and − dl to the proportions associated with the same

starting habitat and compute the sensitivities similarly to before,

recording the results in Table 6. When calculating the elasticities, we

set dl equal to 1% of the vital rate that it is positively perturbing; that

is, d1 =  5:56 �  10−3 and d2 =  5:32 �  10−3. The results are

recorded in Table 7.

Once the sensitivities have been calculated, population managers

can make informed decisions about where to apply management

actions to achieve the most desirable results. In Tables 2–5, all non-

zero sensitivities are positive; that is, increasing the vital rate results in

an increase in the pathway contribution metrics, as we would expect

due to the positive nature of the perturbations. The metapopulation

pathway contribution metrics (~C(Pi)) are most sensitive to changes

to the demographic transition rate from stage 1 to stage 4 (perturbed

by d4) in individuals that use P3. It is predicted that ~C(P3) will

increase by a factor of 9.02. This vital rate is also associated with the

largest elasticity, thus requires the smallest percentage change to

achieve the same increase to ~C(P3), compared to the other

demographic rates. Across all pathways, perturbing the

demographic transition rate from stage 5 to stage 1 (perturbed by

d3) will have the smallest effect on the pathway contribution metrics.

Considering the movement survival, the ~C(Pi) are most sensitive to

changes to the survival of stage 4 individuals that use P1 (perturbed
TABLE 2 Sensitivities of the pathway contribution metrics for the monarch butterfly annual cycle model considered in Section 3.2.1, when
demographic rates are perturbed one at a time, as shown in Figure 3.

Pathway Demography
Matrix

Sensitivity of C(P i) to demographic rate

d1 d2 d3 d4 d5 d6 d7
P1 D3,6 0 4.47 � 10−2 2:18� 10−4 0 0 1.92 9:32� 10−3

P2 D4,6 0 1:30� 10−2 6:32� 10−5 0 0 1.67 8:11� 10−3

P3 D3,6 0 0 1:33� 10−4 9.02 0 0 5:71� 10−3

P4 D4,6 0 0 3:87� 10−5 0 0 0 4:97� 10−3

Pathway Demography
Matrix

Sensitivity of ~C(Pi) to demographic rate

d1 d2 d3 d4 d5 d6 d7

P1 D3,6 0 2:48� 10−2 1:20� 10−4 0 0 1.07 5:18� 10−3

P2 D4,6 0 5:79� 10−3 2:81� 10−5 0 0 7:42� 10−1 3:60� 10−3

P3 D3,6 0 0 7:07� 10−5 9.02 0 0 3:04� 10−3

P4 D4,6 0 0 1:81� 10−5 0 0 0 2:33� 10−3
The sensitivities are associated with individuals that start the annual cycle in habitat 1 and stages 2 and 3. All other starting states are not viable and hence their sensitivity is zero.
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by d1). It is predicted that ~C(P1) will increase by a factor of 5.50; this

vital rate is also associated with the largest elasticity. The ~C(Pi) are

the least sensitive to changes in the movement survival of stage 5

individuals usingP4 (perturbed by d3), ~C(P4) is predicted to increase

by a factor of 1.27 × 10−3. However, stage 5 individuals using P2

(perturbed by d2) are associated with the smallest elasticity, and so

will require the largest proportional change in their movement

survival to achieve the same increase in ~C(P2) as the other ~C(Pi).

When perturbing the proportion of individuals using a pathway,

the necessary trade-off between the proportions associated with

pathways that start in the same habitat means that some of the

sensitivities and elasticities are negative, namely those corresponding

to the subpopulations using P2 and P4. However, the sign of the

perturbations to these pathways is also negative. Hence, these results

mean that decreasing the proportion of individuals that use these

pathways decreases the contribution of the subpopulation using these

pathways to the total population (~C(Pi)). Therefore, the magnitude

of the sensitivities and elasticities informs which vital rates are

impacted the most by the proposed perturbations. For example, in

Table 6, we see that the ~C(Pi) are most sensitive to increasing the

proportion of individuals that use P1 and, consequently, decreasing
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the proportion of individuals that use P2. However, in Table 7,

the elasticities advise that the proportion of individuals that use P2

needs to be increased by a smaller percentage than the proportion of

individuals that useP1 to cause the same increase in the ~C(Pi); which

is the opposite advice to that given by the sensitivities. This may seem

counter-intuitive, but computing the sensitivities and elasticities and

associating the perturbations with the opposite signs (i.e. P2 and P4

are associated with positive d, and P1 and P3 are associated with

negative d) gives exactly the same results for the sensitivities as they

are independent of the value of d, and the elasticites still advise

increasing the proportion of the population that use the opposite

pathway to the sensitivities (see Supplementary Material Section 4.1).

