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Evolution of regulatory
mechanisms underlying
nutrition-responsive
plasticity in insects
Sofia Casasa*

Department of Biology, Boston University, Boston, MA, United States
Phenotypic plasticity is a fundamental property of developing organisms and is

thought to play an important role in diversification. Plastic responses themselves

are remarkably diverse and respond to a wide range of environmental factors.

Here I focus on plasticity in response to variation in nutrition in insects since 1)

nutrition is a widespread factor that impacts most organisms, and 2) insects are

important models to study phenotypic plasticity. First, I provide a brief overview

of our current mechanistic understanding of the regulation of nutritionally cued

plasticity in insects, in both traditional as well as emerging model systems. Then, I

explore evolutionary mechanisms enabling the diversification of regulation

across taxa, emphasizing the role of gene duplication and gene regulatory

network co-option. Furthermore, I examine nutrition-responsive phenotypes

as suites of multiple traits that develop in a coordinated manner. I argue that

understanding how these traits are integrated at the molecular level can shed

light on the evolution of complex phenotypes. Finally, I discuss potential

challenges and opportunities to further our understanding of nutrition-

responsive plasticity, its regulation, and its evolution.
KEYWORDS

developmental plasticity, nutrition, insects, evolution, regulatory mechanisms, polyphenism
Introduction

Developmental plasticity is a fundamental process that allows organisms to adjust their

phenotype during development in response to variable environmental conditions. The

degree to which phenotypes respond to environmental factors varies across individuals,

populations, and species. Traits may change as a response to an environmental factor in a

continuous manner yet in extreme cases, discrete phenotypes, or polyphenisms, are

produced (West-Eberhard, 2003). Various environmental factors often have an effect on

development, and in many instances multiple environmental inputs act in a concerted

manner to achieve a highly regulated phenotypic response (Shingleton et al., 2009; Lin et al.,

2018). One of the most widespread environmental factors that can impact development is
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nutrition (Moczek, 1998; Karino et al., 2004; Shingleton et al., 2009).

Plasticity in response to nutrition is present in diverse taxa, from

insects to plants and humans (Schlichting, 1986; Moore et al., 2004;

Teleman et al., 2008; Tchokponhoué et al., 2019). In some cases,

nutrition is the sole environmental factor, whereas in others it acts

in concert with a suite of environmental factors that elicit a specific

phenotypic response (e.g. in combination with population density,

social environment or temperature; Brian, 1979; Shingleton et al.,

2009; Serobyan et al., 2013; Deem et al., 2024).

Insects have emerged as models to understand the regulation

and evolution of plasticity, in part due to the feasibility and

amenability of tools available, but also due to the enormous

diversity of plastic responses they exhibit (Fjerdingstad and

Crozier, 2006; Moczek, 2010; Casasa et al., 2017). Insights from

Drosophila have elucidated many genetic and genomic mechanisms

of plasticity, and studies of diverse insect species have continued to

reveal the evolution of these responses. In this review, I summarize

recent advances on the genetic and genomic mechanisms of

developmental plasticity in response to nutrition across diverse

insects. Then, I examine how these mechanisms have evolved,

focusing on gene duplication, and gene network co-option.

Finally, I emphasize the need to study the regulation of complex

suites of environmentally sensitive traits, in particular how they are

integrated during development.
Molecular mechanisms of nutritional
plasticity across insects

The insulin/insulin-like growth factor signaling pathway (IIS) is

key in regulating phenotypic changes in response to nutrition. This

pathway is conserved across organisms, from yeast to vertebrates

(Brogiolo et al., 2001; Barbieri et al., 2003; Vitali et al., 2018). In

insects, this pathway is known to regulate body size as a function of

nutrition, as well as tissue-specific relative size (Stern, 2003;

Shingleton et al., 2005; Edgar, 2006; Callier and Nijhout, 2013;

Casasa and Moczek, 2018). Studies onDrosophila have revealed that

nutritional conditions during larval development are first detected

by cells in the fat body, where the Target of Rapamycin (TOR)

pathway detects amino acid levels (reviewed in Koyama and Mirth,

2018). Consequently, the fat body secretes peptide signals, which

are detected by insulin-producing cells in the brain. These cells, in

turn, secrete insulin-like peptides (ILPs) into the hemolymph.

Across tissues, ILPs bind to the insulin receptor (InR), which

activates a signal transduction cascade that promotes growth and

proliferation (Brogiolo et al., 2001).

