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The use of BirdNET embeddings
as a fast solution to find
novel sound classes in
audio recordings
Slade Allen-Ankins*, Sebastian Hoefer, Jacopo Bartholomew,
Sheryn Brodie and Lin Schwarzkopf

College of Science and Engineering, James Cook University, Townsville, QLD, Australia
Passive acoustic monitoring has emerged as a useful technique for monitoring

vocal species and contributing to biodiversity monitoring goals. However, finding

target sounds for species without pre-existing recognisers still proves

challenging. Here, we demonstrate how the embeddings from the large

acoustic model BirdNET can be used to quickly and easily find new sound

classes outside the original model’s training set. We outline the general

workflow, and present three case studies covering a range of ecological use

cases that we believe are common requirements in research and management:

monitoring invasive species, generating species lists, and detecting threatened

species. In all cases, a minimal amount of target class examples and validation

effort was required to obtain results applicable to the desired application. The

demonstrated success of this method across different datasets and different

taxonomic groups suggests a wide applicability of BirdNET embeddings for

finding novel sound classes. We anticipate this method will allow easy and

rapid detection of sound classes for which no current recognisers exist,

contributing to both monitoring and conservation goals.
KEYWORDS

acoustic recognition, bioacoustics, biodiversity, conservation, deep learning, passive
acoustic monitoring
Introduction

Vertebrate biodiversity is declining worldwide, necessitating tools for effective

monitoring to detect declines and evaluate management interventions (Schmeller et al.,

2015). Passive acoustic monitoring has recently emerged as a useful technique for

monitoring vocal species, and given that many vertebrate taxa readily vocalise, it has the

potential to allow monitoring at the large spatial and temporal scales needed, which are

typically not possible using traditional survey methods (Sugai et al., 2019; Hoefer et al.,

2023). However, while the ease of collecting and storing audio recordings has increased
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dramatically, automating the detection of individual species from

large audio data sets can still prove challenging, hampering efforts

to efficiently monitor vertebrate species.

While there has been much recent progress in automated

species recognition (Priyadarshani et al., 2018; Brodie et al., 2020;

Kahl et al., 2021; Stowell, 2022; Nieto-Mora et al., 2023; Xie et al.,

2023), most acoustic studies still employ manual methods of

analysis (Sugai et al., 2019) as there are few well developed and

tested artificial intelligence classifiers or ‘recognisers’ for most vocal

taxa. This is particularly true for vocal taxa that lack extensive call

libraries (e.g., frogs and mammals), as well as many rare and

threatened species. This leaves researchers interested in utilising

passive-acoustic monitoring for many under-studied species with

the choice of developing their own recogniser or using existing tools

to find their sound class of interest. Recogniser development can

require considerable investment and specialist training lacked by

many ecologists and management practitioners. Additionally, there

is often a lack of sufficient example vocalisations from target species

required to build traditional bespoke artificial intelligence

recognisers (Priyadarshani et al., 2018). Therefore, tools flexible

enough to allow detection of a wide array of taxa, and relatively

straightforward to implement, with little user input, are needed to

allow acoustic monitoring of many taxa.