In practice, multiple management actions could be applied at

once. As the perturbations considered in this example are linear and

all occur in the same season, they can be summed to find the

sensitivities and elasticities of a combination of proposed

management actions. For example, it may be reasonable to

assume that management actions that improve the quality of a

pathway will affect stages 4 and 5 in the same way, as the

unperturbed movement survival for stages 4 and 5 are equal to

each other. Increasing the movement survival of individuals that use
TABLE 3 Elasticities (evaluated with dl equal to 1% of the vital rate that is being perturbed) of the pathway contribution metrics for the monarch
butterfly annual cycle model considered in S 3.2.1, when demographic rates are perturbed one at a time, as shown in Figure 3.

Pathway Demography
Matrix

Elasticity of C(P i) to demographic rate

d1 d2 d3 d4 d5 d6 d7
P1 D3,6 0 5.81 × 10−6 2.82 × 10−8 0 0 2.50 × 10−4 1.21 × 10−6

P2 D4,6 0 4.99 × 10−6 2.42 × 10−8 0 0 6.40 × 10−4 3.11 × 10−6

P3 D3,6 0 0 5.82 × 10−7 3.80 × 10−2 0 0 2.50 × 10−5

P4 D4,6 0 0 1.53 × 10−5 0 0 0 1.96 × 10−2

Pathway Demography
Matrix

Elasticity of ~C(P i) to demographic rate

d1 d2 d3 d4 d5 d6 d7

P1 D3,6 0 5.81 × 10−6 2.82 × 10−8 0 0 2.50 × 10−4 1.21 × 10−6

P2 D4,6 0 4.99 × 10−6 2.42 × 10−8 0 0 6.40 × 10−4 3.11 × 10−6

P3 D3,6 0 0 3.14 × 10−7 3.86 × 10−2 0 0 1.35 × 10−5

P4 D4,6 0 0 1.53 × 10−5 0 0 0 1.96 × 10−3
The elasticities are associated with individuals that start the annual cycle in habitat 1 and stages 2 and 3. All other starting states are not viable and hence their elasticity is zero.
TABLE 4 Sensitivities of the pathway contribution metrics for the monarch butterfly annual cycle model considered in Section 3.2.1, when perturbing
movement survival one at a time, as shown in Figure 4A.

Pathway Sensitivity of C(Pi) to movement survival Sensitivity of ~C(P i) to movement survival

Matrix S46 Matrix S56 Matrix S46 Matrix S56

d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3

P1 9.90 0 0 1:58� 10−2 0 0 5.50 0 0 8:80� 10−3 0 0

P2 0 3.62 0 0 5:72� 10−3 0 0 1.61 0 0 2:54� 10−3 0

P3 0 0 0 0 0 0 0 0 0 0 0 0

P4 0 0 0 0 0 2:71� 10−3 0 0 0 0 0 1:27� 10−3
f

The sensitivities are associated with individuals that start the annual cycle in habitat 1 and stages 2 and 3. All other starting states are not viable and hence their sensitivity is zero.
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P1 and start season 6 in stages 4 and 5 by the same amount, results

in the sensitivity of ~C(P1) being 5.51. Furthermore, since the

movement survival of stages 4 and 5 are being perturbed in

exactly the same way, the elasticities of the pathway contribution

metrics associated with perturbing stages 4 and 5 separately during

season 6, can be summed to obtain the elasticities of the pathway

contribution metrics of perturbing stages 4 and 5 simultaneously in

season 6.

Alternatively, managers could apply actions across multiple

types of vital rates experienced during season 6. Say we

simultaneously perturb multiple vital rates experienced by the

subpopulation using P2. Specifically: the survival of stage 4

individuals in habitat 4 is increased by d6; the survival of stage 4

and 5 individuals using P2 is increased by d2; and the proportion of

stage 4 and 5 individuals using P2 is increased by d1. Due to the

linearity of the perturbations applied, the sensitivity of the

subpopulation pathway contribution metrics is given by
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dC(P2)
⊤

dp⊤
=
dD4,6

dd6
+
dS46
dd2

+
dS56
dd2

= 1:67|{z}
d6

+ 3:62 +5:72� 10−3|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
d2

= 5:30 ,

and the sensitivity of the metapopulation pathway contribution

metrics is given by

d~C(P2)
⊤

dp⊤ = dD4,6

dd6
+ dS46

dd2
+ dS56

dd2
+ dP4

6
dd1

+ dP5
6

dd1

  = 7:42�10−1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
d6

+ 1:61 +2:54� 10−3|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
d2

+ 4:43 +7:00� 10−3|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
d1

= 6:79  :

Here the underbraces are simply used to attribute the contribution

to the total sensitivity from respective perturbations. Another way

in which managers could use the information from the sensitivity

analysis is to set a target to increase the contribution that a focal

population has to the total population. For example, if the aim is to

increase ~C(P3) by 20%, then we can use the perturbation formula

where the coefficient of a specified dl is the sensitivity of ~C(P3) to
TABLE 5 Elasticities (evaluated with dl equal to 1% of the vital rate that is being perturbed) of the pathway contribution metrics for the monarch
butterfly annual cycle model considered in Section 3.2.1, when perturbing movement survival one at a time, as shown in Figure 4A.