Beyond Drosophila, the IIS pathway has been implicated in

mediating nutrition-responsive plasticity across a broad range of

insect orders and traits (reviewed in Nijhout and McKenna, 2018;

Weger and Rittschof, 2024). In the rhinoceros beetle, Trypoxylus

dichotomus (Coleoptera), growth of exaggerated horns used as

weapons depends on nutritional conditions during larval

development. This increased sensitivity of horns to nutritional

conditions is regulated by the InR, and InR knockdown results in

a decrease in horn length (Emlen et al., 2012). In the butterfly Precis
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coenia, bombyxin, the first discovered insect ILP (discovered in

Bombyx mori), regulates growth of wing imaginal discs (Nijhout

and Grunert, 2002). In the clonal raider ant, Ooceraea biroi

(Hymenoptera), the ILP2 is involved in the regulation of

reproductive division of labor (Chandra et al., 2018). Thus, the

IIS pathway is a general mechanism that mediates nutrition-

responsive plasticity across insects.

In addition to the role of the IIS in mediating nutrition-

responsive growth, there are multiple other pathways and insect

hormones that have been identified to be involved in this process.

For instance, one of the major insect hormones, juvenile hormone

(JH), has been implicated in the regulation of stag beetle

(Cyclommatus metallifer) mandible enlargement (Gotoh et al.,

2011). Moreover, the IIS pathway regulates several downstream

pathways and hormones. For example, the IIS pathway is involved

in promoting biosynthesis of JH as well as ecdysone, another major

insect hormone (Abrisqueta et al., 2014; Gokhale et al., 2016). At the

same time, these insect hormones also have the ability to regulate

the IIS pathway (Colombani et al., 2005; Mirth et al., 2014). Overall,

the interplay between IIS and other mechanisms is complex, and

regulation of nutrition-dependent plasticity involves crosstalk

across various hormonal and signaling pathways.
Evolution of the mechanisms
regulating nutrition-
responsive plasticity

Developmentally plastic responses exhibit remarkable diversity

across multiple levels of biological organization. Within

populations, different traits display different sensitivities to

nutritional levels. For instance, sexually selected traits are often

extremely sensitive to variation in nutrition and result in

exaggerated morphologies in high nutrition males and more

moderate ones in low nutrition males (e.g. horns in rhinoceros

beetles, Emlen et al., 2012). Many other traits scale proportionally to

body size and are therefore moderately sensitive to nutrition (e.g.

wings, legs, etc.; Shingleton et al., 2007, 2008). Finally, there are

traits that are insensitive or buffered from variation in nutrition (e.g.

male genitalia; Eberhard, 2009). These traits display low levels of

phenotypic variation across a nutritional gradient, regardless of

overall body size. Across populations and species, plastic responses

are also diverse (Casasa andMoczek, 2019). For example, in the red-

shouldered soapberry bug, distinct populations vary in the

proportion of short- and long-wing morphs (Fawcett et al., 2018).

Similarly, closely related species of onthophagine horned beetles

differ in relative horn length and degree of plasticity in response to

nutrition. While some species exhibit a moderate degree of horn

plasticity, others display either an exaggerated degree or have

entirely lost horns and plasticity (Casasa et al., 2017, 2020).

Together, the evolution of plasticity, either in terms of increase or

loss of plasticity, greatly contributes to diversity within and

among species.

Recently, significant progress has been made in elucidating the

molecular and developmental mechanisms that regulate plastic
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responses in many non-model insects (Emlen et al., 2012; Xu et al.,

2015; Casasa and Moczek, 2018; Fawcett et al., 2018). These insights

are paving the way to our understanding of how these mechanisms

have evolved. Here I focus on two mechanisms that have

contributed to the evolution of the underpinning of nutritionally

plastic responses. First, I discuss the role of gene duplication in the

evolution of nutrition-responsive plasticity. Then I review our

current understanding of the role of gene co-option and gene

regulatory network co-option in the evolution of plastic responses.

The duplication of key genes that regulate nutrition-responsive

plasticity has contributed to the evolution of the mechanisms

underlying plastic responses. The most prominent example is the

duplication of the InR. Most insect taxa possess two InR copies,

including ants (Lu and Pietrantonio, 2011), bees (de Azevedo and

Hartfelder, 2008), brown planthoppers (Xu et al., 2015; Xu and

Zhang, 2017), horned beetles (Casasa and Moczek, 2018), and red

flour beetles (Sang et al., 2016). Recent phylogenetic analyses

revealed that this duplication occurred around 400 million years

ago within basal Insecta and a few losses occurred thereafter,

including in Diptera and Lepidoptera (Kremer et al., 2018;

Smykal et al., 2020). Wingless insects such as silverfish

(Zygentoma), some of the most basal insects studied, have a

single InR copy, whereas basal-winged insects such as mayflies

(Ephemeroptera) possess two. Interestingly, other non-insect taxa,

including sponges, nematodes and vertebrates, have undergone

independent duplications of the InR (Smykal et al., 2020).