There are a number of tools available for users to find sound

classes of interest with few or even no examples. One approach is

template matching, such as that implemented in the R package

monitoR (Katz et al., 2016) or the ARBIMON platform (https://

arbimon.rfcx.org/; e.g., Vélez et al., 2024), where at least one example

is used to create a template that can be run over an unlabelled audio

data set returning a similarity score for each window of time. While

this method can be successful in finding the target sound class,

templates do not recognise spectral and temporal variations present

in many animal vocalisations, often produce too many false-

positives, and typically require many example templates to be

created and validated to achieve acceptable performance (Teixeira

et al., 2022; De Araújo et al., 2023; Linke et al., 2023). Another

approach is unsupervised clustering, such as that implemented in

the commercial software Kaleidoscope Pro (Wildlife Acoustics,

https://www.wildlifeacoustics.com), in which the user does not

even need an example vocalisation, instead, similar sounds

present in the unlabelled data set are clustered together (Pérez-

Granados and Schuchmann, 2020; Rowe et al., 2023). However, this

approach may not work well for rare sound classes because there

may not be enough detections in the data to form a cluster,

potentially requiring additional known examples to be added to

achieve sufficient results (e.g., Bobay et al., 2018). Additionally, all

output clusters need to be manually searched at least partially, to

determine whether the target sound class has been successfully

clustered or not. Deep-learning CNNs promise much better

performance than these previous methods but typically require

lots of training data to train from scratch, although transfer learning

is possible with a smaller set of example data (Arora and Haeb-

Umbach, 2017; Ghani et al., 2023). Another option with deep-

learning models can be to use their embeddings for search, such that

a single example may be used to find similar vocalisations in a

data set.
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Embeddings, in the context of deep-learning acoustic models,

are the lower dimensional representations of sound data learned by

the model during its training process (Stowell, 2022; Ghani et al.,

2023). The embeddings from these models can be used to search for

novel sound classes outside the original model’s training set, by

measuring the similarity or distance between the embeddings of a

target sound class (e.g., a species of interest), and the embeddings of

unknown sound classes. Unknown sound classes with a high

similarity, or low distance, to the target class are the most likely

to be from the target sound class and are worth listening to. While

the use of embeddings for similarity search in other applications is

common (e.g., semantic search for text - Shen et al., 2014), we are

not aware of its use for processing data from passive acoustic

monitoring, perhaps due to the relatively recent development of

very large acoustic models specific to wildlife sounds.

Large acoustic models such as BirdNET (Kahl et al., 2021) have

been trained on thousands of vocal species from around the world

(e.g., there are over 6.5k sound classes in BirdNET v2.4) potentially

allowing researchers to rapidly analyse long-duration recordings to

monitor species richness and study community change (see Pérez-

Granados, 2023 for a review). The embeddings from these deep-

learning models are likely to be useful for searching for new faunal

sounds due to domain similarity. In a similar vein, BirdNET

embeddings have successfully been used to distinguish within-

species sound classes, such as call types and life stage (McGinn

et al., 2023), although in this case the species investigated were

already present in the training data of the model.

In this study we present the general workflow, as well as three

case studies utilising BirdNET embeddings to detect species from

single examples in long-duration audio recordings across different

ecological settings. In the first, we map the distribution of an

introduced reptile on Christmas Island, in the second, we conduct

species inventories of amphibians and vocal mammals, and in the

third, we search for a threatened bird species in a continental acoustic

observatory. The demonstrated success of this method across

different datasets and different taxonomic groups suggests a wide

applicability of BirdNET embeddings for finding novel sound classes.
General methodology

The basic workflow required to use BirdNET embeddings to

find vocalisations presented here involves four steps: example call(s)

selection, embeddings generation, measuring similarity, and

validation (Figure 1).
Example call selection

The first step in using this method is to select an example of the

target sound class to be searched. This may come from the user’s

own recording, or perhaps an online repository of animal sounds,

such as xeno-canto (https://xeno-canto.org/). The BirdNET model

(Kahl et al., 2021; https://github.com/kahst/BirdNET-Analyzer)

runs at a 3-second temporal resolution, so some editing may be

required to select an appropriate-length section of audio containing
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the target sound class. The example call process may require the

removal of non-target sound classes present. If available, multiple

example calls can be used to generate separate embeddings for

search when the target species has different vocalisations.
Embeddings generation