Pathway Elasticity of C(P i) to movement survival

Matrix S46 Matrix S56

d1 d2 d3 d1 d2 d3

P1 7:47� 10−3 0 0 1:21� 10−5 0 0

P2 0 4:04� 10−3 0 0 6:44� 10−6 0

P3 0 0 0 0 0 0

P4 0 0 0 0 0 2:09� 10−3

Pathway Elasticity of ~C(P i) to movement survival

Matrix S46 Matrix S56

d1 d2 d3 d1 d2 d3

P1 5:56� 10−3 0 0 8:99� 10−6 0 0

P2 0 3:00� 10−3 0 0 4:78� 10−6 0

P3 0 0 0 0 0 0

P4 0 0 0 0 0 1:55� 10−3
The elasticities are associated with individuals that start the annual cycle in habitat 1 and stages 2 and 3. All other starting states are not viable and hence their elasticity is zero.
TABLE 6 Sensitivities of the pathway contribution metrics for the monarch butterfly annual cycle model considered in Section 3.2.1, when proportion
of population migrating is perturbed one starting habitat at a time, whilst ensuring that the proportions leaving the starting habitat during season 6
sum to 1, as shown in Figure 4B.

Pathway Sign of d Sensitivity of C(P i) to proportion Sensitivity of ~C(Pi) to proportion

Matrix P4
6 Matrix P5

6 Matrix P4
6 Matrix P5

6

d1 d2 d1 d2 d1 d2 d1 d2

P1 + 0 0 0 0 13.1 0 2:09� 10−2 0

P2 − 0 0 0 0 − 4:43 0 − 7:00� 10−3 0

P3 + 0 0 0 0 0 0 0 1:28� 10−2

P4 − 0 0 0 0 0 0 0 − 4:29� 10−3
The sensitivities are associated with individuals that start the annual cycle in habitat 1 and stages 2 and 3. All other starting states are not viable and hence their sensitivity is zero.
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find the minimum value of this dl that achieves the target. Stage 4
individuals generated from a stage 1 individual in habitat 3

(perturbing by d4) during season 6 correspond to the largest

sensitivity and elasticity, so would be the optimal place to apply

the perturbation; we find that this vital rate would need to increase

by 1.9% (d4 ≥  8:47 �  10−3).

All the perturbations considered above will also impact the

asymptotic growth of the population, denoted by l. We calculate

the sensitivity of l when there is no pathway specified for each vital

rate experienced during season 6. For example, perturbing the

transition of stage 3 individuals to stage 5 individuals in habitat 3

during season 6, perturbs D3,6 by d5 and Equation 15 takes the form

dl
dd5

= w⊤ ⊗ v⊤

v⊤w

� �
(Y5

1)
⊤ ⊗Y12

7

� � d vec A6
dd5

  = w⊤ ⊗ v⊤

v⊤w

� �
(Y5

1)
⊤ ⊗Y12

7

� � ð ð ð(S6 ∘P6)
⊤ ⊗ I20Þ

X1 vec (E4,33)⊗
d vec D3,6

dd5

� �� �
Þ ∘ 1⊤400Þ

= 2:48� 10−2  :

Here: v and w denote the corresponding left and right eigenvectors

of A, respectively; and X1 = I4 ⊗K5,4 ⊗ I5.

The sensitivity of l to all the other demographic rates is

calculated similarly and recorded in Table 8; the corresponding

elasticities are recorded in Table 9. We see that l is most sensitive

to the movement survival of stage 4 individuals migrating from
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habitat 2 to 3 during season 6 (perturbing S46 by d1), which has a

sensitivity of 9.90. This is equal to the sensitivity of the contribution

that a stage 4 individual using this pathway has to the subpopulation

also using this pathway. The movement survival of stage 4 individuals

migrating from habitat 2 to 3 during season 6 (using P1) is also the

vital rate associated with the biggest elasticity of l (7.63 × 10−3), and

so the asymptotic growth rate is predicted to increase the most with

the smallest percentage change to this vital rate. We note that the

elasticity of l to this vital rate is bigger than the elasticity of both

C(P1) and ~C(P1) to this vital rate. Therefore, a percentage change in

the survival of stage 4 individuals migrating from habitat 2 to 3

during season 6 will have a larger effect on the asymptotic growth rate

than the short term growth of both the subpopulation using the P1

and the total population that is attributed to individuals using P1.