The extent to which InR duplication contributes to the potential

origin and diversification of plastic responses is taxon-specific. In

Hemiptera, there have been multiple duplication events of both the

InR1 and InR2, in some cases leading to as many as four copies of

InR2 (some cicadellids; Smykal et al., 2020). The two InR copies in the

brown planthopper Nilaparvata lugens are the primary regulators of

wing polyphenism (Xu et al., 2015), where food quality and

population density are the main environmental cues that induce

short- and long-winged morphologies (Lin et al., 2018). Interestingly,

InR1 has a canonical role, whereas InR2 has the opposing effect and

negatively regulates InR1 (Xu et al., 2015). Across other hemipteran

species the regulation of wing polyphenism has diverged from that of

N. lugens. For instance, in the linden bug Pyrrhocoris apterus InR1

was duplicated. Functional genetic analyses revealed that although

the role of InR2 seems conserved across species, InR1a plays a similar

role to InR2 in N. lugens (Smykal et al., 2020). In contrast to these

studies, where InR plays a key role in the regulation of wing

polyphenism, a similar phenotypic response operates differently in

the red-shouldered soapberry bug J. haematoloma. In this species,

knockdown of the Forkhead Box O (Foxo) transcription factor, a

negative growth regulator downstream of the InR, results in a shift in

frequency towards a larger proportion of short-winged individuals.

Thus, Foxo is the main regulator of wing polyphenism in

J. haematoloma and acts in the opposite manner compared to

N. lugens (Fawcett et al., 2018). Beyond Hemiptera, InR has also

duplicated in termites, cockroaches and stick insects, and expression

of the three paralogs differs among termite castes of three species

(Kremer et al., 2018; Smykal et al., 2020). Yet whether different InR

copies have a role in termite caste determination has yet to be

functionally tested. In Onthophagus horned beetles neither of the
Frontiers in Ecology and Evolution 03
two InR copies seem to have a role in the regulation of the male horn

polyphenism (Casasa and Moczek, 2018), although in the rhinoceros

beetle Trypoxylus dichotomus, the single InR does play a role in

regulating horn growth in response to nutrition (Emlen et al., 2012).

Additional cases of gene duplications underlying plastic

responses have been found in eusocial Hymenoptera, in which

caste polyphenism is also nutritionally cued. A study using the

honeybee Apis mellifera found that caste-biased genes often

correspond to genes that had been duplicated compared to non-

duplicated ones, and expression levels were similarly higher for

duplicated genes, suggesting that duplicated genes play an

important role in caste determination and probably contributed

to its evolution (Chau and Goodisman, 2017). Moreover, in the

harvester ant Pogonomyrmex barbatus, the gene vitellogenin (Vg)

has undergone duplication followed by subfunctionalization, where

the two paralogs exhibit caste- and behavior-specific expression

(Corona et al., 2013).

Gene duplication is by no means required for the evolution of

developmental plasticity. A growing body of evidence also suggests

existing developmental pathways can be redeployed in novel ways

to produce diverse plastic traits, including polyphenic traits

(Moczek and Nagy, 2005; Kijimoto et al., 2012; Gotoh et al., 2014;

Morandin et al., 2016; Casasa and Moczek, 2018; Kapheim et al.,

2020). Above, I discussed the role that key pathways, such as IIS and

TOR, have in the regulation of plasticity. These pathways have an

ancestral role translating a nutrition cue into a phenotypic response,

yet they have been co-opted in the context of providing a nutritional

sensor to novel traits or traits that ancestrally did not exhibit high

nutrition responsiveness. For instance, Onthophagus beetle head

horns are novel traits that respond to a nutritional gradient in a

discontinuous manner (polyphenism; Moczek, 2003). One of the

components of the IIS pathway, Foxo, is key in mediating this

growth response (Casasa and Moczek, 2018). While Foxo’s role in

negatively regulating growth is conserved, it has been redeployed in

the regulation of a novel trait. Likewise, genes and gene regulatory

networks that were ancestrally not directly involved in the

regulation of plasticity are known to have been co-opted in the

regulation and evolution of plastic traits. Examples of this include

the role of doublesex (dsx) — a gene that encodes for a sex

determination transcription factor — in the regulation of

exaggerated, nutrition sensitive male stag beetle mandibles (Gotoh

et al., 2014), and the role of Hedgehog signaling pathway —

involved in anterior/posterior axis determination — in the

evolution of novel and polyphenic beetle head horns (Kijimoto

and Moczek, 2016). In contrast to IIS and TOR signaling pathways,

which are well known to be directly involved in nutrient

responsiveness (Koyama and Mirth, 2018), Dsx and Hedgehog

signaling pathways are not (Ingham and McMahon, 2001; Price

et al., 2015; but see Agrawal and Léopold, 2015). Instead, these

examples showcase how the latter pathways display novel

contributions to exaggerated nutritional responses (Gotoh et al.,

2014; Kijimoto and Moczek, 2016).