The embeddings of both the target sound class and the unlabelled

audio dataset to be searched can be generated using BirdNET’s

‘embeddings.py’ script. This script will generate a text file containing

the 1024-length embeddings vector for each 3 seconds of audio; for the

example call this will be a single vector, for the audio being searched it

will be as many 3- second segments as are contained in the audio

recording (examples of such text files for a 2-hour recording and an

example call are included in Supplementary Material 1). When

generating the embeddings file, outputting a file with the same name

as the original recording is useful for ensuring segments identified as

being similar to the example call can be traced back to the correct 3-

seconds of audio for playback and validation.
Measuring similarity

To determine the similarity between the embeddings vector of our

target class and our unlabelled audio, we can calculate the Euclidean

distance, this results in a distance value for every 3 seconds of

unlabelled audio, such that more similar embeddings have lower

distance values. There are other similarity measures available, such as

cosine similarity, where a higher value equals greater similarity. We

used R (version 4.1.2) to measure Euclidean distance between the

embeddings vector of the target vocalisation and each embeddings

vector of the unlabelled audio (we provide an example with

embeddings files and R script in Supplementary Material 1).
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Validation

Once the distances between the embeddings of the target sound

class and all the unlabelled audio have been calculated, a validation

protocol can then be established based on the needs of the study.

Using the names of the original recordings and the start and end

values provided in the BirdNET embeddings files it is possible to

identify the 3-second segments of audio desired for listening (e.g.,

those with the lowest distances to the example call). They can then,

for example, be programmatically cut out from the original

recording and placed into a folder for validation using the

researcher’s software of choice (e.g. Audacity, Kaleidoscope Pro,

Raven Pro etc.). Simply validating the lowest returned distances

may be enough for some studies. For example, if only presence/

absence at a location is required, then labelling from the lowest

distance for all audio at that location until a detection is made (with

some pre-determined stopping point) can be a rapid way to check a

large audio data set for the presence of a certain sound class. If

presence/absence was desired on a smaller timescale (e.g., daily),

then the lowest distance example per day could be checked. There is

no golden distance known a-priori for which we can expect to only

get true-positive detections of the target class, the distance will vary

based on the variation in the target sound class and the similarity of

non-target sound classes in the soundscape (Figure 2A). However, a

‘threshold’ distance can be derived from labelling a sample of the

unlabelled audio across the range of distances returned, to

determine the point at which detections returned have a desired

property (e.g., a certain probability of correct prediction; Figure 2B).

While the process described here is primarily about using the

distance values returned directly, an additional step can be added

wherein the search results are used to label both positive and

negative examples and train a simple classifier using the 1024-

length embeddings vectors as predictor features (a brief example is

included in Case Study 3).
FIGURE 1

Overview of workflow to use BirdNET embeddings for finding new sound classes.
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Case study 1: mapping the distribution
of the introduced Asian house gecko
(Hemidactylus frenatus) on
Christmas Island

Background/motivation

Monitoring invasive species is important for understanding

their distribution and spread, particularly for those species that

are causing deleterious impacts on native fauna or are being actively

managed. Many introduced vertebrate species are vocal, therefore

PAM offers a useful tool for monitoring the spread and distribution

of these invasives (e.g., Bota et al., 2024). The Asian house gecko

(Hemidactylus frenatus) is native to southeast Asia, but has spread

globally, after introduction to Australia, the southern United States,

and many islands (Rödder et al., 2008). They have been implicated

in negative impacts on native geckos in their introduced range (Cole

et al., 2005; Hoskin, 2011; Nordberg, 2019). The Asian house gecko

was introduced to Christmas Island in 1979, where they may

compete with endemic geckos, and have been detected occupying

sites previously occupied by native geckos (Cogger, 2006). Asian

house geckos have caused declines of geckos on other islands where

they have been introduced (Case et al., 1994). Unlike most reptiles,

the Asian house gecko has a loud and distinct vocalization that

should lend itself well to detection during passive acoustic

monitoring. In this case study, we used a recently established

network of acoustic recorders to survey for Asian house geckos to

understand their distribution around Christmas Island.
Data and methods

In 2023 a network of audio recorders (Frontier Labs,

BioAcoustic Recorder-LT™ – 44.1kHz sampling rate), were

deployed across Christmas Island, recording continuously for two

1-month periods during May-August. To determine the
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distribution of the Asian house gecko around Christmas Island,