3.2.2 Using the perturbation framework to
predict the impact of threats and
management actions

We proceed by applying perturbations to the monarch butterfly

model that correlate to threats and proposed conservation

management actions. The perturbations are applied to various

vital rates and in multiple seasons of the annual cycle, giving rise

to non-linear perturbation structures. As in Smith et al. (2022,

Example 3.2), we calculate the pathway contribution metrics

for each possible pathway in a season individually. That is, we
TABLE 7 Elasticities (evaluated with dl equal to 1% of the vital rate that is being positively perturbed) of the pathway contribution metrics for the
monarch butterfly annual cycle model considered in Section 3.2.1, when proportion of population migrating is perturbed one starting habitat at a time
whilst ensuring that the proportions leaving the starting habitat during season 6 sum to 1, as shown in Figure 4B.

Pathway Sign of d Elasticity of C(P i) to proportion Elasticity of ~C(Pi) to proportion

Matrix P4
6 Matrix P5

6 Matrix P4
6 Matrix P5

6

d1 d2 d1 d2 d1 d2 d1 d2
P1 + 0 0 0 0 9:46� 10−3 0 1:53� 10−5 0

P2 − 0 0 0 0 − 1:21� 10−2 0 − 1:89� 10−5 0

P3 + 0 0 0 0 0 0 0 8:9� 10−5

P4 − 0 0 0 0 0 0 0 − 5:72� 10−3
The elasticities are associated with individuals that start the annual cycle in habitat 1 and stages 2 and 3. All other starting states are not viable and hence their elasticity is zero.
TABLE 8 Sensitivities of the asymptotic growth rate for the monarch butterfly annual cycle model considered in Section 3.2.1.

Matrix Sensitivity of l to vital rate

d1 d2 d3 d4 d5 d6 d7
D3,6 0 2:48� 10−2 1:91� 10−4 9.02 0 1.07 8:22� 10−3

D4,6 0 5:79� 10−3 4:62� 10−5 0 0 7:42� 10−1 5:93� 10−3

S46 9.90 3.62 0 – – – –

S56 1:58� 10−2 5:72� 10−3 2:71� 10−3 – – – –

P4
6 8:62 0 – – – – –

P5
6 1:39� 10−2 8:50� 10−3 – – – – –
Demographic rates and movement survival are perturbed one at a time, as shown in Figures 3, 4A, respectively. Movement proportions are perturbed in pairs to ensure the proportions leaving a
habitat sum to 1, as shown in Figure 4B. Dashes indicate where no perturbation is applied.
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take j =  1 and set F to be each season in turn. The unperturbed

pathway contribution metrics are recorded in Smith et al. (2022,

Table 3.1); we number the 28 pathways in this table consecutively.

We also calculate the habitat contribution metrics (equivalent to

summing all the ~C(Pi) for i ∈ 1,…, 28f g) and denote this as P0.

First, we apply perturbations corresponding to threats. Some of

the major threats to the monarch butterfly are climate change and

the loss of their overwintering and breeding habitats (Brower et al.,

2012; Vidal and Rendón-Salinas, 2014; Wilcox et al., 2019). Climate

change causes high heat in the Southern US (habitat 2) during the

summer months (k ∈ {6,7,8}) which limits the fecundity of the

monarch butterfly (Malcolm et al., 1987; Pocius et al., 2022).

Another threat to the monarch population is a large reduction in

milkweed availability, largely owing to agricultural practices

(Brower et al., 2012; Flockhart et al., 2015; Pleasants and

Oberhauser, 2013), which causes the larval survival probability to

decrease (Flockhart et al., 2012, Flockhart et al., 2015). The last

threat that we consider is the reduction in the size of the

overwintering ground in Mexico (habitat 1) caused by illegal

logging (Brower et al., 2012; Vidal and Rendón-Salinas, 2014).

Using the perturbation framework (see Section 2.3), we

simultaneously apply perturbations that represent these threats to

the monarch butterfly population model. Specifically, we perturb

the model to: reduce the fecundity of stages 3, 4 and 5 in habitat 2

during seasons 6, 7 and 8 by 1%; decrease the survival of larvae

(stage 1) in habitats 2, 3 and 4 by 2%; and, decrease the survival of

all stages in habitat 1 by 5% in all seasons of the annual cycle. We

calculate the change in the pathway contribution metrics (which

have the same form as those in Equation 20) and plot the results in

Figure 5 using downwards triangles.

