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The Southern Ocean benthos is remarkably rich and diverse, and managed under

a complexity of treaties and conventions, further complicated by geopolitical

boundaries. Traditionally, conservation management is largely informed by

species lists augmented, when data are available, by known vulnerability of the

taxa. Species presence absence database resources are valuable tools with

proven and positive management outcomes, however, in a vast, difficult to

access and thus understudied region such as the Southern Ocean, there are

large gaps in knowledge regarding the ecology, ecophysiology, life history and

even species identity. Conservation biogeography identifies regions of

conservation concern, rather than a species-by-species approach, but also

relies on the availability of high-quality presence data from species lists and

thus both approaches are undermined when species lists are inaccurate or

species in general are poorly described. In addition, the data provide a

snapshot of the current species diversity and have inadequate power to

identify the processes underlying the patterns uncovered. Identifying historical

processes common to shaping diversity (species or genetic) can be generalized

across assemblages and regions, providing a more robust basis for conservation

policy and decisions. In this study, largely based on consideration of Southern

Ocean ophiuroids, we discuss the challenges inherent in using species lists, the

power and limitations of genetic analyses, and revisit previous suggestions of

building a spatial model of diversity that includes underlying evolutionary

relationships transcending the simple species diversity approach, and that is

applicable to assemblages, rather than just to individual taxa.
KEYWORDS
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1 Introduction

The Southern Ocean region and its rich natural resources are

governed and managed by various international treaties and

conventions further complicated by geopolitical boundaries. These

agreements generally adopt a precautionary approach to

management, conservation and exploitation, with areas south of 60

degrees of latitude falling under the Antarctic Treaty governance.

However, areas under individual national governments are managed

according to their specific interests and specific policy pressures.

Where population sizes of species in assemblages are abundant,

widespread and well connected, poor management or strong

exploitation from small regional territories is unlikely to negatively

impact the wider assemblage elements. However, small, regionally

localized and isolated species or populations are vulnerable to

pressures at small regional scales, whether they be anthropogenic

or stochastic. Given that many of the nation states with territories or

interests in the Southern Ocean are signatories of the Convention on

Biological Diversity that explicitly defines biodiversity as including

within and between species variation (Article 2), it is essential that

some understanding of the biological systems is generated in order to

best approach conservation management if required.

The benthic faunal assemblage of the Southern Ocean is

traditionally viewed as “Antarctic”, with some influence from the

South American shelf fauna around the sub-Antarctic islands

(Hedgpeth, 1969; Griffiths et al., 2009). Under this paradigm,

there is little need for concern regarding the small, regionally

managed locations in the Southern Ocean as any regional

assemblages in decline at this scale can be continually seeded

from the vast and well-connected populations surrounding them.

However, the Southern Ocean benthos is very difficult to study, and

as a result poorly understood in regard to any aspect of its ecology,

ecophysiology, even species identity. The past 20 years have seen a

change in the way biodiversity is assessed and a wealth of genetic

data is challenging the widespread assumption of a general

“Antarctic” fauna (Linse et al., 2007; Leese and Held, 2008;

Havermans et al., 2011; Dietz et al., 2015; Dömel et al., 2017;

Guzzi et al., 2022). Rather than well-connected assemblages with

large population sizes, genetic data – largely mitochondrial

sequences – imply that biogeographically structured populations

may be the norm, potentially with many cryptic or currently

unrecognized species, or at least isolated populations following

independent evolutionary trajectories.

The resources available for assessing diversity patterns used in

first pass conservation assessment across the vast and relatively

unknown Southern Ocean largely consist of species lists such as the

Global Biodiversity Information Facility (GBIF, 2024) and the

International Union for Conservation of Nature’s (IUCN) Red

List (IUCN Red List, 2024), the latter augmented by information

regarding each species’ vulnerability status (Hilton-Taylor and

Brackett, 2000; Rodrigues et al., 2006; Vié et al., 2009). These are

demonstrably valuable resources (Heberling et al., 2021) and freely

available online. Their full value relies heavily on the extent of data

being collected (Huettmann, 2020) and its quality (Abe, 2005; Zizka

et al., 2020; Rocha-Ortega et al., 2021). Unreliable taxonomic

identification is certainly a significant issue, but a more pressing
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and perhaps damaging challenge is given by formal taxonomic

descriptions that are inadequate for subsequent confident

identification or that inadvertently underestimate species

diversity. These taxonomic limitations will overestimate species

distributions, population sizes and connectivity, the three key

elements that inform assessment of a species’ vulnerability status.