Gene duplication and neofunctionalization offer an intuitive

explanation for the evolution of plasticity and emergence of

polyphenisms, yet the genetic mechanisms giving rise to co-option

of existing pathways during the evolution of plastic traits are less
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clear. Generally, network co-option can occur through changes in key

regulators, either in regulatory regions or protein coding sequences,

that lead to recruitment of many effector genes and their regulatory

elements (True and Carroll, 2002; McQueen and Rebeiz, 2020).

While the precise mechanisms that led to redeployment of dsx and

Hedgehog signaling pathway in the evolution of novel plastic

responses have not been fully elucidated, this process was likely

facilitated by pre-existing connections and these pathways’ canonical

roles in insect somatic sex differentiation (i.e. sexual dimorphisms),

and patterning and cell proliferation, respectively (Ingham and

McMahon, 2001; Hopkins and Kopp, 2021). Moreover, in instances

where the same trait has independently evolved, similar pathways

have been recruited, albeit in some instances different components of

the same pathway act as the primary regulators. For example, head

horns in Onthophagus beetles and thoracic horns in the rhinoceros

beetle T. dichotomus are thought to have evolved independently. In

both systems the IIS pathway plays a key role, yet in Onthophagus

beetles Foxo is the main IIS regulator, whereas in T. dichotomus InR is

the key IIS horn growth regulator (Emlen et al., 2012; Casasa and

Moczek, 2018). This further suggests that pre-existing connections

related to the pathway’s canonical role could facilitate redeployment

of the same pathways in similar contexts. Future studies delving into

network architecture and rewiring of gene networks during evolution

of plastic traits can shed light on the process by which gene networks

are co-opted during evolution of these traits. Collectively, gene

duplication, in addition to gene and gene regulatory network co-

option have emerged as important processes in the evolution of

nutrition-responsive plasticity, and future studies will continue to

provide insights into the precise mechanisms orchestrating plastic

trait evolution.

Regulation of nutritionally cued
plasticity and the evolution
complex phenotypes

Several nutritionally responsive phenotypes are composed of

multiple traits that are well integrated to function in a coordinated

manner (Hallgrıḿsson et al., 2002; Klingenberg, 2005; Simpson

et al., 2011). This is particularly conspicuous in polyphenisms,

where alternative morphologies display different suites of traits

(Moran, 1992; Nijhout, 1999). Namely, morphologically variable

traits are typically accompanied by behavioral differentiation. For

instance, castes in Atta can be distinguished morphologically based

on size, mandible and leg length, among other traits. Behaviorally,

each caste is characterized by a distinct combination of tasks (e.g.

fungal gardening, brood care, leaf-harvesting, etc.) at specific

frequencies (Muratore et al., 2023). In Onthophagus beetles, large

males display large horns accompanied by a fighter behavior;

whereas small males are morphologically hornless and display a

sneaker behavior (Moczek and Emlen, 2000). Thus, morphological,

physiological, and behavioral traits are predicted to be coordinated

during development to form complex phenotypes. Yet, in many

cases, how behavioral and morphological plasticity are coordinated

at the molecular level is unclear and likely involves complex

regulatory mechanisms.
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Understanding how trait integration is regulated is critical since

this poses distinct evolutionary consequences. One possibility is

that traits are regulated through separate developmental modules

(i.e. behavioral trait-specific module and morphological trait-

specific module) and integrated through key components that

link the different modules (Figure 1A; Klingenberg, 2005; Wagner

et al., 2007; Rittschof and Robinson, 2016). Modularity has been

proposed to reduce the effects of pleiotropy and enhance

evolvability (Wagner and Altenberg, 1996). Therefore, this

scenario would allow evolutionary flexibility since traits and

modules could evolve independently without disruption of one

another (Klingenberg, 2005). If instead, traits are inherently

integrated such that they cannot be dissociated (i.e. same module

acts on both behavior and morphology; Figure 1B), then

evolutionary changes on this module would result in a change in

both trait types (correlated traits; Wagner et al., 2007). The first

scenario could result in rapid trait coevolution: as a behavioral trait

evolves, a change in morphological traits that matches this behavior

could follow if advantageous. This in turn could feedback and result

in further behavioral changes, reciprocally coevolving in a runaway

manner. Trait decoupling across different levels (e.g. physical,

molecular) has indeed been proposed to facilitate diversification

(Frédérich et al., 2014; Powell et al., 2020). In addition, the

environmentally responsive nature of these traits could facilitate

this process since plasticity can fuel evolution (Pfennig et al., 2010;