Perturbations associated with conservation actions can be

applied to the monarch butterfly model at the same time as the

negative perturbations above that correspond to threats. The WWF

recommends a number of climate-adaptive management strategies

for monarch butterflies; including, increasing the availability of

milkweed and nectar sources throughout their range which will help

to restore and increase the stepping stones and movement corridors

(Advani, 2015). Other possible conservation actions include

reducing the amount of illegal logging in habitat 1, which will
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increase the survival of individuals in habitat 1. We represent the

conservation actions by applying positive perturbations to the

model, that: increase the survival of individuals in habitat 1 by

5% during all seasons of the annual cycle; improve the survival of

larvae in habitats 2, 3 and 4 by 10% in all seasons of the annual

cycle; and, increase the survival of monarchs using the pathways

between habitats 2, 3 and 4 by 10% during seasons 5 – 10. We note

that the increase to the survival of individuals in habitat 1 does not

completely eradicate the effects of the negative illegal logging

perturbation, as the threats are applied before the conservation

actions. We calculate the change in the pathway contribution

metrics when perturbations corresponding to both threats and

conservation actions are applied and plot the results in Figure 5

using upwards triangles.

We see that the conservation actions do not completely counter

the impact that the threats have for all pathway contribution

metrics; there are upwards triangles below the x-axis in Figure 5.

However, the conservation actions have resulted in the perturbed

habitat contribution metrics C(P0,D) (represented by black

triangles) being greater than the unperturbed habitat contribution

metrics. Therefore, the overall contribution of an individual over

one annual cycle has increased; it is now 4.72 × 10−2 larger than

when no perturbation is applied, which decreased by 2.39 when the

threats were applied.

Furthermore, we can compare how the threats and conservation

actions impact individual pathways. We see that the C(Pi) that is

impacted the most by threats is C(P7) which has decreased by 3.26. In

other words, the contribution that an individual using P7 (2 → 3 in

season 6) has on the subpopulation also usingP7 is decreased the most

by the threats. Whereas, the C(Pi) that is impacted the least by the

threats is C(P10) which has decreased by 1.05 × 10−3, and so the

contribution that an individual using P10 (3 → 4 in season 6) has on

the subpopulation also usingP10 is affected the least by the threats. The

highest value of the C(Pi) following the application of threats and

conservation actions is C(P27) which has increased by 2.35 × 10−1

compared to the unperturbed contribution metric. In other words, the

contribution that an individual using a pathway has on the

subpopulation using the same pathway is greatest after threats and

conservation have been applied for individuals using P27 (2 → 1 in
TABLE 9 Elasticities (evaluated with dl equal to 1% of the vital rate that it is being perturbed) of the asymptotic growth rate for the monarch butterfly
annual cycle model considered in Section 3.2.1.

Matrix Elasticity of l to vital rate

d1 d2 d3 d4 d5 d6 d7
D3,6 0 4:39� 10−6 3:38� 10−8 1:59� 10−3 0 1:89� 10−4 1:45� 10−6

D4,6 0 1:02� 10−6 8:16� 10−9 0 0 1:31� 10−4 1:05� 10−6

S46 7:63� 10−3 2:79� 10−3 0 – – – –

S56 1:22� 10−5 4:41� 10−6 2:09� 10−6 – – – –

P4
6 6:65� 10−3 0 – – – – –

P5
6 1:07� 10−5 6:56� 10−6 – – – – –
Demographic rates and movement survival are perturbed one at a time, as shown in Figures 3, 4A, respectively. Movement proportions are perturbed in pairs to ensure the proportions leaving a
habitat sum to 1, as shown in Figure 4B. Dashes indicate where no perturbation is applied.
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season 11). The smallest value of the C(Pi) following the application of

threats and conservation actions is C(P24), which has decreased by

4.17 × 10−1 compared to the unperturbed contribution metric.

To find which pathways are the most improved by the

conservation actions, we calculate the difference between the

change in subpopulation pathway contribution metrics after threats

and the change in them after both threats and conservation. The

conservation actions have the least impact on individuals using P10;

C(P10) is decreased by 1.05 × 10−3 after application of the threats,

and is increased by 1.65 × 10−3 after the conservation actions. Thus,

the total change toC(P10) after threats and conservation actions is an

increase of 6.02 × 10−4. Conversely, the conservation actions have the

most impact on C(P7) which is decreased by 3.26 after application of

the threats, and is increased by 3.17 after the conservation actions,

resulting in the total change to C(P7) after threats and conservation

actions being a decrease of 8.88×10−2.