we searched the audio from 76 sites using an example vocalisation

from a previous lab study conducted in Townsville, Queensland

(Hopkins et al., 2020). BirdNET embeddings for all available

recordings collected between 18:00 and 06:00 local time were

calculated (mean number of nights: 43.2), as Asian house geckos

are most active at night (Hopkins et al., 2020). To determine which

sites Asian house geckos were present, as well as obtain an estimate

of their occupancy, we validated the lowest distance detection per

site per night of recording.
Results

A total of 3286 apparent nightly detections were validated

across all sites. Asian house geckoes were detected at 63 out of 76

sites surveyed, with an average of 49 percent of nights having

positive detections and 9 sites having detections on every night of

recording (Figure 3).
Case study 2: generating static and
temporal variance estimates around
species richness for mammals
and amphibians

Background/motivation

The species richness of habitats can be a good indicator of

ecosystem health (Carignan and Villard, 2002), and methods that

monitor richness though time may be useful for detecting declines

and evaluating the success or failure of measures for conservation

(Schmeller et al., 2015). However, monitoring species richness using

PAM can be quite challenging as it either requires a significant effort

to manually listen and label audio for all or most species present, or

automated methods that can do the same (Sugai et al., 2019). While
FIGURE 2

Example plots showing the relationship between distance to example call and the true class. (A) Euclidean distances of unlabelled audio compared
to a target sound class coloured by the true label for the audio (target class = blue, non-target class = red). (B) A logistic regression fit to data
labelled across a range of distances can be used to determine a threshold distance value for a certain desired property (e.g., 95% or 80% probability
of correct prediction).
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acoustic recognition of birds has received a lot of attention from the

scientific community, acoustic studies of amphibians and mammals

have received less (Hoefer et al., 2023). This is worrying as many

amphibian and mammal species are highly threatened in Australia

(Woinarski et al., 2015; Luedtke et al., 2023) and having a reliable

way to estimate the richness and diversity of these taxa is needed.

While the most recent BirdNET versions have been used to detect

frog and mammal species elsewhere (Pé rez-Granados et al., 2023;
Sossover et al., 2024), and also now include Australian bird species

‘out-of-the-box’, it is currently not possible to directly monitor

other Australian vocal taxa such as mammals and frogs like this at

the moment. Using embeddings from example calls makes this

possible. In this case study, we used example calls for a range of

amphibian and mammal species to estimate species richness of

these taxa at three sites of the Australian Acoustic Observatory

(Roe et al., 2021).
Data and method

BirdNET embeddings were generated for all available audio for

three Australian Acoustic Observatory (https://data.acoustic

observatory.org/) sites in North Queensland (Chillagoe, 17.2°S,

144.5°E; Fletcherview, 19.88°S, 146.18°E; Spyglass, 19.5°S, 145.7°

E), totalling over 120,000 h of audio. Each site has four sensors per

site, with two sensors located close to a water source and two
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sensors located in a relatively dry location (Roe et al., 2021). We

generated BirdNET embeddings for 17 mammalian sound classes

(59 total example vocalisations), and 30 amphibian sound classes

(67 total example vocalisations) that may occur across the

distribution of the three sites. Some of the mammalian classes

used were not classified to species-level (macropods, pteropodids),

due to the similarity of vocalisations of closely related species

making species identity difficult to determine with audio alone.

To determine overall sensor level richness, the top detection per

example used was validated per sensor for the entire available audio

data set, leading to the validation of 708 audio files for mammals

and 804 audio files for amphibians. To determine temporal trends

in mammalian and amphibian richness, the top detection per

example was validated per month for one sensor (Fletcherview -

Dry B), resulting in 132 mammal validations and 156

amphibian validations.
Results

A total of 11 mammalian and 16 amphibian sound classes were

detected across the three sites (Figures 4A, C). At one sensor,

validated at a monthly timescale, richness of mammalian sound

classes peaked towards the middle of the year (~April-June), while

richness of amphibian sound classes peaked at the end and

beginning of the year (~December-March; Figures 4B, D).
FIGURE 3

Christmas Island showing the detections of Asian House Geckos at 76 locations. Size of points represents the proportion of surveyed nights (mean
43.2) with positive detections.
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Case study 3: detecting the
threatened Blue-winged parrot
(Neophema chrysostoma) using an
acoustic observatory