Moczek et al., 2011; Jones and Robinson, 2018). This process could

theoretically occur in the second scenario as well yet constraints

imposed by pleiotropy could limit the extent to which this can occur

(Carroll, 2005; Williams et al., 2023).

Together, providing a regulatory understanding of trait

integration across nutritionally plastic phenotypes is key to

further understand how complex traits evolve. As discussed

above, gene duplication and gene network co-option are key

processes that play a role in the evolution of plastic traits. While

developmental modules can, at least in part, consist of duplicated

genes or co-opted gene networks, co-option has been proposed to

result in loss of tissue specificity and potentially limit evolution,

particularly, the ability of traits to evolve in an independent manner

(McQueen and Rebeiz, 2020). Given that several studies have

implicated gene and gene network co-option in the evolution of

plastic traits (Moczek and Nagy, 2005; Kijimoto et al., 2012; Gotoh

et al., 2014; Morandin et al., 2016; Casasa and Moczek, 2018;

Kapheim et al., 2020), identifying the gene regulatory network

architecture of plastic traits, focusing on both morphological and

behavioral traits, will be a critical first step. Moreover, evaluating the

extent to which the modules underlying these traits overlap and the

strength of module integration, can help elucidate how these

complex phenotypes evolve.
Conclusions and future directions

Here I described the molecular mechanisms that underlie

nutritionally cued plasticity in insects, and some of the major

mechanisms by which these underpinnings have evolved. In the

process, I have identified some gaps in our knowledge. Beyond these
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gaps, some key challenges remain. First, we need to fully understand

how genomic variation contributes to the diversity of nutritionally

responsive phenotypes and how this variation translates into a

phenotypic response (from gene expression to behavior and

morphology). Exploring the genetic variation of nutritionally cued

responses from a population genomics perspective can further our

understanding of how these responses evolve and allow us to identify

key genomic regions involved. Second, nutritionally cued plastic

responses are complex in insects and often involve thousands of

genes, yet how these genes interact in a gene regulatory network

remains largely unknown (but see Abouheif and Wray, 2002; Sinha

et al., 2020). While this has been particularly challenging for non-

model insect systems, the emergence of new technologies such as

single-cell RNA sequencing and ATAC-seq (Assay for Transposase-

Accessible Chromatin) now offer a more sensitive analysis of the

molecular mechanisms underlying nutritionally cued plasticity and

allow reconstruction of gene regulatory networks (Li et al., 2022;

Traniello et al., 2023; Davidson and Moczek, 2024). Leveraging

current knowledge on model insect systems and taking a

comparative approach paring model with emerging model systems

has proven to be particularly powerful (Li-Byarlay et al., 2014; Sheng

et al., 2020). Hence, comparative studies utilizing these new

technologies will further provide valuable insights on the extent of

network co-option and gene regulatory network rewiring during the

evolution of plastic traits. Third, our understanding of the

mechanisms and evolution of nutritionally cued plasticity is

incomplete without considering how organismal traits are
Frontiers in Ecology and Evolution 05
integrated at the molecular level. Detailed functional genetic

analyses in insects with complex, environmentally sensitive traits,

and assessing different trait types (e.g. behavioral or morphological

traits), would facilitate answering these questions and enable us to

better understand how complex phenotypes evolve.

Finally, it is important to emphasize that we live in a rapidly

changing world, where organisms continuously experience new

nutritional environments. For instance, a shift in geographic

distribution of insects as a result of climate change can impact

their encounters with new nutritional environments (Janes et al.,

2014). Thus, understanding how the regulation of plasticity has

evolved will provide the basis to further investigate the impact of

climate change on plastic responses. Doing so will enable a more

accurate prediction of key aspects in the regulation of plasticity,

particularly those that could pose challenges for certain species in

the future. Together, insect studies have provided valuable insights

into the mechanistic understanding of phenotypic plasticity. With

the development of novel technologies and the increase in

development of tractable insect systems, the time is ripe to

expand integrative studies on the regulatory mechanisms of

plasticity and their evolution.
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