Genetic techniques can ameliorate these limitations, but associating

genetic diversity with species diversity is difficult and controversial

(Blaxter, 2004; DeSalle et al., 2005; Ebach and Holdrege, 2005; Cook

et al., 2010). Complicating this further is the ongoing debate

regarding what a species is and its relevance in biology

(Aldhebiani, 2018; Stanton et al., 2019). With species lists

requiring accurate species descriptions, many available species

descriptions are currently inadequate in relation to the

distribution of genetic diversity, and genetic diversity in turn not

reflected in species descriptions required for species lists, a problem

exists that is set to confound efforts to assess diversity patterns

essential for raising conservation awareness.

Here we share a perspective for an alternative strategy to

reliance on presence/absence species lists, based on a proven

technique that uses information relating to the processes that

underly geographic patterns observed in genetic sequence data

(Taberlet and Bouvet, 1994; Moritz and Faith, 1998; Emerson

et al., 2001). Shared historical processes can be inferred from

genetic data of selected target species across a landscape. Such

processes are likely to have been experienced by all species in any

given assemblage. Recognition of this provides this provides a

model that can help inform managers of the geographic extent of

diversity, the size of local populations and the connectivity between

populations, allowing inference of the potential for resilience in any

given species or population. The benefit of such an approach is that

it circumvents the need for accurate “traditional” species

identifications. At the same time, it helps define potential species

boundaries, highlights patterns of variation along the species

continuum, and provides both geographic, ecological and

evolutionary information regarding population (and by extension,

assemblage) resilience.

As conservation management and policy are currently tightly

bound to formally described species, traditional taxonomy is time

intensive and relies on a rapidly dwindling skill pool (Wägele et al.,

2011; Saucède et al., 2020), the number of putative new species

“discovered” in molecular studies vastly exceeds the rate at which

new species descriptions are possible. This creates a profound

challenge that undermines the key importance of the IUCN Red

List and the multitude of conventions it informs. In essence the bulk

of the diversity on Earth is likely to be a large underestimate, and

while the focus of conservation efforts is directed on a species-by-

species basis, this is at a cost to regional assemblages holding

unappreciated, unique diversity.
2 The species challenge: do
species matter?

The term “species” is used frequently in biology and by non-

biologists referring to biological units. Very few would argue with
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this and yet an acceptable definition, or concept, of a “species”

remains elusive leading to a long running debate that has been

described as “…sometimes boring and seemingly fruitless, but is

not wholly futile” (Simpson, 1951). The debate continues with the

concept of a species recognized as fundamental to biology, but

controversial amongst biologists (Wheeler and Meier, 2000).

There are currently at least 28 competing species concepts

(Wilkins, 2018), each providing arguments justifying the specific

groupings as recognized by the responsible authors. The challenge,

with so many views on what a species may be, and the variety of

concepts created, is that they are often incompatible in their

outcomes, with individuals or populations being included in or

excluded from a given species depending on which definition is

adopted. Underlying this debate is the fact that the process of

speciation is a continuum over time, that the time taken to

“speciate” differs among species, the species or population under

examination may be anywhere along the speciation continuum

and the species concept criterion applied may also vary along that

continuum. For example, where ecological or sexual selection is

strong, such as with cichlid fish (Barluenga and Meyer, 2004),

speciation as determined by discrete morphology or ecology may

be readily apparent, fitting the ecological and morphological

species concept, and yet the same groupings may be impossible

to detect using genetic sequence data, thereby not satisfying the

phylogenetic, Hennigian or cladistic species concept.