Background/motivation

Continuous acoustic monitoring has the potential to be very

valuable for monitoring threatened species, as they are often rare

and are difficult to detect using infrequent in-person surveys

(Klingbeil and Willig, 2015; Gibb et al., 2019; Manzano-Rubio

et al., 2022; Allen-Ankins et al., 2024). Australia has one of the

highest rates of vertebrate decline worldwide (Ritchie et al., 2013),

and long-term passive acoustic monitoring networks such as the

Australian Acoustic Observatory have huge potential to detect

threatened species and track declines in site occupancy

(Schwarzkopf et al., 2023). Unfortunately, many rare and

threatened species do not have extensive call libraries available for

training custom deep-learning recognisers, necessitating other

approaches for detecting their calls in long-duration audio

recordings. The Blue-winged parrot (Neophema chrysostoma) is

currently listed as Vulnerable on both the IUCN Red List and under

Australia’s EPBC Act due to undergoing a population decline over

the last three generations (decline of 30–50%) that is primarily

attributed to habitat loss (Holdsworth et al., 2021). The species is

not currently included in BirdNET as of version 2.4 and therefore

cannot be readily detected in audio recordings using existing tools.

In this case study, we used BirdNET embeddings to determine Blue-

winged parrot site presence across a range of Australian Acoustic

Observatory sites within their predicted distribution.
Frontiers in Ecology and Evolution 06
Data and method

Using existing information about the range and distribution of

the Blue-winged parrot (Australia - Species of National

Environmental Significance Distributions (public grids)) ten

Australian Acoustic Observatory sites were selected that provided

the best chance of detection (Figure 5). An example vocalisation for

the species was obtained from xeno-canto and the distance between

its BirdNET embeddings and the embeddings of all available audio

for the chosen sites was calculated (total >360,000 hours of audio).

To determine the site presence of Blue-winged parrots, the top 100

lowest-distance detections were validated per site. Additionally, to

improve our ability to acoustically survey for this species, we fit and

tested a simple classifier (linear support vector machine) to the

labelled embeddings using a 70:30 train:test split, and report on

precision and recall of this method compared to just using the

distance to the example call.
Results

Using the embeddings for a single example call, Blue-winged

parrots were successfully detected at nine out of ten Australian

Acoustic Observatory sites searched (Figure 5).

True-positive detections of Blue-winged parrot were typically a

lower distance to our target call embeddings than false-positive

detections (Figure 6A). Indeed, at eight out of the nine sites where

they were detected, it was only necessary to look at the top detection

to confirm site presence. However, there is a reasonably sharp drop

in precision that begins at moderate levels of recall (~40%,

Figure 6C). A simple classifier trained using the BirdNET
FIGURE 4

Mean (± SE) richness of mammalian (A) and amphibian (C) sound classes determined using BirdNET embeddings at 12 sensors across 3 Australian
Acoustic Observatory sites. Temporal trends in richness of mammalian (B) and amphibian (D) sound classes detected at a single sensor (Fletcherview -
Dry B) validated using the top detection per month.
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embeddings as features dramatically improved the ability to

distinguish between true- and false-positives, as evidenced by the

strong separation of model confidence scores between the two

classes (Figure 6B) and precision remaining high at high

recall (Figure 6C).
Discussion

Here we have demonstrated how the embeddings from a deep-

learning model such as BirdNET can be effectively used to find a

range of new sound classes from multiple taxonomic groups. This

method presents an opportunity for rapid detection of new sound

classes with minimal user input and validation required, and

without the need to develop complex, bespoke recognisers.

BirdNET is free to use, and requires no deep-learning expertise to

run, potentially allowing ecologists and conservation practitioners

to monitor acoustically for any vocal species, either present in the

model (Kahl et al., 2021), or for which they can obtain a single

example call. The three case-studies we have selected demonstrate

three different possible use cases for automated sound recognition,

which we suspect are common requirements in research

and management.