The results of the metapopulation pathway contribution metrics

can be interpreted similarly. However, the metapopulation pathway

contribution metrics may not be altered in the same way as

the subpopulation pathway contribution metrics. For instance, the
~C(Pi) that are impacted the most by the threats are ~C(P1), ~C(P2),
~C(P3), ~C(P4) and ~C(P28) which have all decreased by 2.39. That is,

the contribution that an individual using P1 (1→ 1 in season 1), P2

(1→ 1 in season 2), P3 (1→ 1 in season 3), P4 (1→ 2 in season 4)

or P28 (1 → 1 in season 12) has on the total population are

decreased the most by threats. However, the ~C(Pi) that is impacted

the least by the threats is ~C(P10) which has decreased by 4.92×10−4;

the subpopulation pathway contribution metrics associated with

P10 (3→ 4 in season 6) are also impacted the least by threats. Thus,

the contribution that an individual using P10 has on the
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subpopulation also using P10 and the contribution that they have

on the total population are both affected the least by the threats. The

highest value of the ~C(Pi) following the application of threats and

conservation actions is ~C(P27) which has increased by 2.35 × 10−1;

P27 (2→ 1 in season 11) is also associated with the highest value of

the C(Pi) after threats and conservation actions have been applied.

The lowest value of the ~C(Pi) following the application of threats

and conservation actions is ~C(P24) and ~C(P26) which have both

decreased by 1.88 × 10−1, hence the contribution that an individual

using P24 (3 → 1 in season 10) or P26 (1 → 1 in season 11) has on

the total population following the threats and conservation actions

are the smallest. Interestingly, individuals using P24 (3 → 1 in

season 10) contribute the least to both the total population and the

subpopulation that uses P24. However, individuals using P26

contribute the least to the total population, but contribute more

to the subpopulation that use P26, than individuals that use P24

contribute to their subpopulation.

The conservation actions have the least impact on ~C(P10) which

has decreased by 4.92 × 10−4 after applications of the threats, and has

increased by 7.74×10−3 after conservation actions, resulting in the total

change to ~C(P10) after threats and conservation actions being an

increase of 2.82 × 10−4. Furthermore, the impact that the conservation

actions have on an individual’s contribution to the total population and

its contribution to the subpopulation that uses the same pathway is

smallest for individuals using pathway 10. The conservation actions

have the biggest impact on ~C(P1), ~C(P2), ~C(P3), ~C(P4) and ~C(P28)

which all decrease by 2.39 following the threats and increase by 2.43

following the conservation actions, resulting in an overall change of

2.82 × 10−4 from the unperturbed metapopulation pathway

contribution metrics.
FIGURE 5

Change in pathway contribution metrics following the perturbations considered in Section 3.2.2. The perturbed habitat contribution metrics (C(P0,D)),
subpopulation pathway contribution metrics (C(Pi,D)) and metapopulation pathway contribution metrics (~C(P i,D)), where i ∈ 1,…:28f g, correspond to
black, blue and red, respectively. Downwards triangles correspond to only threats being applied and upwards triangles correspond to both threats and
conservation actions being applied. The pathway labels correspond to the points to the right hand side of the tick mark.
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4 Discussion

We have provided a framework that predicts the effects of

perturbations on mathematical models of migratory species, and

the associated contribution metrics. The framework allows for

perturbations to be applied at any point in the annual cycle, and

for multiple perturbations to be applied at once. We have ensured

that the perturbations applied to the model are easily linked to their

ecological meaning by providing formulae that perturb individual

vital rates, rather than individual entries in the seasonal or annual

cycle matrices for which the ecological meaning is not always clear

(Smith et al., 2022). Thus, complex and nonlinear perturbation

structures can be applied to the annual cycle matrix whilst retaining

transparent biological interpretation. Our perturbation framework

follows two complementary strands. The first is a structured

perturbation approach, in the spirit of Hodgson and Townley

(2004), and is underpinned by linear algebra tools. The second is

a sensitivity approach, in the spirit of Caswell (2019), and is

underpinned by differential calculus. The former computes the

actual change that the perturbation causes to the annual cycle

model and contribution metrics, whilst the latter computes the

rate of change to the contribution metrics at a given point.

Arguably, both strands have their advantages and disadvantages

and, when perturbations are linear, these approaches yield

equivalent results. Either framework can be used to quantify the

effect that perturbations have on all the contribution metrics

defined in Smith et al. (2022). Therefore, the effect perturbations

have on different pathways, habitats and stages of the annual cycle

model can be computed.

Existing models that quantify how perturbations affect the

growth rates of migratory populations have not allowed all vital

rates to be perturbed. The two frameworks developed in this paper

are general and allow for any vital rate (or combination of vital

rates) in the annual cycle model to be perturbed, making it

straightforward to evaluate the impact of any combination of

management strategies or threats. The combination of these novel

elements allows for the trade-offs between threats and conservation

actions to be explored analytically, and for conservation strategies

that involve multiple actions to be fully defined. This is particularly

valuable for migratory species where conservation efforts are

challenged by their highly mobile nature which often includes

travelling across borders (Kirby et al., 2008; Robinson et al., 2009;

Runge et al., 2015; Thornton et al., 2018). Using our framework,

population managers could investigate how to buffer against

negative impacts that the migratory population is subject to in

regions that the managers are unable to influence.