To enable meaningful comparison of species across space

and time, species concepts matter (Cracraft, 2000), especially

within a management context. The term “species” is critical for

conservation biology, as it has been almost universally adopted as

the base level of diversity. Of particular note in this context is the

IUCN Red List, widely adopted by international conventions and

treaties such as the Convention on International Trade in

Endangered Species (CITES), Convention on Migratory Species

(CMS), Convention on Biological Diversity (CBD), Ramsar

Convention and Intergovernmental Science-policy Platform on

Biodiversity and Ecosystem Services (IPBES). The Red List

influences resource allocation (e.g. Global Environment Facility)

and informs conservation planning (e.g. Key Biodiversity Areas;

IUCN Red List, 2022). The central criterion required before

initiating a Red List assessment is that the unit being assessed is

“at or below the species level” (IUCN Red List Categories and

Criteria V3.1 second edition, Preamble, paragraph 1), confirming

that the base level of diversity is the species, with the recognition

that further subdivision is possible.

On this basis, “species” do matter, specifically formally described

species. This leads to the question: to what extent does the accurate

parameterization of a species affect conservation biology, particularly

in the light of confusing concepts and definitions? Answering this

question is long and complex and depends on perspective and

context. In the context of biodiversity management across a large

realm managed by multiple states, treaties and conventions, such

as the Southern Ocean, we suggest that any consequences

of overestimating diversity based on “species” assemblages

would be negligible, whereas underestimating diversity could

be catastrophic.
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3 Does DNA hold the solution?

The advent of DNA sequencing and phylogenetic

reconstruction has resulted in an understanding of the systematic

structure of the tree of life (Li et al., 2021) far exceeding the

expectations of the evolutionary biologists of previous generations

(Dobzhansky, 1935). In some groups, the use of multiple genetic

markers and sophisticated analyses has resulted in very high

resolution of relationships. Here, we focus as an exemplar on the

work being carried out on class Ophiuroidea, known as brittle stars

(O’Hara et al., 2017), where phylogenetic relationships have been

reconciled with previously unappreciated informative

morphological characters (Thuy and Stöhr, 2016) to formally

restructure the taxonomy of the class (O’Hara et al., 2018).

However, taking genetic inference at face value, without

independent supporting evidence, can lead to the proposal of false

relationships and incorrect interpretations.

The start of the twenty-first century saw a movement towards

DNA based taxonomy, species delimitation and identification

(Tautz et al., 2002; Wiens and Penkrot, 2002; Tautz et al., 2003;

Blaxter, 2004; Hebert and Gregory, 2005). With the investment of

substantial funding, initiatives such as the International Barcode of

Life (International Barcode of Life – Illuminate Biodiversity, 2024)

have resulted in many thousands of studies contributing data to

resources such as the Barcode of Life Database (Ratnasingham and

Hebert, 2007), which currently displays a total of 255,000 animal

species with sequence data, relating to 1,046,000 “BINS” or putative

DNA barcode species from 15,910,000 DNA barcodes (http://

www.boldsystems.org accessed 28th February 2024). Whether this

is an appropriate strategy for determining species or not is

debatable, but the publicly available resource of a DNA sequence

alongside a georeferenced specimen that has been unambiguously

identified is precious, widely comparable and growing. There has

been considerable resistance to the concept of DNA barcoding and

its use in taxonomy (Mallet and Willmott, 2003; DeSalle et al., 2005;

Ebach and Holdrege, 2005; Will et al., 2005). A synopsis of this

debate is that DNA barcoding as a step in taxonomic discovery is

useful but with exceptions. Incomplete lineage sorting and

introgression can confuse genetic signals. Furthermore,

population theory suggests that large, stable populations will hold

large amounts of diversity over long periods of time (Pfaffelhuber

et al., 2011; Nordborg, 2019), which could be confused with deeply

divergent clades on a phylogeny. For a large number of well-

characterized species, mitochondrial DNA sequences do indeed

accurately define individual species groups (Hogg and Hebert, 2004;

Rock et al., 2008; Ward et al., 2008; Jossart et al., 2021), but results

and interpretations should be viewed with caution (Havermans

et al., 2010, 2011).