Understanding the distribution and spread of invasive species is

critical to management and control, and ecoacoustic recordings are
FIGURE 6

Comparison of performance of using embeddings distance and trained classifier on labelled embeddings for Blue-winged parrot. (A) Relationship
between distance and true-positive/false-positive label, (B) relationship between classifier confidence score and true-positive/false-positive label,
and (C) precision-recall curves comparing distance measures only (red), and classifier (blue). All data is from 30% test split of the full labelled data.
FIGURE 5

Southeast Australia with Australian Acoustic Observatory locations
overlayed on the predicted distribution of Blue-winged parrot. Tan
represents areas where ‘Species or species habitat may occur’, and
green represents areas where ‘Species or species habitat likely to
occur’. Blue points represent successful detection at a site, red
points represent unsuccessful detection at a site, and grey points
represent unsearched sites.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1409407
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Allen-Ankins et al. 10.3389/fevo.2024.1409407
extremely useful for detecting vocal invasive species (Ribeiro et al.,

2022; Bota et al., 2024). Here we used recordings made for a

different purpose (detecting rare birds and mammals) to detect

invasive house geckos (Hemidactylus frenatus) on Christmas Island,

a location characterised by several species of endangered native

geckos (Cyrtodactylus sadleri and Lepidodactylus listeri; Andrew

et al., 2018), using recorders placed in a wide range of locations

recording 24/7 to maximise coverage. We used nightly detections

collected over a 2-month period to determine site occupancy, but

because it was comparatively easy to validate calls nightly, we could

also obtain a measure of the relative activity of geckos at a site. Asian

house geckos likely do not move long distances (Frenkel, 2006), so

high daily activity at a site likely indicates that they are present

there, not just passing through. Indeed, vocal activity rates of

various taxa have been shown to correlate well with abundance

(Nelson and Graves, 2004; Pérez-Granados et al., 2019). Comparing

levels of activity at different sites could, for example, be used to

select sites for control or to quantify the impact of control measures

once implemented. While the Asian house gecko was found all over

Christmas Island owing to the long-time since their introduction,

this method could be used in other locations to identify areas of

incursion. Additionally, acoustic recognisers paired with on-device

detection (e.g., with a BirdNET-Pi) could provide real-time data for

early detection and removal of invasive species before they can

establish. We suspect this method will prove useful for other

projects monitoring invasive species activity and movement.

Identifying species and describing community composition at a

site are critical aspects of monitoring (e.g., Pollock et al., 2002).

Manual surveys typically record species presence, and a wide range

of global databases record species detections for mapping and

monitoring (Moussy et al., 2022). Thus, we included here an

example in which passive acoustic monitoring can be used for

species identification and estimation of site richness. Our method

provided the variation in richness estimates of species among four

sites at each of three locations in Queensland, Australia, and

allowed the user to examine this variation over an extended time

(1-1.5 years). Conducting these species richness estimates long-

term may be useful for identifying changes to community

composition or detecting the loss of species from a site.

Capturing large spatial and fine temporal variation is a strength

of acoustic monitoring (e.g., Gibb et al., 2019), which we

demonstrate here can be accessed in a fairly straightforward

manner requiring little validation. Of course, a thorough

understanding of the relationship between the species richness

that can be obtained using acoustic methods and the actual on-

ground species richness is needed to ensure detected patterns are

reliable (Hoefer et al., 2023).

Another common use of passive acoustic monitoring is to detect

threatened species, and to determine their site occupancy and activity

(Sugai et al., 2019). Here we demonstrate the use of our method to

detect the calls of a vulnerable bird species, the Blue-winged Parrot,

(Neophema chrysostoma) (Radford and Bennett, 2005). The ability of

our method to increase detection of species for which there are few

recorded calls, which is the case for many endangered species is a

great strength of this approach. Once more calls have been detected

and verified, those calls, in addition to the similar but incorrect calls
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detected, can be combined, as we did here, to create and train a

recogniser. This approach could be reiterated, if necessary, to increase

the precision and recall of the initial recogniser to desired levels.