The frameworks developed in this paper can uncover more

insight from the annual cycle models than is possible from the

pathway contribution metrics alone. When the monarch butterfly

model is considered in Smith et al. (2022, Example 3.2), it is

suggested that the pathway between habitats 3 and 4 could be

improved in season 6 (P4 in Section 3.2.1), as the pathway

contribution metrics associated with this pathway are the

smallest. However, the sensitivity framework deployed in Section

3.2.1 reveals that increasing the movement survival of individuals

that use P4 will have a smaller effect than increasing the movement
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survival along any of the other pathways (that are not associated

with remaining resident) used during season 6. Indeed, the pathway

contribution metrics developed in Smith et al. (2022) are useful

when ranking the importance of pathways for a fixed annual cycle

model, but they do not indicate how a change in the annual cycle

model will affect the ranking of pathways. Thus, the frameworks

developed in this paper are a useful tool for predicting how changes

to the annual cycle model affect the value of the pathway

contribution metrics.

Furthermore, in Smith et al. (2022, Example 3.2), they also

advise increasing the proportion of the population that uses the

pathway between habitats 2 and 3 (P1) during season 6, as this

pathway is associated with the highest pathway contribution

metrics. Using the sensitivity framework in Section 3.2.1, we see

that individuals that start season 6 in habitat 2 are more sensitive to

perturbations in the proportion migrating, than individuals that

start season 6 in habitat 3. In particular, increasing the proportion

of the population that usesP1 (and hence decreasing the proportion

of the population that uses P2) is predicted to have the largest effect

on the metapopulation pathway contribution metrics, when

considering the sensitivities recorded in Table 6. However, when

considering the elasticities recorded in Table 7, it is predicted that

increasing the proportion of the population that uses P2 (and hence

decreasing the proportion of the population that uses P1) will have

the largest effect on the metapopulation pathway contribution

metrics. In other words, increasing the proportion of the

population that uses P2 by some percentage will have a larger

effect on the metapopulation pathway contribution metrics than

increasing the proportion of the population that uses P1 by the

same percentage. Another insight that we gain from the sensitivity

framework is that, among all the vital rates experienced by the

population in season 6, the short term population growth is

proportionally most sensitive to perturbing the number of stage 4

individuals generated from stage 1 individuals in habitat 3 (see

Table 3), whilst the long term population growth is proportionally

most sensitive to perturbing the movement survival of stage 4

individuals using P1 (see Table 9). In practice, population managers

will need to consider their objectives and the costs associated with

changing each vital rate, along with the sensitivities and/or

elasticities to decide which actions they take.

In Section 3.2.2, we use the perturbation framework and the

monarch butterfly model to assess the expected impact that threats

and conservation actions have on the pathway contribution metrics.

Threats are applied to demographic rates and movement survival

during multiple seasons of the annual cycle. We calculate the impact

that these threats have on the pathway contribution metrics

associated with each possible pathway. Suggested management

actions for conservation are then applied to assess how the

proposed conservation actions can buffer against the threats. We

find that although some pathways are associated with smaller

pathway contribution metrics after the threats and conservation

actions have been applied, the contribution that an individual with

no specified pathway has on the total population (the value of

habitat contribution metrics) has increased compared to the

unperturbed annual cycle model. In general, when both positive

and negative perturbations are applied to the annual cycle model,
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whether the overall effect to the contribution metrics is positive or

negative is unknown prior to their calculation. In fact, the different

pathway contribution metrics calculated from the annual cycle

model can be increased or decreased. That is, a subpopulation

using one pathway may be overall positively affected by the

perturbations, whilst a subpopulation using another pathway may

be overall negatively affected by the same perturbations. To see

whether the perturbations cause the total population to increase or

decrease in the short- or long-term, managers should consider the

effect that the perturbations have on the habitat contribution

metrics or the asymptotic growth rate, respectively.

We comment that managers must take care when applying

perturbations to the population model and ensure that it remains

ecologically meaningful. For instance, when defining how

perturbations affect the proportion of the population that uses a

migratory route, the sum of all the proportions associated with

pathways (including loops) that leave a habitat during a set season

must sum to one. Hence, necessary trade-offs must be considered

when perturbing the proportion of the population that uses a

pathway, which requires some vital rates to be negatively

perturbed to maintain an ecologically meaningful model. The

perturbation and sensitivity frameworks both readily assess the

impact that these necessary trade- offs (and other trade-offs that

may be occurring between threats and conservation actions) have

on the pathway contribution metrics. However, negative elasticities

are not well-defined and so care must be taken when calculating the

elasticity of a perturbation that includes trade-offs. The elasticities

corresponding to the necessary trade-offs considered in Section

3.2.1 are equivalent to the integrated elasticities [see Supplementary

Material Section 4.2, Van Tienderen (1995)], but more research

would be needed to assess how other trade-off structures influence

the elasticities and integrated elasticities.