4 Repeated patterns in genes
and geography

Given the difficulties surrounding defining a species, the

challenges of describing species and general uncertainty in
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assigning species using molecular techniques, a change in perspective

is required. Patterns shared across taxa indicate shared historical

events, in which case they probably represent the structure of

assemblages (Moritz and Faith, 1998). The subdiscipline that

specifically addresses the spatial distribution of genetic diversity is

known as phylogeography (Avise et al., 1987; Avise, 2000). When

analyses of co-distributed species are involved it is termed

comparative phylogeography (Bermingham and Moritz, 1998).

Linking gene trees, or evolutionary relationships, to geography

provides historical information relevant to the formation of discrete

spatial distributions (Taberlet et al., 1998; Hewitt, 2004). The

information generated from such analyses transcends that of

species diversity or richness (Taberlet et al., 2012) as it spans the

divergence continuum from individuals to species and beyond.

Benthic species diversity is high in the Southern Ocean (Arntz

et al., 1994; Brey et al., 1994; Clarke and Johnston, 2003) with

representatives of the class Ophiuroidea (Figure 1) often the most

abundant in terms of numbers and biomass (Martıń-Ledo and

López-González, 2013; Sands et al., 2013). Several studies have

identified cryptic diversity in Southern Ocean ophiuroids (Hunter

and Halanych, 2008; Martıń-Ledo et al., 2013; Sands et al., 2015;

Galaska et al., 2017a, b; Jossart et al., 2019; Sands et al., 2021). For

example, the sub-Antarctic species Ophiuroglypha lymani

Ljungman, 1871 forms several island-specific clades, including

one in which its sister species, the Antarctic shelf endemic

Ophiuroglypha carinifera Koehler, 1901 is subsumed (Sands et al.,

2015). Similarly, Astrotoma agassizii Lyman, 1875 has several

discrete clades across the Southern Ocean, one which includes its

sister species Astrotoma drachii Guille, 1979 (Jossart et al., 2019).

There is strong evidence that both Astrotoma agassizii and

Ophiuroglypha lymani represent species complexes. In these two

examples, this results in increased overall diversity while individual

population sizes have decreased. Both species groups appear to have

congruent phylogeographic structure – in that it appears that clades

are specific to island shelf regions and the Antarctic shelf region

(Sands et al., 2015; Jossart et al., 2019). Most interesting perhaps is

the sister-species/outgroup problem as, in both cases, the sister-

species appears to be an element of the species complex rather than

an outgroup, and this pattern has been found again with respect to

Amphiura belgicae Koehler, 1900 and A. eugeniae Ljungman, 1867,

its likely sister-species. (Sands et al. This Volume). This again

suggests shared demographic histories and provides a starting

point for comparative analyses.
5 A generalized model of genetic
variation across the Southern Ocean

The concept that regions of conservation value can be identified

based on co-distribution of discrete genetic variation between

species is not new (Faith, 1992, 1993). Over the past 30 years the

field has matured (Garrick et al., 2015; Edwards et al., 2022;

McGaughran et al., 2022), with the cost of laboratory work much

reduced and the sophistication and sensitivity of analyses greatly
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increased. Based on some of the above citations we can generalize

that the island shelves around the Southern Ocean, particularly

South Georgia, appear to contain discrete genetic types distinct

from those around the Antarctic (Linse et al., 2007; Sands et al.,

2015; Jossart et al., 2019). This is the basis of a model and more taxa

should be added to strengthen it. The effects of the shared historical

process may not be recorded in the genetic regions of all members

of an assemblage, as life history difference in particular having a

strong influence on retained polymorphisms (Avise, 2009; da Silva

Ribeiro et al., 2020). For example, decapods with high dispersal

capacity show a Southern Ocean wide panmictic distribution

(Raupach et al., 2010; Dambach et al., 2016). Most individuals

across the Southern Ocean are from species with some

developmental stage with high dispersal capacity, but most

“species” tend to have low dispersal in general (Poulin et al.,

2002). For this reason choosing an appropriate taxon that is likely

to have retained ancestral signal in its DNA is important for

adequately building and testing a model such as we are suggesting.