Whereas with standard complex-neural-network style recognisers,

improving a recogniser may take a great deal of specialist

programming ability, and many iterations (e.g., Eichinski et al.,

2022) it may be shortened and simplified for finding rare species in

large datasets using the proposed approach.

One time-consuming aspect of acoustic monitoring is the effort of

detecting calls. Manually processing raw audio, until recently one of

the most common means of detecting calls (Sugai et al., 2019), can be

quick when focused on a single species with distinct calls that can be

detected visually on a spectrogram, but can take at least as long as the

audio itself, or significantly longer when targeting many species with

diverse vocalisations (e.g., 120 seconds per 30-second sample, Linke

and Deretic, 2020). Validating detections from more automated

methods is faster, but still needs to occur (e.g., Campos-Cerqueira

and Aide, 2016). The approach outlined here allows the user to

determine the amount of validation required, depending on the

question, but, in each case, comparatively little validation effort was

needed to obtain the results presented. The detection of Asian house

geckos (Case study 1) at 76 sites only took 3.5 hours, including

procuring information at a nightly resolution to estimate relative

prevalence. The enumeration of mammalian and amphibian species

richness (27 species detected; Case study 2) at 12 sensors only took

3.5 hours, with validation of monthly detections at a single sensor

taking an additional 1.5 hours. The validation of apparent detections

of the vulnerable Blue-winged parrot (Case study 3) at 10 sensors

only took 10 hours, and this included extra validation beyond

establishing site presence to create a dataset for training a

recogniser. Each project can predetermine the information they

actually require and validate detections specific to the question. The

finer the granularity of calling information that is required the more

validation effort that will be needed to obtain it. For large datasets it

may be necessary to determine the relationship between the distance

to the example call and the precision of the results using a subset of

detections, such that a threshold of a suitably high precision can be

applied without validating the entire dataset. The strong focus on

achieving both high precision and recall in machine learning

applications (e.g., Juba and Le, 2019) may not be required for every

biological application. High precision and adequate recall may be

enough to ensure a call is detected daily or weekly to answer specific

questions, say on site occupancy or species presence.

The main advantage of using a large pre-trained acoustic model

such as BirdNET to search for a target vocalisation is the ability to use

very few examples, even a single example, and to rapidly detect many

instances of those vocalisations. As we have shown, the distance

between the embeddings of the target class and the audio being

searched may alone be enough for many applications (Case studies 1

& 2), however it is also a useful method for obtaining both examples of

the target class and non-target class for rapidly training a recogniser

using the embeddings as features (Case study 3). The non-target class

examples that have relatively low distances to the target class for which

you are searching, are likely to be very useful for training a recogniser,

as they probably share some similar features with the target class,

hence the similarity of the BirdNET embeddings.
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As the embeddings are dependent on the pre-trained model (i.e.,

BirdNET), rather than the sound classes for which you are searching,

they can be computed for an entire audio dataset once, and then

stored, so that new examples, such as different species or different call

types can be found readily. This differs from other approaches, such

as unsupervised clustering with Kaleidoscope Pro, which may require

species-specific settings for ideal clustering, thus requiring reanalysis

for new tasks. It is also more efficient than using call templates, such

as those implemented in monitoR, which requires new templates to

be run over the entire audio set each time a new variant is attempted,

a much more time-consuming process than measuring the Euclidean

distances between a new target class and precomputed embeddings.

While we have used BirdNET here to demonstrate this

approach, it is applicable to other large acoustic models (e.g.

Google Perch; Ghani et al., 2023). As new deep-learning models

come out (potentially with better embeddings that have improved

search performance), the same approach can be used. We hope this

method will allow easy and rapid detection of sound classes for

which no current recognisers exist, contributing to monitoring and

conservation goals.
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