The perturbation and sensitivity frameworks developed in this

paper provide tools that can help to inform the management of a

migratory species subject to any number of threats or conservation

actions. Questions that we envisage these frameworks being able to

answer include: which vital rates in a migratory population are the

most responsive to change; during which season/s of the annual cycle

should a management action be applied to increase the pathway

contribution metrics the most; what is the best vital rate to apply a

perturbation to, if the migratory species is experiencing threats in a

region where managers are unable to act. We note that, to answer

these questions, both frameworks require managers to predict how a

proposed action will affect the vital rates of the population. We

propose that our framework could be used as part of an adaptive

management strategy by integrating field data gathered throughout

the full species range to update the migratory model and assess how

management actions (perturbations) affect the vital rates experienced

by the migratory species, as is encouraged in Mattsson et al. (2022).

Full-annual-cycle models of migratory birds are reviewed in

Hostetler et al. (2015). The authors note that although such models

can provide more insight than models developed for non-migratory

species, it can be challenging to apply full-annual-cycle models to

real-world systems owing to the limited availability of empirical

data. Indeed, the matrices of the full-annual-cycle models

considered presently become large as partitioned according stage
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class, season and habitat. Consequently, numerous parameters will

need to be estimated, and it is likely to be challenging to estimate all

of these parameters well. Thus, we envision that the frameworks

discussed in this paper could also aid in the development of full-

annual-cycle models, by identifying which matrix entries are the

most sensitive to change and so which vital rates are the most

important to measure accurately.

Future research could seek to use optimal control techniques to

optimise conservation targets (which could be defined via the size of

the contribution metrics or the asymptotic growth rate) whilst

minimising some prescribed cost. To the best of our knowledge,

the optimal control of migratory species was first considered by

Martin et al. (2007). They seek to find optimal resource allocation

strategies that maximise either the number of individuals protected

across the wintering range, or the number of individuals protected

across the entire species range. More recently, Schuster et al. (2019)

used optimal control techniques to develop a multi-species

planning tool that optimises conservation targets whilst

minimising the total area that is protected. Similar optimal

control strategies could be considered alongside our framework

with the aim to maximise the habitat contribution metrics and/or

the asymptotic growth rate whilst maintaining a minimum size of

the pathway contribution metrics for each individual pathway.

Another possible area for future research could investigate how

best to manage migratory populations whilst extreme weather

patterns, caused by climate change, drive migratory species to

adapt their life history strategies. For instance, among-individual

and within-individual variation in expression of seasonal migration

or residence could be incorporated into the metapopulation model

(as is done in Payo-Payo et al. (2022)) to allow for the inclusion of

“carry-over effects” such that the vital rates experienced in one season

impact those experienced in the following seasons. The perturbation

or sensitivity framework could then be used to see how these carry-

over effects influence which vital rates will have the biggest effect on

increasing the contribution metrics and asymptotic growth rate.

As with our earlier work (Smith et al., 2022), the results

presented here assume density-independence (that is, linearity) of

the underlying annual cycle model. Thus, the model predictions are

unlikely to be realistic over large time periods, as density-dependent

factors will have more of an effect once the population reaches

carrying capacity. However, since pathway contribution metrics are

transient indices, they are not tied to the asymptotic nature of the

model. To increase the validity of the model predictions over large

time frames, a separate line of enquiry is to develop useful and valid

contribution metrics for density-dependent (that is, nonlinear)

annual cycle models, or certain interesting classes of density-

dependent annual cycle models. Furthermore, the migratory

model could be extended to consider how demographic and

environmental stochasticity influence the vital rates experienced

by the population, and in turn which management actions are

advised using the perturbation and sensitivity framework. The

frameworks developed in this paper could then be used similarly

to assess the impact of perturbations on the model predictions by

applying perturbations directly to the vital rates.

In closing, we have provided a framework to assess the impact

that perturbations have on both the pathway contribution metrics
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and the asymptotic growth rate of a migratory population. The

framework allows for perturbations to be applied to any vital rate

in the annual cycle model, and identifies the critical states that impact

the dynamics of the population. Multiple perturbations can be

applied at once, which can lead to nonlinear perturbation

structures, so that the effects of trade-offs and mixed strategies can

be explored. We have provided details of how to assess the impact of

these perturbations using either sensitivity analysis or perturbation

analysis, so that linear approximations or the full perturbation curves

can be evaluated. We believe that our framework provides a novel

tool to be used in the management of migratory species.
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