Choosing taxa likely to hold historical information is one

consideration. Others are the sample size and geographic spread

of the study collection (Ruiz-Garcıá et al., 2021). Sufficient sample

size within each region is required to compare the diversity of

genetic types within a region as well as between regions. For

example, in Sands et al. (2015) the included samples of

Ophiuroglypha lymani from the South Sandwich Islands and

Bouvetøya were distinctly divergent from other regions sampled.

However, the sample sizes of these two regions were three and two

respectively. If sample sizes for all regions were equally small there

would be little confidence in their distinctness, and it is the larger

sample sizes of the target regions in this study that indicate they are

likely to be discrete populations. Broad geographic collections are

more likely to hold more power for accurate inference. The studies

comparing Astrotoma agassizii from Patagonian shelf and Antarctic

shelf (Hunter and Halanych, 2008; Galaska et al., 2017a) identified

divergences between populations, but the true extent of the diversity

within A. agassizii was not appreciated until samples were collected

and analyzed from across the Southern Ocean (Jossart et al., 2019).

Using gene trees for demographic inference using a single

marker is prone uncertainty and risks over interpretation

(Knowles and Maddison, 2002). The ability to use multiple

genetic markers as a method of within-group replication is a

powerful option for refining demographic inference for a single

species (Brito and Edwards, 2009; Garrick et al., 2015; Edwards

et al., 2022). However, the costs and complexity associated with the

huge amount of data collected for these types of studies are

substantial. For the purpose of this particular exercise –

descriptive model of spatial diversity of the Southern Ocean – we

suggest that it is by replicating species groups rather than loci that

power and rigor can be obtained. Southern Ocean collection

expeditions are infrequent, usually geographically limited, and

costly in time, man power and environmental cost. Collections

are not selective, so it is likely that they include a substantial number

of different taxa from which to build relatively cost effective

comparative studies. Inference from single marker gene trees
frontiersin.org

https://doi.org/10.3389/fevo.2024.1409618
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Sands et al. 10.3389/fevo.2024.1409618
should be treated with caution, but they are still a powerful tool in

their own right (Avise, 2009) and once a comparative model can be

generated, more definitive, if expensive, methods can and should be

used to test the models rigor.
6 Conclusions

The diversity of the Southern Ocean benthic fauna, described as

remarkably rich (Clarke and Johnston, 2003), is underestimated.

The reliance of species lists and databases obscures the true extent of

diversity, fails to capture the uniqueness of shelf assemblages and

does nothing to promote awareness of small, isolated populations

likely in need of conservation management. Furthermore, it ignores

the genetic variation within species that is within the definition of

Biological Diversity according to the Convention on Biological

Diversity Article 2. A model developed on a series of

phylogeographic studies of benthic taxa sampled across the

Southern Ocean would quickly identify patterns and hint at

shared processes underlying genetic diversity, providing a robust

tool that highlights regions conservation priorities.
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Poulin, E., Palma, A. T., and Féral, J.-P. (2002). Evolutionary versus ecological
success in Antarctic benthic invertebrates. Trends Ecol. Evol. 17, 218–222. doi: 10.1016/
S0169-5347(02)02493-X

Ratnasingham, S., and Hebert, P. D. N. (2007). BOLD: the barcode of life data system
(http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364. doi: 10.1111/j.1471-
8286.2007.01678.x

Raupach, M., Thatje, S., Dambach, J., Rehm, P., Misof, B., and Leese, F. (2010).
Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species
of the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar.
Biol. 157, 1783–1797. doi: 10.1007/s00227-010-1451-3

Rocha-Ortega, M., Rodriguez, P., and Córdoba-Aguilar, A. (2021). Geographical,
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International Publishing, Cham), 101–148. doi: 10.1007/978-3-030-65606-5_6

Sands, C. J., Griffiths, H. J., Downey, R. V., Barnes, D. K. A., Linse, K., and Martıń-
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